
Under review as a conference paper at ICLR 2020

ENHANCING ADVERSARIAL DEFENSE BY k-WINNERS-
TAKE-ALL

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a simple change to existing neural network structures for better defend-
ing against gradient-based adversarial attacks. Instead of using popular activation
functions (such as ReLU), we advocate the use of k-Winners-Take-All (k-WTA) ac-
tivation, a C0 discontinuous function that purposely invalidates the neural network
model’s gradient at densely distributed input data points. The proposed k-WTA
activation can be readily used in nearly all existing networks and training methods
with no significant overhead. Our proposal is theoretically rationalized. We analyze
why the discontinuities in k-WTA networks can largely prevent gradient-based
search of adversarial examples and why they at the same time remain innocuous
to the network training. This understanding is also empirically backed. We test
k-WTA activation on various network structures optimized by a training method,
be it adversarial training or not. In all cases, the robustness of k-WTA networks
outperforms that of traditional networks under white-box attacks.

1 INTRODUCTION

In the tremendous success of deep learning techniques, there is a grain of salt. It has become well-
known that deep neural networks can be easily fooled by adversarial examples (Szegedy et al., 2014).
Those deliberately crafted input samples can mislead the networks to produce an output drastically
different from what we expect. In many important applications, from face recognition authorization
to autonomous cars, this vulnerability gives rise to serious security concerns (Barreno et al., 2010;
2006; Sharif et al., 2016; Thys et al., 2019).
Attacking the network is straightforward. Provided a labeled data item (x, y), the attacker finds a
perturbation x′ imperceptibly similar to x but misleading enough to cause the network to output a
label different from y. By far, the most effective way of finding such a perturbation (or adversarial
example) is by exploiting the gradient information of the network with respect to its input: the
gradient indicates how to perturb x to trigger the maximal change of y.
The defense, however, is challenging. Recent studies showed that adversarial examples always exist
if one tends to pursue a high classification accuracy—adversarial robustness seems at odds with the
accuracy (Tsipras et al., 2018; Shafahi et al., 2019a; Su et al., 2018a; Weng et al., 2018; Zhang et al.,
2019). This intrinsic difficulty of eliminating adversarial examples suggests an alternative path: can
we design a network whose adversarial examples are evasive rather than eliminated? Indeed, along
with this thought is a series of works using obfuscated gradients as a defense mechanism (Athalye
et al., 2018). Those methods hide the network’s gradient information by artificially discretizing the
input (Buckman et al., 2018; Lin et al., 2019) or introducing certain randomness to the input (Xie
et al., 2018a; Guo et al., 2018) or the network structure (Dhillon et al., 2018; Cohen et al., 2019) (see
more discussion in Sec. 1.1). Yet, the hidden gradient in those methods can still be approximated,
and as recently pointed out by Athalye et al. (2018), those methods remain vulnerable.
Technical contribution I). Rather than obfuscating the network’s gradient, we make the gradient
undefined. This is achieved by a simple change to the standard neural network structure: we advocate
the use of aC0 discontinuous activation function, namely the k-Winners-Take-All (k-WTA) activation,
to replace the popular activation functions such as rectified linear units (ReLU). This is the only
change we propose to a deep neural network. All other components (such as BatchNorm, convolution,
and pooling) as well as the training methods remain unaltered. With no significant overhead, k-WTA
activation can be readily used in nearly all existing networks and training methods.
k-WTA activation takes as input the entire output of a layer, retains its k largest values and deactivates
all others to zero. As we will show in this paper, even an infinitesimal perturbation to the input may

1

Under review as a conference paper at ICLR 2020

cause a complete change to the network neurons’ activation pattern, thereby resulting in a large jump
in the network’s output. This means that, mathematically, if we use f(x;w) to denote a k-WTA
network taking an input x and parameterized by weights w, then the gradient∇xf(x;w) at certain
x is undefined—f(x;w) is C0 discontinuous.

...

Figure 1: 1D illustration. Fit a 1D func-
tion (green dotted curve) using a k-WTA
model provided with a set of points (red).
The resulting model is piecewise contin-
uous (blue curve), and the discontinuities
can be dense.

Technical contribution II). More intriguing than the
mere replacement of the activation function is why k-WTA
helps improve the adversarial robustness. We offer our
theoretical reasoning of its behavior from two perspec-
tives. On the one hand, we show that the discontinuities
of f(x;w) is densely distributed in the space of x. Dense
enough such that a tiny perturbation from any x almost
always comes across some discontinuities, where the gra-
dients are undefined and thus the attacker’s search of
adversarial examples becomes blinded (see Figure 1).
On the other hand, a paradox seemingly exists. The dis-
continuities in the activation function also renders f(x;w)
discontinuous with respect to the network weights w (at
certain w values). But training the network relies on the presumption that the gradient with respect
to the weights is almost always available. Interestingly, we show that, under k-WTA activation, the
discontinuities of f(x;w) is rather sparse in the space of w, intuitively because the dimension of w
(in parameter space) is much larger than the dimension of x (in data space). Thus, the network can
be trained successfully.
Summary of results. We conducted extensive experiments on multiple datasets under different
network architectures, including ResNet (He et al., 2016), DenseNet (Huang et al., 2017), and Wide
ResNet (Zagoruyko & Komodakis, 2016), that are optimized by regular training as well as various
adversarial training methods (Madry et al., 2017; Zhang et al., 2019; Shafahi et al., 2019b).
In all these setups, we compare the robustness performance of using the proposed k-WTA activation
with commonly used ReLU activation under several white-box attacks, including PGD (Kurakin et al.,
2016), Deepfool (Moosavi-Dezfooli et al., 2016), C&W (Carlini & Wagner, 2017), MIM (Dong et al.,
2018), and others. In all tests, k-WTA networks outperform ReLU networks.
The use of k-WTA activation is motivated for defending against gradient-based adversarial attacks.
Our experiments suggest that the robustness improvement gained by simply switching to k-WTA
activation is universal, not tied to specific network architectures or training methods. To promote
reproducible research, we will release our implementation of k-WTA networks, along with our
experiment code, configuration files and pre-trained models1.

1.1 RELATED WORK: OBFUSCATED GRADIENTS AS A DEFENSE MECHANISM

Before delving into k-WTA details, we review prior adversarial defense methods that share the same
philosophy with our method and highlight our advantages. For a review of other attack and defense
methods, we refer to Appendix A.
Methods aiming for concealing the gradient information from the attacker has been termed as
obfuscated gradients (Athalye et al., 2018) or gradient masking (Papernot et al., 2017; Tramèr
et al., 2017) techniques. One type of such methods is by exploiting randomness, either randomly
transforming the input before feeding it to the network (Xie et al., 2018a; Guo et al., 2018) or
introducing stochastic layers in the network (Dhillon et al., 2018). However, the gradient information
in these methods can be estimated by taking the average over multiple trials (Athalye et al., 2018;
2017). As a result, these methods are vulnerable.
Another type of obfuscated gradient methods relies on the so-called shattered gradient (Athalye et al.,
2018), which aims to make the network gradients nonexistent or incorrect to the attacker, by purposely
discretizing the input (Buckman et al., 2018; Ma et al., 2018) or artificially raising numerical instability
for gradient evaluation (Song et al., 2018; Samangouei et al., 2018). Unfortunately, these methods
are also vulnerable. As shown by Athalye et al. (2018), they can be compromised by backward pass
differentiable approximation (BPDA). Suppose fi(x) is a non-differentiable component of a network
expressed by f = f1 ◦ f2 ◦ · · · ◦ fn. The gradient ∇xf can be estimated as long as one can find a
smooth delegate g that approximates well fi (i.e., g(x) ≈ fi(x)).

1For this submission, we have put the source code anonymously at https://github.com/iclrsubmission/kwta

2

Under review as a conference paper at ICLR 2020

0.8

-0.2

-0.4

1.7

1.1

0.9

0.8

0

0

1.7

1.1

0.9

0.8

-0.2

-0.4

1.7

1.1

0.9

0.8

1.7

1.1

0.8

-0.2

-0.4

1.7

1.1

0.9

0.8

1.7

1.1

0

0

0

0.8

-0.2

-0.4

1.7

1.1

0.9

0

0

1.7

1.1

0.9

0

ReLU Maxpool LWTA k-WTA
Figure 2: Different activation functions. ReLU: all neurons with negative activation values will
be set to zero. Max-pooling: only the largest activation in each group is transmitted to the next layer,
and this effectively downsample the output. LWTA: the largest activation in each group retains its
value when entering the next layer, others are set to zero. k-WTA: the k largest activations in the
entire layer retain their values when entering the next layer, others are set to zero (k = 3 in this
example). Note that the output is not downsampled through ReLU, LWTA and k-WTA.

In stark contrast to all those methods, a slight change of the k-WTA activation pattern in an earlier
layer of a network can cause a radical reorganization of activation patterns in later layers (as shown
in Sec. 3). Thereby, k-WTA activation not just obfuscates the network’s gradients but destroys them
at certain input samples, introducing discontinuities densely distributed in the input data space. We
are not aware of any possible smooth approximation of a k-WTA network to launch BPDA attacks.
Even if hypothetically there exists a smooth approximation of k-WTA activation, that approximation
has to be applied to every layer. Then the network would accumulate the approximation error at each
layer rapidly so that any gradient-estimation-based attack (such as BPDA) will be defeated.

2 k-WINNERS-TAKE-ALL ACTIVATION

The debut of the Winner-Takes-All (WTA) activation on the stage of neural networks dates back
to 1980s, when Grossberg (1982) introduced shunting short-term memory equations in on-center
off-surround networks and showed the ability to identify the largest of N real numbers. Later, Majani
et al. (1989) generalized the WTA network to identify the K largest of N real numbers, and they
termed the network as the K-Winners-Take-All (KWTA) network. These early WTA-type activation
functions output only boolean values, mainly motivated by the properties of biological neural circuits.
In particular, Maass (2000a;b) has proved that any boolean function can be computed by a single
KWTA unit. Yet, the boolean nature of these activation functions differs starkly from the modern
activation functions, including the one we use.

2.1 DEEP NEURAL NETWORKS ACTIVATED BY k-WINNERS-TAKE-ALL

We propose to use k-Winners-Take-All (k-WTA) activation, a natural generalization of the boolean
KWTA2 (Majani et al., 1989). k-WTA retains the k largest values of an N × 1 input vector and sets
all others to be zero before feeding the vector to the next network layer, namely,

φk(y)j =

{
yj , yj ∈ {k largest elements of y},
0, Otherwise. (1)

Here φk : RN → RN is the k-WTA function (parameterized by an integer k), y ∈ RN is the input to
the activation, and φk(y)j denote the j-the element of the output φk(y) (see the rightmost subfigure
of Figure 2). Note that if y has multiple elements that are equally k-th largest, we break the tie by
retaining the element with smaller indices until the k slots are taken.
When using k-WTA activation, we need to choose k. Yet it makes no sense to fix k throughout all
layers of the neural network, because these layers often have different output dimensions; a small k
to one layer’s dimension can be relatively large to the other. Instead of specifying k, we introduce
a parameter γ ∈ (0, 1) called sparsity ratio. If a layer has an output dimension N , then its k-WTA

2In this paper, we use k-WTA to refer our activation function, while using KWTA to refer the original
boolean version by Majani et al. (1989).

3

Under review as a conference paper at ICLR 2020

activation has k = bγ ·Nc. Even though the sparsity ratio can be set differently for different layers, in
practice we found no clear gain from introducing such a variation. Therefore, we use a fixed γ—the
only additional hyperparameter needed for the neural network.
In convolutional neural networks (CNN), the output of a layer is a C ×H ×W tensor. C denotes
the number of output channels; H and W indicate the feature resolution. While there are multiple
choices of applying k-WTA on the tensor—for example, one can apply k-WTA individually to each
channel—empirically we found that the most effective (and conceptually the simplest) way is to treat
the tensor as a long C ·H ·W × 1 vector input to the k-WTA activation. Using k-WTA in this way
is also backed by our theoretical understanding (see Sec. 3).
The runtime cost of computing a k-WTA activation is asymptotically O(N), because finding k largest
values in a list is asymptotically equivalent to finding the k-th largest value, which has an O(N)
complexity (Cormen et al., 2009). This cost is comparable to ReLU’s O(N) cost on a N -length
vector. Thus, replacing ReLU with k-WTA introduces no significant overhead.

Remark: other WTA-type activations. Relevant to k-WTA is the local Winner-Take-All (LWTA)
activation (Srivastava et al., 2013; 2014), which divides each layer’s output values into local groups
and applies WTA to each group individually. LWTA is similar to max-pooling (Riesenhuber &
Poggio, 1999) for dividing the layer output and choosing group maximums. But unlike ReLU and
max-pooling being C0 continuous, LWTA and our k-WTA are both discontinuous with respect to the
input. The differences among ReLU, max-pooling, LWTA, and k-WTA are illusrated in Figure 2.
LWTA is motivated toward preventing catastrophic forgetting (McCloskey & Cohen, 1989), whereas
our use of k-WTA is for defending against adversarial threat. Both are discontinuous. But it remains
unclear what the LWTA’s discontinuity properties are and how its discontinuities affect the network
training. Our theoretical analysis (Sec. 3), in contrast, sheds some light on these fundamental
questions about k-WTA, rationalizing its ability for improving adversarial robustness. Indeed, our
experiments confirm that k-WTA outperforms LWTA in terms of robustness (see Appendix D.3).
WTA-type activation, albeit originated decades ago, remains elusive in modern neural networks.
Perhaps this is because it has not demonstrated a considerable improvement to the network’s standard
test accuracy, though it can offer an accuracy comparable to ReLU (Srivastava et al., 2013). Our
analysis and proposed use of k-WTA and its enabled improvement in the context of adversarial
defense may suggest a renaissance of studying WTA.

2.2 TRAINING k-WTA NETWORKS

k-WTA networks require no special treatment in training. Any optimization algorithm (such as
stochastic gradient descent) for training ReLU networks can be directly used to train k-WTA networks.
Our experiments have found that when the sparsity ratio γ is relatively small (≤ 0.2), the network
training converges slowly. This is not a surprise. A smaller γ activates fewer neurons, effectively
reducing more of the layer width and in turn the network size, and the stripped “subnetwork” is
much less expressive (Srivastava et al., 2013). Since different training examples activate different
subnetworks, collectively they make the training harder.
Nevertheless, we prefer a smaller γ. As we will discuss in the next section, a smaller γ usually leads
to better robustness against finding adversarial examples. Therefore, to ease the training (when γ is
small), we propose to use an iterative fine-tuning approach. Suppose the target sparsity ratio is γ1.
We first train the network with a larger sparsity ratio γ0 using the standard training process. Then, we
iteratively fine tune the network. In each iteration, we reduce its sparsity ratio by a small δ and train
the network for two epochs. The iteration repeats until γ0 is reduced to γ1.
This incremental process introduces little training overhead, because the cost of each fine tuning
is negligible in comparison to training from scratch toward γ0. We also note that this process is
optional. In practice we use it only when γ < 0.2. We show more experiments on the efficacy of the
incremental training in Appendix D.2.

3 UNDERSTANDING k-WTA DISCONTINUITY

We now present our theoretical understanding of k-WTA’s discontinuity behavior in the context of
deep neural networks, revealing some implication toward the network’s adversarial robustness.

Activation pattern. To understand k-WTA’s discontinuity, consider one layer outputting values x,
passed through a k-WTA activation, and followed by the next layer whose linear weight matrix is

4

Under review as a conference paper at ICLR 2020

(a) (b) (c)

Logit value LossLogit value
25

0
Step0 100

20

0
Step0 100 Step1000

1

0

Figure 3: (a, b) We plot the change of 10 logits values when conducting untargeted PGD attack with
100 iterations. X-axis indicates the perturbation size ε and Y-axis indicates the 10 color-coded logits
values. (a) When we apply PGD attack on k-WTA ResNet18, the strong discontinuities w.r.t. to input
invalidate gradient estimation, effectively defending well against the attack. (b) In contrast, for a
ReLU ResNet18, PGD attack can easily find adversarial examples due to the model’s smooth change
w.r.t. input. (c) In the process of training k-WTA ResNet18, the loss change w.r.t. model weights is
largely smooth. Thus, the training is not harmed by k-WTA’s discontinuities.

W (see adjacent figure). Then, the value fed into the next activation can be
expressed as Wφk(x), where φk(·) is the k-WTA function defined in (1).
Suppose the vector x has a length l. We define the k-WTA’s activation
pattern under the input x as

A(x) := {i ∈ [l] | xi is one of the k largest values in x} ⊆ [l]. (2)
Here (and throughout this paper), we use [l] to denote the integer set {1, 2, ..., l}.
Discontinuity. The activation pattern A(x) is a key notion for analyzing k-WTA’s discontinuity
behavior. Even an infinitesimal perturbation of x may change A(x): some element i is removed
from A(x) while another element j is added in. Corresponding to this change, in the evaluation of
Wφk(x), the contribution of W’s column vector Wi vanishes while another column Wj suddenly
takes effect. It is this abrupt change that renders the result of Wφk(x) C0 discontinuous.
Such a discontinuity jump can be arbitrarily large, because the column vectors Wi and Wj can be of
any difference. Once W is determined, the discontinuity jump then depends on the value of xi and xj .
As explained in Appendix B, when the discontinuity occurs, xi and xj have about the same value,
depending on the choice of the sparsity ratio γ (recall Sec. 2.1)—the smaller the γ is, the larger the
jump will be. This relationship suggests that a smaller γ will make the search of adversarial examples
harder. Indeed, this is confirmed through our experiments (see Appendix D.5).
Piecewise linearity. Now, consider an n-layer k-WTA network, which can be expressed as f(x) =
W(1) · φk(W(2) · φk(· · ·φk(W(n)x + b(n))) + b(2)) + b(1), where W(i) and b(i) are the i-th layer’s
weight matrix and bias vector, respectively. If the activation patterns of all layers are fixed, then f(x)
is a linear function. When the activation pattern changes, f(x) switches from one linear function to
another linear function. Over the entire space of x, f(x) is piecewise linear. The specific activation
patterns of all layers define a specific linear piece of the function, or a linear region (following the
notion introduced by Montufar et al. (2014)). Conventional ReLU (or hard tanh) networks also
represent piecewise linear functions and their linear regions are joined together at their boundaries,
whereas in k-WTA networks the linear regions are disconnected (see Figure 1).
Linear region density. Next, we gain some insight on the distribution of those linear regions. This
is of our interest because if the linear regions are densely distributed, a small ∆x perturbation from
any data point x will likely cross the boundary of the linear region where x locates. Whenever
boundary crossing occurs, the gradient becomes undefined (see Figure 3-a).
For the purpose of analysis, consider an input x passing through a layer
followed by a k-WTA activation (see adjacent figure). The output from the
activation is φk(Wx + b). We would like to understand, when x is changed
into x′, how likely the activation pattern of φk will change. First, notice that
if x′ and x satisfy x′ = c · x with some c > 0, the activation pattern remains unchanged. Therefore,
we introduce a notation d(x,x′) that measures the “perpendicular” distance between x and x′, one
that satisfies x′ = c · (x + d(x,x′)x⊥) for some scalar c, where x⊥ is a unit vector perpendicular to
x and on the plane spanned by x and x′. With this notion, and if the elements in W is initialized by
sampling from N (0, 1

l) and b is initialized as zero, we find the following property:

5

Under review as a conference paper at ICLR 2020

Theorem 1 (Dense discontinuities). Given any input x ∈ Rm and some β, and ∀x′ ∈ Rm such that
d2(x,x′)
‖x‖22

≥ β, if the following condition

l ≥ Ω

((
m

γ
· 1

β

)
· log

(
m

γ
· 1

β

))
is satisfied, then with a probability at least 1− ·2−m, we have A(Wx + b) 6= A(Wx′ + b).

Here l is the width of the layer, and γ is again the sparsity ratio in k-WTA. This theorem informs us
that the larger the layer width l is, the smaller β—and thus the smaller perpendicular perturbation
distance d(x,x′)—is needed to trigger a change of the activation pattern, that is, as the layer width
increases, the piecewise linear regions become finer (see Appendix C for proof and more discussion).
This property also echos a similar trend in ReLU networks, as pointed out by Raghu et al. (2017).
Why is the k-WTA network trainable? While k-WTA networks are highly discontinuous as
revealed by Theorem 1 and our experiments (Figure 3-a), in practice we experience no difficulty on
training these networks. Our next theorem sheds some light on the reason behind the training success.

Theorem 2. Consider N data points x1,x2, · · · ,xN ∈ Rm. Suppose ∀i 6= j, xi
‖xi‖2 6=

xj
‖xj‖2 . If l

is sufficiently large, then with a high probability, we have ∀i 6= j,A(Wxi + b) ∩ A(Wxj + b) = ∅.
This theorem is more formally stated in Theorem 10 in Appendix C together with a proof there.
Intuitively speaking, it states that if the network is sufficiently wide, then for any i 6= j, activation
pattern of input data xi is almost separated from that of xj . Thus, the weights for predicting xi’s
and xj’s labels can be optimized almost independently, without changing their individual activation
patterns. In practice, the activation patterns of xi and xj are not fully separated but weakly correlated.
During the optimization, the activation pattern of a data point xi may change, but the chance is
relatively low—a similar behavior has also been found in ReLU networks (Li & Liang, 2018; Du
et al., 2018; Allen-Zhu et al., 2019a;b; Song & Yang, 2019).
Further, notice that the training loss takes a summation over all training data points. This means a
weight update would change only a small set of activation patterns (since the chance of having the
pattern changed is low); the discontinuous change on the loss value, after taking the summation, will
be negligible (see Figure 3-c). Thus, the discontinuities in k-WTA is not harmful to network training.

4 EXPERIMENTAL RESULTS

We evaluate the robustness of k-WTA networks under adversarial attacks. Our evaluation considers
multiple training methods on different network architectures (see details below). When reporting
statistics, we use Arob to indicate the robust accuracy under adversarial attacks applied to the test
dataset, and Astd to indicate the accuracy on the clean test data. We use k-WTA-γ to represent
k-WTA activation with sparsity ratio γ.

4.1 ROBUSTNESS UNDER WHITE-BOX ATTACKS

The rationale behind k-WTA activation is to destroy network gradients—information needed in
white-box attacks. We therefore evaluate k-WTA networks under multiple recently proposed white-
box attack methods, including Projected Gradient Descent (PGD) (Madry et al., 2017), Deep-
fool (Moosavi-Dezfooli et al., 2016), C&W attack (Carlini & Wagner, 2017), and Momentum Iterative
Method (MIM) (Dong et al., 2018). Since k-WTA activation can be used in almost any training
method, be it adversarial training or not, we also consider multiple training methods, including natural
(non-adversarial) training, adversarial training (AT) (Madry et al., 2017), TRADES (Zhang et al.,
2019) and free adversarial training (FAT) (Shafahi et al., 2019b).
In addition, we evaluate the robustness under transfer-based Black-box (BB) attacks (Papernot et al.,
2017). The black-box threat model requires no knowledge about network architecture and parameters.
Thus, we use a pre-trained VGG19 network (Simonyan & Zisserman, 2014) as the source model to
generate adversarial examples using PGD. As demonstrated by Su et al. (2018b), VGG networks
have the strongest transferability among different architectures.
In each setup, we compare the robust accuracy of k-WTA networks with standard ReLU networks on
three datasets, CIFAR-10, SVHN, and MNIST. Results on the former two are reported in Table 1,
while the latter is reported in Appendix D.4. We use ResNet-18 for CIFAR-10 and SVHN. The
perturbation range is 0.031 (CIFAR-10) and 0.047 (SVHN) for pixels ranging in [0, 1]. More detailed
training and attacking settings are reported in Appendix D.1.

6

Under review as a conference paper at ICLR 2020

Table 1: Adversarial robustness on CIFAR-10 and SVHN datasets. Arob in the last column denotes
the empirical worst-case robustness among different attacks (columns) for each network optimized
by different training methods (row). The bold numbers indicate the best Arob robustness achieved on
ReLU and k-WTA networks by each training method.

CIFAR-10
Training Activation Astd PGD C&W Deepfool MIM BB Arob

Natural
ReLU 92.9% 0.0% 0.0% 1.5% 0.0% 18.9% 0.0%
k-WTA-0.1 89.3% 13.3% 27.9% 55.6% 13.1% 62.6% 13.1%
k-WTA-0.2 91.7% 4.2% 6.2% 47.8% 3.9% 66.8% 4.2%

AT
ReLU 83.5% 46.3% 43.6% 46.8% 45.9% 71.0% 43.6%
k-WTA-0.1 78.9% 51.4% 64.4% 70.4% 50.7% 73.4% 50.7%
k-WTA-0.2 81.4% 48.4% 52.7% 66.1% 47.4% 73.5% 47.4%

TRADES
ReLU 79.7% 49.8% 52.3% 57.6% 49.9% 70.6% 49.8%
k-WTA-0.1 76.6% 55.0% 62.2% 66.0% 57.5% 72.3% 55.0%
k-WTA-0.2 80.4% 51.5% 57.7% 63.9% 53.4% 74.7% 51.5%

FAT
ReLU 82.6% 42.7% 44.4% 49.7% 41.6% 73.4% 41.6%
k-WTA-0.1 78.4% 51.7% 66.3% 72.4% 49.1% 72.3% 49.1%
k-WTA-0.2 82.8% 48.4% 60.5% 67.2% 46.7% 76.8% 46.7%

SVHN
Training Activation Astd PGD C&W Deepfool MIM BB Arob

Natural
ReLU 95.1% 0.0% 0.0% 2.5% 0.0% 14.7% 0.0%
k-WTA-0.1 92.6% 10.2% 19.5% 88.7% 11.6% 51.4% 10.2%
k-WTA-0.2 93.8% 4.3% 8.0% 86.8% 8.3% 56.7% 4.3%

AT
ReLU 84.2% 44.5% 42.7% 70.3% 48.4% 77.7% 42.7%
k-WTA-0.1 79.9% 62.2% 65.7% 71.5% 56.9% 76.1% 56.9%
k-WTA-0.2 82.4% 53.2% 63.6% 77.4% 52.3% 74.2% 52.3%

TRADES
ReLU 84.7% 47.4% 51.6% 76.9% 49.6% 76.5% 47.4%
k-WTA-0.1 81.6% 61.3% 77.4% 79.4% 58.3% 78.1% 58.3%
k-WTA-0.2 85.4% 56.7% 59.2% 71.6% 54.5% 79.3% 54.5%

FAT
ReLU 85.9% 40.8% 46.2% 76.1% 39.9% 76.9% 40.8%
k-WTA-0.1 85.5% 57.7% 70.0% 77.0% 62.8% 75.6% 57.7%
k-WTA-0.2 86.8% 54.3% 64.3% 74.7% 55.2% 74.4% 54.3%

The main takeaway from these experiments (in Table 1) is that k-WTA is able to universally improve
the white-box robustness, regardless of the training methods. The k-WTA robustness under black-box
attacks is not always significantly better than ReLU networks. But black-box attacks, due to the lack
of network information, are generally much harder than white-box attacks. In this sense, white-box
attacks make the networks more vulnerable, and k-WTA is able to improve a network’s worst-case
robustness. This improvement is not tied to any specific training method, achieved with no significant
overhead, just by a simple replacement of ReLU with k-WTA.
Athalye et al. (2018) showed that gradient-based defenses may render the network more vulnerable
under black-box attacks than under gradient-based white-box attacks. However, we have not observed
this behavior in k-WTA networks. Even under the strongest black-box attack, i.e., by generating
adversarial examples from an independently trained copy of the target network, gradient-based attacks
are still stronger (with higher successful rate) than black-box attacks (see Appendix D.3).
Additional experiments include: 1) tests under transfer attacks across two independently trained
k-WTA networks and across k-WTA and ReLU networks, 2) evaluation of k-WTA performance on
different network architectures, and 3) comparison of k-WTA performance with the LWTA (recall
Sec. 2.1) performance. See Appendix D.3 for details.

4.2 VARYING SPARSITY RATIO γ AND MODEL ARCHITECTURE.
We further evaluate our method on various network architectures with different sparsity ratios γ.
Figure 4 shows the standard test accuracies and robust accuracies against PGD attacks while γ
decreases. To test on different network architectures, we apply k-WTA to ResNet18, DenseNet121
and Wide ResNet (WRN-22-12). In each case, starting from γ = 0.2, we decrease γ using incremental
fine-tuning. We then evaluate the robust accuracy on CIFAR dataset, taking 20-iteration PGD attacks
with a perturbation range ε = 0.31 for pixels ranging in [0, 1].

7

Under review as a conference paper at ICLR 2020

Figure 4: Robustness changing w.r.t. γ on CIFAR. When γ decreases, the standard test accuracy (left)
starts to drop after a certain point. The robust accuracy (right) first increases then decreases.

(a) ResNet18-0.1 (b)ResNet18-0.1+adv (c) ResNet18 (Vanilla) (d) ResNet18+adv

0.00
-0.04

0.04
0.04 0.00

-0.04 0.00
-0.04

0.04
0.04 0.00

-0.04 0.00
-0.04

0.04
0.04 0.00

-0.04 0.00
-0.04

0.04
0.04 0.00

-0.04

10

20

3

6

15

25

6

10

Figure 5: Gradient-based attack’s loss landscapes in k-WTA (a, b) and conventional ReLU models (c,
d). (a,b) k-WTA Models have much more non-convex and non-smooth landscapes. Also, the model
optimized by adversarial training (b) has a lower absolute value of loss.

We find that when γ is larger than ∼ 0.1, reducing γ has little effect on the standard accuracy, but
increases the robust accuracy. When γ is smaller than ∼ 0.1, reducing γ drastically lowers both the
standard and robust accuracies. The peaks in the Arob curves (Figure 4-right) are consistent with our
theoretical understanding: Theorem 1 suggests that when l is fixed, a smaller γ tends to sparsify the
linear region boundaries, exposing more gradients to the attacker. Meanwhile, as also discussed in
Sec. 3, a smaller γ leads to a larger discontinuity jump and thus tends to improve the robustness.

4.3 LOSS LANDSCAPE IN GRADIENT-BASED ATTACKS

We now empirically unveil why k-WTA is able to improve the network’s robustness (in addition to
our theoretical analysis in Sec. 3). Here we visualize the attacker’s loss landscape in gradient-based
attacks in order to reveal the landscape change caused by k-WTA. Similar to the analysis in Tramèr
et al. (2017), we plot the attack loss of a model with respect to its input on points x′ = x+ε1g1+ε2g2,
where x is a test sample from CIFAR test set, g1 is the direction of the loss gradient with respect
to the input, g2 is another random direction, ε1 and ε2 sweep in the range of [−0.04, 0.04], with 50
samples each. This results in a 3D landscape plot with 2500 data points (Figure 5).
As shown in Figure 5, k-WTA models (with γ = 0.1) have a highly non-convex and non-smooth loss
landscape. Thus, the estimated gradient is hardly useful for adversarial searches. This explains why
k-WTA models can effectively resist gradient-based attacks. In contrast, ReLU models have a much
smoother loss surface, from which adversarial examples can be easily found using gradient descent.
Inspecting the range of loss values in Figure 5, we find that adversarial training tends to compress the
loss landscape’s dynamic range in both the gradient direction and the other random direction, making
the dynamic range smaller than that of the models without adversarial training. This phenomenon has
been observed in ReLU networks (Madry et al., 2017; Tramèr et al., 2017). Interestingly, k-WTA
models manifest a similar behavior (Figure 5-a,b). Moreover, we find that in k-WTA models a larger
γ leads to a smoother loss surface than a smaller γ (see Appendix D.5 for more details).

5 CONCLUSION

This paper proposes to replace widely used activation functions with the k-WTA activation for
improving the neural network’s robustness against adversarial attacks. This is the only change we
advocate. The underlying idea is to embrace the discontinuities introduced by k-WTA functions
to make the search for adversarial examples more challenging. Our method comes almost for free,
harmless to network training, and readily useful in the current paradigm of neural networks.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS. https://arxiv.org/pdf/1810.12065, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML. https://arxiv.org/pdf/1811.03962, 2019b.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. arXiv preprint arXiv:1707.07397, 2017.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, July 2018. URL https://arxiv.org/abs/
1802.00420.

Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can machine
learning be secure? In Proceedings of the 2006 ACM Symposium on Information, computer and
communications security, pp. 16–25. ACM, 2006.

Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security of machine
learning. Machine Learning, 81(2):121–148, 2010.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot
way to resist adversarial examples. 2018. URL https://openreview.net/pdf?id=
S18Su--CW.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Jianbo Chen and Michael I Jordan. Boundary attack++: Query-efficient decision-based adversarial
attack. arXiv preprint arXiv:1904.02144, 2019.

Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via randomized
smoothing. arXiv preprint arXiv:1902.02918, 2019.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran Khanna,
Zachary C. Lipton, and Animashree Anandkumar. Stochastic activation pruning for robust
adversarial defense. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=H1uR4GZRZ.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 9185–9193, 2018.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Stephen Grossberg. Contour enhancement, short term memory, and constancies in reverberating
neural networks. In Studies of mind and brain, pp. 332–378. Springer, 1982.

9

https://arxiv.org/pdf/1810.12065
https://arxiv.org/pdf/1811.03962
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1802.00420
https://openreview.net/pdf?id=S18Su--CW
https://openreview.net/pdf?id=S18Su--CW
https://openreview.net/forum?id=H1uR4GZRZ

Under review as a conference paper at ICLR 2020

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial
images using input transformations. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=SyJ7ClWCb.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a strong adversary.
http://arxiv.org/abs/1511.03034, 11 2015.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pp. 8157–8166,
2018.

Ji Lin, Chuang Gan, and Song Han. Defensive quantization: When efficiency meets robustness. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ryetZ20ctX.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
Michael E. Houle, Dawn Song, and James Bailey. Characterizing adversarial subspaces using local
intrinsic dimensionality. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B1gJ1L2aW.

Wolfgang Maass. On the computational power of winner-take-all. Neural computation, 12(11):
2519–2535, 2000a.

Wolfgang Maass. Neural computation with winner-take-all as the only nonlinear operation. In
Advances in neural information processing systems, pp. 293–299, 2000b.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

E Majani, Ruth Erlanson, and Yaser S Abu-Mostafa. On the k-winners-take-all network. In Advances
in neural information processing systems, pp. 634–642, 1989.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in neural information processing systems, pp.
2924–2932, 2014.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2574–2582, 2016.

Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple black-box adversarial perturbations for
deep networks. arXiv preprint arXiv:1612.06299, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on
Asia conference on computer and communications security, pp. 506–519. ACM, 2017.

10

https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=ryetZ20ctX
https://openreview.net/forum?id=ryetZ20ctX
https://openreview.net/forum?id=B1gJ1L2aW

Under review as a conference paper at ICLR 2020

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On the
expressive power of deep neural networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2847–2854. JMLR. org, 2017.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark
the robustness of machine learning models. arXiv preprint arXiv:1707.04131, 2017. URL
http://arxiv.org/abs/1707.04131.

Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cortex.
Nature neuroscience, 2(11):1019, 1999.

Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability
of deep neural networks by regularizing their input gradients. CoRR, abs/1711.09404, 2017. URL
http://arxiv.org/abs/1711.09404.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting classifiers
against adversarial attacks using generative models. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=BkJ3ibb0-.

Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adversarial
examples inevitable? In International Conference on Learning Representations, 2019a. URL
https://openreview.net/forum?id=r1lWUoA9FQ.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! arXiv preprint
arXiv:1904.12843, 2019b.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, pp. 1528–1540, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978392. URL
http://doi.acm.org/10.1145/2976749.2978392.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples. In Inter-
national Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=rJUYGxbCW.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and Jürgen Schmidhu-
ber. Compete to compute. In Advances in Neural Information Processing Systems 26, pp. 2310–
2318. 2013. URL http://papers.nips.cc/paper/5059-compete-to-compute.
pdf.

Rupesh Kumar Srivastava, Jonathan Masci, Faustino Gomez, and Jürgen Schmidhuber. Understanding
locally competitive networks. arXiv preprint arXiv:1410.1165, 2014.

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness
the cost of accuracy? – a comprehensive study on the robustness of 18 deep image classification
models. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), Computer
Vision – ECCV 2018, pp. 644–661, Cham, 2018a. Springer International Publishing.

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness the
cost of accuracy?–a comprehensive study on the robustness of 18 deep image classification models.
In Proceedings of the European Conference on Computer Vision (ECCV), pp. 631–648, 2018b.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep neural
networks. IEEE Transactions on Evolutionary Computation, 2019.

11

http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1711.09404
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=r1lWUoA9FQ
http://doi.acm.org/10.1145/2976749.2978392
https://openreview.net/forum?id=rJUYGxbCW
https://openreview.net/forum?id=rJUYGxbCW
http://papers.nips.cc/paper/5059-compete-to-compute.pdf
http://papers.nips.cc/paper/5059-compete-to-compute.pdf

Under review as a conference paper at ICLR 2020

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations, 2014. URL http://arxiv.org/abs/1312.6199.

Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveillance cameras:
adversarial patches to attack person detection. arXiv preprint arXiv:1904.08653, 2019.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. stat, 1050:11, 2018.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S
Dhillon, and Luca Daniel. Towards fast computation of certified robustness for relu networks.
2018.

Przemyslaw Wojtaszczyk. Banach spaces for analysts, volume 25. Cambridge University Press,
1996.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial effects
through randomization. In International Conference on Learning Representations, 2018a. URL
https://openreview.net/forum?id=Sk9yuql0Z.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoising for
improving adversarial robustness. arXiv preprint arXiv:1812.03411, 2018b.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I
Jordan. Theoretically principled trade-off between robustness and accuracy. arXiv preprint
arXiv:1901.08573, 2019.

Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of deep
neural networks via stability training. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

12

http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=Sk9yuql0Z

Under review as a conference paper at ICLR 2020

Supplementary Document
Enhancing Adversarial Defense by k-Winners-Take-All

A OTHER RELATED WORK

In this section, we briefly review the key ideas of attacking neural network models and existing
defense methods based on adversarial training.

Attack methods. Recent years have seen adversarial attack studied extensively. The proposed
attack methods fall under two general categories, white-box and black-box attacks.
The white-box threat model assumes that the attacker knows the model’s structure and parameters
fully. This means that the attacker can exploit the model’s gradient (with respect to the input) to find
adversarial examples. A baseline of such attacks is the Fast Gradient Sign Method (FGSM) (Goodfel-
low et al., 2014), which constructs the adversarial example x′ of a given labeled data (x, y) using a
gradient-based rule:

x′ = x + εsign(∇xL(f(x), y)), (3)

where f(x) denotes the neural network model’s output, L(·) is the loss function provided f(x) and
input label y, and ε is the perturbation range for the allowed adversarial example.
Extending FGSM, Projected Gradient Descent (PGD) (Kurakin et al., 2016) utilizes local first-
order gradient of the network in a multi-step fashion, and is considered the “strongest” first-order
adversary (Madry et al., 2017). In each step of PGD, the adversary example is updated by a FGSM
rule, namely,

x′n+1 = Πx′∈∆ε
x′n + εsign(∇xL(f(x′n), y)), (4)

where x′n is the adversary examples after n steps and Πx∈∆ε
(x′n) projects x′n back into an allowed

perturbation range ∆ε (such as an ε ball of x under certain distance measure). Other attacks include
Deepfool (Moosavi-Dezfooli et al., 2016), C&W (Carlini & Wagner, 2017) and momentum-based
attack (Dong et al., 2018). Those methods are all using first-order gradient information to construct
adversarial samples.
The black-box threat model is a strict subset of the white-box threat model. It assumes that the attacker
has no information about the model’s architecture or parameters. Some black-box attack model
allows the attacker to query the victim neural network to gather (or reverse-engineer) information. By
far the most successful black-box attack is transfer attack (Papernot et al., 2017; Tramèr et al., 2017).
The idea is to first construct adversarial examples on an adversarially trained network and then attack
the black-box network model use these samples. There also exist some gradient-free black-box attack
methods, such as boundary attack (Brendel et al., 2017; Chen & Jordan, 2019), one-pixel attack (Su
et al., 2019) and local search attack (Narodytska & Kasiviswanathan, 2016). Those methods rely on
repeatedly evaluating the model and are not as effective as gradient-based white-box attacks.

Adversarial training. Adversarial training (Goodfellow et al., 2014; Madry et al., 2017; Kurakin
et al., 2016; Huang et al., 2015) is by far the most successful method against adversarial attacks.
It trains the network model with adversarial images generated during the training time. Madry
et al. (2017) showed that adversarial training in essence solves the following min-max optimization
problem:

min
f

E{max
x′∈∆ε

L(f(x′), y)}, (5)

where ∆ε is the set of allowed perturbations of training samples, and y denotes the true label of each
training sample. Recent works that achieve state-of-the-art adversarial robustness rely on adversarial
training (Zhang et al., 2019; Xie et al., 2018b). However, adversarial training is notoriously slow
because it requires finding adversarial samples on-the-fly at each training epoch. Its prohibitive cost
makes adversarial training difficult to scale to large datasets such as ImageNet (Deng et al., 2009)
unless enormous computation resources are available. Recently, Shafahi et al. (2019b) revise the
adversarial training algorithm to make it has similar training time as regular training, while keep the
standard and robust accuracy comparable to standard adversarial training.

13

Under review as a conference paper at ICLR 2020

Regularization. Another type of defense is based on regularizing the neural network, and many
works of this type are combined with adversarial training. For example, feature denoising (Xie et al.,
2018b) adds several denoise blocks to the network structure and trains the network with adversarial
training. Zhang et al. (Zhang et al., 2019) explicitly added a regularization term to balance the
trade-off between standard accuracy and robustness, obtaining state-of-the-art robust accuracy on
CIFAR.
Some other regularization-based methods require no adversarial training. For example, Ross & Doshi-
Velez (2017) proposed to regularize the gradient of the model with respect to its input; Zheng et al.
(2016) generated adversarial samples by adding random Gaussian noise to input data. However, these
methods are shown to be brittle under stronger iterative gradient-based attacks such as PGD (Zhang
et al., 2019). In contrast, as demonstrated in our experiments, our method without using adversarial
training is able to greatly improve robustness under PGD and other attacks.

B DISCONTINUITY JUMP OF Wφk(x)

Consider a gradual and smooth change of the vector x. For the ease of illustration, let us assume
all the values in x are distinct. Because every element in x changes smoothly, when the activation
pattern A(x) changes, the k-th largest and k + 1-th largest value in x must swap: the previously
k-th largest value is removed from the activation pattern, while the previously k + 1-th largest value
is added in the activation pattern. Let i and j denote the indices of the two values, that is, xi is
previously the k-th largest and xj is previously the k + 1-th largest. When this swap happens, xi and
xj must be infinitesimally close to each other, and we use x∗ to indicate their common value.
This swap affects the computation of Wφk(x). Before the swap happens, xi is in the activation
pattern but xj is not, therefore Wi takes effect but Wj does not. After the swap, Wj takes effect while
Wj is suppressed. Therefore, the discontinuity jump due to this swap is (Wj −Wi)x

∗.
When W is determined, the magnitude of the jump depends on x∗. Recall that x∗ is the k-th largest
value in x when the swap happens. Thus, it depends on k and in turn the sparsity ratio γ: the smaller
the γ is, the smaller k is effectively used (for a fixed vector length). As a result, the k-th largest value
becomes larger—when k = 1, the largest value of x is used as x∗.

C THEORETICAL PROOFS

In this section, we will prove Theorem 1 and Theorem 2. The formal version of the two theorems are
Theorem 9 and Theorem 10 respectively.

Notation. We use [n] to denote the set {1, 2, · · · , n}. We use 1(E) to indicate an indicator variable.
If the event E happens, the value of 1(E) is 1. Otherwise the value of 1(E) is 0. For a weight matrix
W , we use Wi to denote the i-th row of W . For a bias vector b, we use bi to denote the i-th entry of b.
In this section, we show some behaviors of the k-WTA activation function. Recall that an n-layer
neural network f(x) with k-WTA activation function can be seen as the following:

f(x) = W (1) · φk(W (2) · φk(· · ·φk(W (n)x+ b(n))) + b(2)) + b(1)

where W (i) is the weight matrix, b(i) is the bias vector of the i-th layer, and φ(·) is the k-WTA
activation function, i.e., for an arbitrary vector y, φk(y) is defined as the following:

φk(y)j =

{
yj , if yj is one of the top-k largest values,
0, otherwise.

For simplicity of the notation, if k is clear in the context, we will just use φ(y) for short. Notice that
if there is a tie in the above definition, we assume the entry with smaller index has larger value. For a
vector y ∈ Rl, we define the activation pattern A(y) ⊆ [l] as

A(y) = {i ∈ [l] | yi is one of the top-k largest values}.

Notice that if the activation patternA(y) is different fromA(y′), then W ·φ(y) and W ·φ(y′) will be
in different linear region. Actually, W ·φ(y) may even represent a discontinuous function. In the next
section, we will show that when the network is much wider, the function may be more discontinuous
with respect to the input.

14

Under review as a conference paper at ICLR 2020

C.1 DISCONTINUITY WITH RESPECT TO THE INPUT

We only consider the activation pattern of the output of one layer. We consider the behavior of the
network after the initialization of the weight matrix and the bias vector. By initialization, the entries
of the weight matrix W are i.i.d. random Gaussian variables, and the bias vector is zero. We can
show that if the weight matrix is sufficiently wide, then for any vector x, with high probability, for
all vector x′ satisfying that the "perpendicular” distance between x and x′ is larger than a small
threshold, the activation patterns of Wx and Wx′ are different.
Notice that the scaling of W does not change the activation pattern of Wx for any x, we can thus
assume that each entry of W is a random variable with standard Gaussian distribution N(0, 1).
Before we prove Theorem 9, let us prove several useful lemmas. The following several lemmas does
not depend on the randomness of the weight matrix.
Lemma 1 (Inputs with the same activation pattern form a convex set). Given an arbitrary weight
matrix W ∈ Rl×m and an arbitrary bias vector b ∈ Rl, for any x ∈ Rm, the set of all the vectors
x′ ∈ Rm satisfying A(Wx′ + b) = A(Wx+ b) is convex, i.e., the set

{x′ ∈ Rm | A(Wx+ b) = A(Wx′ + b)}
is convex.

Proof. If A(Wx′ + b) = A(Wx+ b), then x′ should satisfy:
∀i ∈ A(Wx+ b), j ∈ [l] \ A(Wx+ b),Wix

′ + bi ≥ (or >) Wjx
′ + bj .

Notice that the inequality Wix
′ + bi ≥ (or >) Wjx

′ + bj denotes a half hyperplane (Wi −Wj)x
′ +

(bi − bj) ≥ (or >) 0. Thus, the set {x′ ∈ Rm | A(Wx+ b) = A(Wx′ + b)} is convex since it is
an intersection of half hyperplanes.

Lemma 2 (Different patterns of input points with small angle imply different patterns of input points
with large angle). Let α ∈ (0, 1). Given an arbitrary weight matrix W ∈ Rl×m, a bias vector b = 0,
and a vector x ∈ Rm with ‖x‖2 = 1, if every vector x′ ∈ Rm with ‖x′‖2 = 1 and 〈x, x′〉 = α
satisfies A(Wx + b) 6= A(Wx′ + b), then for any x′′ ∈ Rm with ‖x′′‖2 = 1 and 〈x, x′′〉 < α, it
satisfies A(Wx+ b) 6= A(Wx′′ + b).

Proof. We draw a line between x and x′′. There must be a point x∗ ∈ Rm on the line and 〈x, x′〉 = α,
where x′ = x∗/‖x∗‖2. Since b = 0, we haveA(Wx∗+b) = A(Wx′+b) 6= A(Wx+b). Since x∗ is
on the line between x and x′′, we haveA(Wx′′+b) 6= A(Wx+b) by convexity (see Lemma 1).

Lemma 3 (A sufficient condition for different patterns). Consider two vectors y ∈ Rl and y′ ∈ Rl.
If ∃i ∈ A(y), j ∈ [l] \ A(y) such that y′i < y′j , then A(y) 6= A(y′).

Proof. Suppose A(y) = A(y′). We have i ∈ A(y′). It means that y′i is one of the top-k largest
values among all entries of y′. Thus y′j is also one of the top-k largest values, and j should be in
A(y′) which leads to a contradiction.

In the remaining parts, we will assume that each entry of the weight matrix W ∈ Rl×m is a standard
random Gaussian variable.
Lemma 4 (Upper bound of the entires of W). Consider a matrix W ∈ Rl×m where each entry is a
random variable with standard Gaussian distribution N(0, 1). With probability at least 0.99, ∀i ∈ [l],
‖Wi‖2 ≤ 10

√
ml.

Proof. Consider a fixed i ∈ [l]. We have E[‖Wi‖22] = m. By Markov’s inequality, we have
Pr[‖Wi‖22 > 100ml] ≤ 0.01/l. By taking union bound over all i ∈ [l], with probability at least 0.99,
we have ∀i ∈ [l], ‖Wi‖2 ≤ 10

√
ml.

Lemma 5 (Two vectors may have different activation patterns with a good probability). Consider
a matrix W ∈ Rl×m where each entry is a random variable with standard Gaussian distribution
N(0, 1). Let γ ∈ (0, 0.48) be the sparsity ratio of the activation, i.e., γ = k/l. For any two vectors
x, x′ ∈ Rm with ‖x‖2 = ‖x′‖2 = 1 and 〈x, x′〉 = α for some arbitrary α ∈ (0.5, 1), with probability
at least 1− 2−Θ((1/α2−1)γl), A(Wx) 6= A(Wx′) and ∃i ∈ A(Wx), j ∈ [l] \ A(Wx) such that

Wix
′ < Wjx

′ −
√

1− α2

24α
·
√

2π.

15

Under review as a conference paper at ICLR 2020

Proof. Consider arbitrary two vectors x, x′ ∈ Rm with ‖x‖2 = ‖x′‖2 = 1 and 〈x, x′〉 = α. We
can find an orthogonal matrix Q ∈ Rm×m such that x̃ := Qx = (1, 0, 0, · · · , 0)> ∈ Rm and
x̃′ := Qx′ = (α,

√
1− α2, 0, 0, · · · , 0)> ∈ Rm. Let W̃ = WQ>. Then we have W̃ x̃ = Wx and

W̃ x̃′ = Wx′. Thus, we only need to analyze the activation patterns of W̃ x̃ and W̃ x̃′. Since Q>
is an orthogonal matrix and each entry of W is an i.i.d. random variable with standard Gaussian
distribution N(0, 1), W̃ = WQ> is also a random matrix where each entry is an i.i.d. random
variable with standard Gaussian distribution N(0, 1). Let the entries in the first column of W̃ be
X1, X2, · · · , Xl and let the entries in the second column of W̃ be Y1, Y2, · · · , Yl. Then we have

Wx = W̃ x̃ =

X1

X2

· · ·
Xl

 , Wx′ = W̃ x̃′ =


αX1 +

√
1− α2Y1

αX2 +
√

1− α2Y2

· · ·
αXl +

√
1− α2Yl

 . (6)

We set ε =
√

1− α2/(96α) and define R′1 < R1 < R2 < R′2 as follows:

Pr
X∼N(0,1)

[X ≥ R′2] = (1− 2ε)γ, (7)

Pr
X∼N(0,1)

[X ≥ R2] = (1− ε)γ, (8)

Pr
X∼N(0,1)

[X ≥ R1] = (1 + ε)γ, (9)

Pr
X∼N(0,1)

[X ≥ R′1] = (1 + 2ε)γ. (10)

Since γ < 0.48 and ε ≤ 0.02, we have (1 + 2ε)γ < 0.5. It implies 0 < R′1 < R1 < R2 < R′2.

Claim 3.
R′2 −R′1 ≤ 8ε

√
2π.

Proof. By Equation (7) and Equation (10),

Pr
X∼N(0,1)

[R′1 ≤ X ≤ R′2] = 4εγ.

Due to the density function of standard Gaussian distribution, we have

1√
2π

∫ R′2

R′1

e−t
2/2dt = Pr

X∼N(0,1)
[R′1 ≤ X ≤ R′2] = 4εγ.

Since R′2 ≥ R′1 ≥ 0, we have ∀t ∈ [R′1, R
′
2], e−t

2/2 ≥ e−R′22 /2. Thus,

1√
2π
· e−R

′2
2 /2(R′2 −R′1) =

1√
2π
· e−R

′2
2 /2

∫ R′2

R′1

1dt ≤ 1√
2π

∫ R′2

R′1

e−t
2/2dt = 4εγ.

By the tail bound of Gaussian distribution, we have

Pr
X∼N(0,1)

[X ≥ R′2] ≤ e−R
′2
2 /2.

By combining with Equation (7), we have

(1− 2ε)γ · 1√
2π

(R′2 −R′1)

= Pr
X∼N(0,1)

[X ≥ R′2] · 1√
2π

(R′2 −R′1)

≤ e−R
′2
2 /2 · 1√

2π
(R′2 −R′1)

≤ 4εγ,

which implies

R′2 −R′1 ≤
4ε

1− 2ε

√
2π ≤ 8ε

√
2π,

where the last inequality follows from 1− 2ε ≥ 0.5.

16

Under review as a conference paper at ICLR 2020

Claim 4.

Pr
X1,X2,··· ,Xl

[
l∑
i=1

1(Xi ≥ R2) ≥ (1− ε/2)γl

]
≤ e−ε

2γl/24 (11)

Pr
X1,X2,··· ,Xl

[
l∑
i=1

1(Xi ≥ R1) ≤ (1 + ε/2)γl

]
≤ e−ε

2γl/18 (12)

Pr
X1,X2,··· ,Xl

[
l∑
i=1

1(R′2 ≥ Xi ≥ R2) ≤ εγl/2

]
≤ e−εγl/8 (13)

Pr
X1,X2,··· ,Xl

[
l∑
i=1

1(R1 ≥ Xi ≥ R′1) ≤ εγl/2

]
≤ e−εγl/8 (14)

Proof. For i ∈ [l], we have E[1(Xi ≥ R2)] = Pr[Xi ≥ R2] = (1 − ε)γ by Equation (8). By
Chernoff bound, we have

Pr

[
l∑
i=1

1(Xi ≥ R2) ≥ (1 + ε/2) · (1− ε)γl

]
≤ e−(ε/2)2(1−2ε)γl/3.

Since ε ≤ 0.02,

Pr

[
l∑
i=1

1(Xi ≥ R2) ≥ (1− ε/2)γl

]
≤ e−ε

2γl/24.

We have E[1(Xi ≥ R1)] = Pr[Xi ≥ R1] = (1 + ε)γ by Equation (9). By Chernoff bound, we have

Pr

[
l∑
i=1

1(Xi ≥ R1) ≤ (1− ε/3) · (1 + ε)γl

]
≤ e−(ε/3)2(1+ε)γl/2.

Thus,

Pr

[
l∑
i=1

1(Xi ≥ Ri) ≤ (1 + ε/2)γl

]
≤ e−ε

2γl/18

We have E [1(R′2 ≥ Xi ≥ R2)] = Pr[R′2 ≥ Xi ≥ R2] = εγ by Equation (7) and Equation (8). By
Chernoff bound, we have

Pr

[
l∑
i=1

1(R′2 ≥ Xi ≥ R2) ≤ 1/2 · εγl

]
≤ e−εγl/8

Similarly, we have E[1(R1 ≥ Xi ≥ R′1)] = Pr[R1 ≥ Xi ≥ R′1] = εγ by Equation (9) and
Equation (10). By chernoff bound, we have

Pr
X1,X2,··· ,Xl

[
l∑
i=1

1(R1 ≥ Xi ≥ R′1) ≤ 1/2 · εγl

]
≤ e−εγl/8

Equation (11) says that, with high probability, ∀i ∈ [l] with Xi ≥ R2, it has i ∈ A(Wx). Equa-
tion (12) says that, with high probability, ∀i ∈ [l] with Xi ≤ R1, it has i 6∈ A(Wx). Equation (14)
(Equation (13)) says that, with high probability, there are many i ∈ [l] such that Wix ∈ [R′1, R1]
(Wix ∈ [R2, R

′
2]).

Let E = E1 ∧ E2 ∧ E3 ∧ E4, where

• E1:
∑l
i=1 1(Xi ≥ R2) ≤ (1− ε/2)γl,

• E2:
∑l
i=1 1(Xi ≥ R1) ≥ (1 + ε/2)γl,

17

Under review as a conference paper at ICLR 2020

• E3:
∑l
i=1 1(R1 ≥ Xi ≥ R′1) ≥ εγl/2,

• E4:
∑l
i=1 1(R′2 ≥ Xi ≥ R2) ≥ εγl/2.

According to Equation (11), Equation (12), Equation (13) and Equation (14), the probability that E
happens is at least

1− 4e−ε
2γl/24 (15)

by union bound over Ē1, Ē2, Ē3, Ē4.

Claim 5. Condition on E , the probability that ∃i ∈ [l] with Xi ∈ [R2, R
′
2] such that Yi <

−α/
√

1− α2 · 16ε
√

2π is at least

1−
(

16ε · α√
1− α2

+
1

2

)εγl/2
.

Proof. For a fixed i ∈ [l],

Pr
[
Yi ≥ −α/

√
1− α2 · 16ε

√
2π
]

=

∫ 0

−α/
√

1−α2·16ε
√

2π

1√
2π
e−t

2/2dt+
1

2

≤ 1√
2π
· α/

√
1− α2 · 16ε

√
2π +

1

2

= 16ε · α√
1− α2

+
1

2
.

Thus, according to event E4, we have

Pr
[
∀i with Xi ∈ [R2, R

′
2], Yi ≥ −α/

√
1− α2 · 16ε

√
2π | E

]
≤
(

16ε · α√
1− α2

+
1

2

)εγl/2
.

Claim 6. Condition on E , the probability that ∃i ∈ [l] with Xi ∈ [R′1, R1] such that Yi ≥ 0 is at
least 1− (1/2)

εγl/2
.

Proof. For a fixed i ∈ [l], Pr[Yi ≤ 0] = 1/2. Thus, according to event E3, we have

Pr [∀i with Xi ∈ [R′1, R1], Yi ≤ 0 | E] ≤ (1/2)εγl/2.

Condition on that E happens. Because of E1, if Xi ≥ R2, Xi must be one of the top-k largest
values. Due to Equation (6), we have Xi = Wix. Thus, if Xi ≥ R2, i ∈ A(Wx). By Claim 5, with
probability at least

1−
(

16ε · α√
1− α2

+
1

2

)εγl/2
, (16)

there is i ∈ A(Wx) such that

Wix
′ = αXi +

√
1− α2Yi

≤ αXi +
√

1− α2 ·
(
− α√

1− α2
· 16ε
√

2π

)
= α(Xi − 16ε

√
2π)

≤ α(R′2 − 16ε
√

2π), (17)

where the first step follows from Equation (6), the second step follows from Yi ≤ −α/
√

1− α2 ·
16ε
√

2π, and the last step follows from Xi ∈ [R2, R
′
2].

18

Under review as a conference paper at ICLR 2020

Because of E2 if Xj ≤ R1, Xj should not be one of the top-k largest values. Due to Equation (6), we
have Xj = Wjx. Thus, if Xj ≤ R1, j 6∈ A(Wx). By Claim C.1, with probability at least

1− (1/2)
εγl/2

, (18)
there is j 6∈ A(Wx) such that

Wjx
′ = αXj +

√
1− α2Yj ≥ αXj ≥ αR′1, (19)

where the first step follows from Equation (6), the second step follows from Yj ≥ 0, and the last step
follows from Xj ∈ [R′1, R1].
By Equation (19) and Equation (17), ∃i ∈ A(Wx), j ∈ [l] \ A(Wx),

Wix
′ ≤ α(R′2 − 16ε

√
2π) ≤ α(R′1 − 8ε

√
2π) ≤Wjx

′ − 8αε
√

2π

≤Wjx
′ − 4ε

√
2π = Wjx

′ −
√

1− α2

24α
·
√

2π,

where the second step follows from Claim 3, the forth step follows from α ≥ 0.5, and the last
step follows from ε =

√
1− α2/(96α). By Lemma 3, we can conclude A(Wx) 6= A(Wx′). By

Equation (15), Equation (16), Equation (18), and union bound, the overall probability is at least

1−

(
4e−ε

2γl/24 +

(
16ε · α√

1− α2
+

1

2

)εγl/2
+

(
1

2

)εγl/2)

≥ 1−

(
4e−ε

2γl/24 +

(
2

3

)εγl/2
+

(
1

2

)εγl/2)

≥ 1− 6 ·
(

2

3

)ε2γl/24

≥ 1− 2−Θ((1
α2−1)γl),

where the first and the last step follows from ε =
√

1− α2/(96α)

Next, we will use a tool called ε-net.
Definition 7 (ε-Net). For a given set S, if there is a set N ⊆ S such that ∀x ∈ S there exists a
vector y ∈ N such that ‖x− y‖2 ≤ ε, then N is an ε-net of S.

There is a standard upper bound of the size of an ε-net of a unit norm ball.
Lemma 6 (Wojtaszczyk (1996) II.E, 10). Given a matrix U ∈ Rm×d, let S = {Uy | ‖Uy‖2 = 1}.
For ε ∈ (0, 1), there is an ε-net N of S with |N | ≤ (1 + 1/ε)d.

Now we can extend above lemma to the following.
Lemma 7 (ε-Net for the set of points with a certain angle). Given a vector x ∈ Rm with ‖x‖2 = 1
and a parameter α ∈ (−1, 1), let S = {x′ ∈ Rm | ‖x′‖2 = 1, 〈x, x′〉 = α}. For ε ∈ (0, 1), there is
an ε-net N of S with |N | ≤ (1 + 1/ε)m−1.

Proof. Let U ∈ Rm×(m−1) have orthonormal columns and Ux = 0. Then S can be represented as

S = {α · x+
√

1− α2 · Uy | y ∈ Rm−1, ‖Uy‖2 = 1}.
Let

S ′ = {Uy | y ∈ Rm−1, ‖Uy‖2 = 1}.
According to Lemma 6, there is an ε-net N ′ of S ′ with size |N ′| ≤ (1 + 1/ε)m−1. We construct N
as following:

N = {α · x+
√

1− α2 · z | z ∈ N ′}.
It is obvious that |N | = |N ′| ≤ (1 + 1/ε)m−1. Next, we will show that N is indeed an ε-net of S.
Let x′ be an arbitrary vector from S . Let x′ = α · x+

√
1− α2 · z for some z ∈ S ′. There is a vector

(α · x+
√

1− α2 · z′) ∈ N such that z′ ∈ N ′ and ‖z − z′‖2 ≤ ε. Thus, we have

‖x′ − (α · x+
√

1− α2 · z′)‖2 =
√

1− α2‖z − z′‖2 ≤ ε.

19

Under review as a conference paper at ICLR 2020

Theorem 8 (Rotating a vector a little bit may change the activation pattern). Consider a weight matrix
W ∈ Rl×m where each entry is an i.i.d. sample drawn from the Gaussian distribution N(0, 1/l). Let
γ ∈ (0, 0.48) be the sparsity ratio of the activation function, i.e., γ = k/l. With probability at least
0.99, it has ∀i ∈ [l], ‖Wi‖2 ≤ 10

√
m. Condition on that ∀i ∈ [l], ‖Wi‖2 ≤ 10

√
m happens, then,

for any x ∈ Rm and α ∈ (0.5, 1), if

l ≥ C ·
(
m+ log(1/δ)

γ
· 1

1− α2

)
· log

(
m+ log(1/δ)

γ
· 1

1− α2

)
for a sufficiently large constantC, with probability at least 1−δ ·2−m, ∀x′ ∈ Rm with 〈x,x′〉

‖x‖2‖x′‖2 ≤ α,
A(Wx) 6= A(Wx′).

Proof. Notice that the scale of W does not affect the activation pattern of Wx for any x ∈ Rm. Thus,
we assume that each entry of W is a standard Gaussian random variable in the remaining proof, and
we will instead condition on ∀i ∈ [l], ‖Wi‖2 ≤ 10

√
ml. The scale of x or x′ will not affect 〈x,x′〉

‖x‖2‖x′‖2 .
It will not affect the activation pattern either. Thus, we assume ‖x‖2 = ‖x′‖2 = 1.

By Lemma 4, with probability at least 0.99, we have ∀i ∈ [l], ‖Wi‖2 ≤ 10
√
ml.

Let

S = {y ∈ Rm | ‖y‖2 = 1, 〈x, y〉 = α}.

Set

ε =

√
2π(1− α2)

720α
√
ml

.

By Lemma 7, there is an ε-net N of S such that

|N | ≤

(
1 +

720α
√
ml√

2π(1− α2)

)m
.

By Lemma 5, for any y ∈ N , with probability at least

1− 2−Θ((1/α2−1)γl),

∃i ∈ A(Wx), j ∈ [l] \ A(Wx) such that

Wiy < Wjy −
√

1− α2

24α
·
√

2π.

By taking union bound over all y ∈ N , with probability at least

1− |N | · 2−Θ((1/α2−1)γl)

≥ 1−

(
1 +

720α
√
ml√

2π(1− α2)

)m
2−Θ((1

α2−1)γl)

≥ 1−

(
1000 ·

√
ml√

1− α2

)m
2−Θ((1

α2−1)γl)

≥ 1−

(
1000 ·

√
ml√

1− α2

)m
2
−C′·(1

α2−1)γ·m+log(1/δ)
γ · α2

1−α2 ·log
(

ml
1−α2

)
// C ′ is a sufficiently large constant

= 1−

(
1000 ·

√
ml√

1− α2

)m
2
−C′ ·(m+log(1/δ))·log

(
ml

1−α2

)

≥ 1− δ · 2−m,

the following event E ′ happens: ∀y ∈ N ,∃i ∈ A(Wx), j ∈ [l] \ A(Wx) such that

Wiy < Wjy −
√

1− α2

24α
·
√

2π.

20

Under review as a conference paper at ICLR 2020

In the remaining of the proof, we will condition on the event E ′. Consider y′ ∈ S. Since N is an
ε-net of S, we can always find a y ∈ N such that

‖y − y′‖2 ≤ ε =

√
2π(1− α2)

720α
√
ml

.

Since event E ′ happens, we can find i ∈ A(Wx) and j ∈ [l] \ A(Wx) such that

Wiy < Wjy −
√

1− α2

24α
·
√

2π.

Then, we have
Wiy

′ = Wiy +Wi(y
′ − y)

< Wjy −
√

1− α2

24α
·
√

2π + ‖Wi‖2‖y′ − y‖2

≤Wjy −
√

1− α2

24α
·
√

2π + 10
√
ml ·

√
2π(1− α2)

720α
√
ml

= Wjy −
√

1− α2

36α
·
√

2π

= Wjy
′ +Wj(y − y′)−

√
1− α2

36α
·
√

2π

≤Wjy
′ + ‖Wj‖2‖y − y′‖2 −

√
1− α2

36α
·
√

2π

≤Wjy
′ + 10

√
ml ·

√
2π(1− α2)

720α
√
ml

−
√

1− α2

36α
·
√

2π

≤Wjy
′ −
√

1− α2

72α
·
√

2π,

where the second step follows from Wiy < Wjy −
√

1− α2/(24α) ·
√

2π and Wi(y
′ −

y) ≤ ‖Wi‖2‖y′ − y‖2, the third step follows from ‖Wi‖2 ≤ 10
√
ml and ‖y′ − y‖2 ≤√

2π(1− α2)/(720α
√
ml), the sixth step follows from Wj(y − y′) ≤ ‖Wj‖2‖y − y′‖2, and the

seventh step follows from ‖Wi‖2 ≤ 10
√
ml and ‖y′ − y‖2 ≤

√
2π(1− α2)/(720α

√
ml).

By Lemma 3, we know that A(Wx) 6= A(Wy′). Thus, ∀y′ ∈ Rm with ‖y′‖2 = 1 and 〈x, y′〉 = α,
we have A(Wx) 6= A(Wy′) conditioned on E ′. By Lemma 2, we can conclude that ∀x′ ∈ Rm with
‖x′‖2 = 1 and 〈x, x′〉 ≤ α, we have A(Wx) 6= A(Wx′) conditioned on E ′.

Theorem 9 (A formal version of Theorem 1). Consider a weight matrix W ∈ Rl×m where each
entry is an i.i.d. sample drawn from the Gaussian distribution N(0, 1/l). Let γ ∈ (0, 0.48) be
the sparsity ratio of the activation function, i.e., γ = k/l. With probability at least 0.99, it has
∀i ∈ [l], ‖Wi‖2 ≤ 10

√
m. Condition on that ∀i ∈ [l], ‖Wi‖2 ≤ 10

√
m happens, then, for any

x ∈ Rm, if

l ≥ C ·
(
m+ log(1/δ)

γ
· 1

β

)
· log

(
m+ log(1/δ)

γ
· 1

β

)
for some β ∈ (0, 1) and a sufficiently large constant C, with probability at least 1 − δ · 2−m,
∀x′ ∈ Rm with ‖∆x‖22/‖x‖22 ≥ β, A(Wx) 6= A(Wx′), where x′ = c · (x+ ∆x) for some scaler c,
and ∆x is perpendicular to x.

Proof. If 〈x, x′〉 ≤ 0, then the statement follows from Theorem 8 directly. In the following, we
consider the case 〈x, x′〉 > 0. If ‖∆x‖2/‖x‖22 ≥ β,

〈x, x′〉2

‖x‖22‖x′‖22

=
c2‖x‖42

‖x‖22(c2(‖x‖22 + ‖∆x‖22))
=

‖x‖22
‖x‖22 + ‖∆x‖22

≤ ‖x‖22
‖x‖22 + β‖x‖22

≤ 1

1 + β
.

21

Under review as a conference paper at ICLR 2020

Thus, we have the bounds:

1

1− 〈x,x′〉2
‖x‖22‖x′‖22

≤ 1

β
+ 1 ≤ O

(
1

β

)
.

By Theorem 8, we conclude the proof.

Example 1. Suppose that the training data contains N points x1, x2, · · · , xN ∈ Rm (m ≥
Ω(logN)), where each entry of xi for i ∈ [N] is an i.i.d. Bernoulli random variable, i.e., each entry
is 1 with some probability p ∈ (100 log(N)/m, 0.5) and 0 otherwise. Consider a weight matrix
W ∈ Rl×m where each entry is an i.i.d. sample drawn from the Gaussian distribution N(0, 1/l). Let
γ ∈ (0, 0.48) be the sparsity ratio of the activation function, i.e., γ = k/l. If l ≥ Ω(m/γ · log(m/γ)),
then with probability at least 0.9, ∀i, j ∈ [N], the activation pattern of Wxi and Wxj are different,
i.e., A(Wxi) 6= A(Wxj).

Proof. Firstly, let us bound ‖xi‖2. We have E[‖xi‖22] = E [
∑m
t=1 xi,t] = pm. By Bernstein

inequality, we have

Pr

[∣∣∣∣∣
m∑
t=1

xi,t − pm

∣∣∣∣∣ > 1

10
pm

]
≤ 2e

− (pm/10)2/2

pm+1
3
· 1
10
pm ≤ 0.01/N.

Thus, by taking union bound over all i ∈ [N], with probability at least 0.99, ∀i ∈ [N],
√

0.9pm ≤
‖xi‖2 ≤

√
1.1pm.

Next we consider 〈xi, xj〉. Notice that E[〈xi, xj〉] = E [
∑m
t=1 xi,txj,t] = p2m. There are two cases.

Case 1 (p2m > 20 logN). By Bernstein inequality, we have

Pr

[∣∣〈xi, xj〉 − p2m
∣∣ > 1

2
p2m

]
≤ 2e

− (p2m/2)2/2

p2m+1
3

1
2
p2m = 2e−

3
28p

2m ≤ 0.01/N2.

By taking union bound over all pairs of i, j, with probability at least 0.99, ∀i 6= j, 〈xi, xj〉 ≤ 3
2p

2m.
Since ‖xi‖2, ‖xj‖2 ≥

√
0.9pm, we have

〈xi, xj〉
‖xi‖2‖xj‖2

≤ 3p2m/2

0.9pm
=

5

3
p ≤ 5

6
.

Case 2 (p2m ≤ 20 logN). By Bernstein inequality, we have

Pr
[∣∣〈xi, xj〉 − p2m

∣∣ > 10 logN
]
≤ 2e

− (10 logN)2/2

p2m+1
3
·10 logN ≤ 0.01/N2.

By taking union bound over all pairs of i, j, with probability at least 0.99, ∀i 6= j, 〈xi, xj〉 ≤ 10 logN ,
Since ‖xi‖2, ‖xj‖2 ≥

√
0.9pm ≥

√
90 logN , we have

〈xi, xj〉
‖xi‖2‖xj‖2

≤ 10 logN

90 logN
=

1

9
.

Thus, with probability at least 0.98, we have ∀i 6= j, 〈xi, xj〉/(‖xi‖2‖xj‖2) ≤ 5/6. By Theorem 8,
with probability at least 0.99, ∀q ∈ [l], ‖Wq‖2 ≤ 10

√
m. Condition on this event, and since ∀i 6= j

we have 〈xi, xj〉/(‖xi‖2‖xj‖2) ≤ 5/6, by Theorem 8 again and union bound over all i ∈ [N], with
probability at least 0.99, ∀i 6= j,A(Wxi) 6= A(Wxj).

C.2 DISJOINTNESS OF ACTIVATION PATTERNS OF DIFFERENT INPUT POINTS

Let X1, X2, · · · , Xm be i.i.d. random variables drawn from the standard Gaussian distribution
N(0, 1). Let Z =

∑m
i=1X

2
i . We use the notation χ2

m to denote the distribution of Z. If m is clear in
the context, we just use χ2 for short.
Lemma 8 (A property of χ2 distribution). Let Z be a random variable with χ2

m m (m ≥ 2)
distribution. Given arbitrary ε, η ∈ (0, 1), if R is sufficiently large then

Pr[Z ≥ (1 + ε)R]/Pr[(1 + ε)R ≥ Z ≥ R] ≤ η.

22

Under review as a conference paper at ICLR 2020

Proof. Let R be a sufficiently large number such that:

• eεR/2 ≥ 4
ε .

• eεR/8 ≥ Rm/2−1.

• eεR/4 ≥ 16
9 ·

1
η .

Let ξ = ε/4. By the density function of χ2 distribution, we have

Pr[R ≤ Z ≤ (1 + ε)R] =
1

2m/2Γ(m/2)

∫ (1+ε)R

R

tm/2−1e−t/2dt,

and

Pr[Z ≥ (1 + ε)R] =
1

2m/2Γ(m/2)

∫ ∞
(1+ε)R

tm/2−1e−t/2dt,

where Γ(·) is the Gamma function, and for integer m/2, Γ(m/2) = (m/2−1)(m/2−2) · · · ·2 ·1 =
(m/2− 1)!. By our choice of R, we have

Pr[R ≤ Z ≤ (1 + ε)R] ≥ 1

2m/2Γ(m/2)

∫ (1+ε)R

R

e−t/2dt

=
1

2m/2Γ(m/2)
· 2
(
e−R/2 − e−(1+ε)R/2

)
≥ 1

2m/2Γ(m/2)
· 2(1− ξ) · e−R/2,

where the first step follows from ∀t ≥ R, tm/2−1 ≥ 1, and the third step follows from

e−(1+ε)R/2

e−R/2
= e−εR/2 ≤ ξ.

We also have:

Pr[Z ≥ (1 + ε)R] ≤ 1

2m/2Γ(m/2)

∫ +∞

(1+ε)R

e−(1−ξ)t/2dt

=
1

2m/2Γ(m/2)
· 2

1− ξ
· e−(1−ξ)(1+ε)R/2

≤ 1

2m/2Γ(m/2)
· 2

1− ξ
· e−(1+ε/2)R/2,

where the first step follos from ∀t ≥ R, tm/2−1 ≤ eξt/2, and the third step follows from (1− ξ)(1 +
ε) ≥ (1 + ε/2).
Thus, we have

Pr[Z ≥ (1 + ε)R]

Pr[(1 + ε)R ≥ Z ≥ R]
≤ 1

(1− ξ)2
e−εR/4 ≤ 16

9
e−εR/4 ≤ η.

Lemma 9. Consider x, y, z ∈ Rm. If 〈x,y〉
‖x‖2‖y‖2 ≤ α, 〈x,z〉

‖x‖2‖z‖2 ≥ β for some α, β ≥ 0, then
〈y,z〉
‖y‖2‖z‖2 ≤ α +

√
1− β2. Furthermore, if β = 2+α+

√
2−α2

4 , then 〈y,z〉
‖y‖2‖z‖2 ≤ (1 − εα)β, where

εα ∈ (0, 1) only depends on α.

Proof. Without loss of generality, we suppose ‖x‖2 = ‖y‖2 = ‖z‖2 = 1. We can decompose y as
ax+ y′ where y′ is perpendicular to x. We can decompose z as b1x+ b2y

′/‖y′‖2 + z′ where z′ is
perpendicular to both x and y′. Then we have:

〈y, z〉 = ab1 + b2‖y′‖2 ≤ α+
√

1− β2,

23

Under review as a conference paper at ICLR 2020

where the last inequality follows from 0 ≤ b1 ≤ 1, a ≤ α, and b2 ≤
√

1− b21 ≤
√

1− β2,
0 ≤ ‖y′‖2 ≤ 1.

By solving β ≥ α+
√

1− β2, we can get β ≥ α+
√

2−α2

2 . Thus, if we set

β =
1 + α+

√
2−α2

2

2
,

β should be strictly larger than α+
√

1− β2, and the gap only depends on α.

Lemma 10. Give x ∈ Rm, let y ∈ Rm be a random vector, where each entry of y is an
i.i.d. sample drawn from the standard Gaussian distribution N(0, 1). Given β ∈ (0.5, 1),
Pr[〈x, y〉/(‖x‖2‖y‖2) ≥ β] ≥ 1/(1 + 1/

√
2(1− β))m.

Proof. Without loss of generality, we can assume ‖x‖2 = 1. Let y′ = y/‖y‖2. Since each entry of y
is an i.i.d. Gaussian variable, y′ is a random vector drawn uniformly from a unit sphere. Notice that if
〈x, y′〉 ≥ β, then ‖x−y′‖2 ≤

√
2(1− β). Let C = {z ∈ Rm | ‖z‖2 = 1, ‖z−x‖2 ≤

√
2(1− β)}

be a cap, and let S = {z ∈ Rm | ‖z‖2 = 1} be the unit sphere. Then we have

Pr[〈x, y′〉 ≥ β] = area(C)/area(S).

According to Lemma 6, there is an
√

2(1− β)-net N with |N | ≤ (1 + 1/
√

2(1− β))m. If we put
a cap centered at each point in N , then the whole unit sphere will be covered. Thus, we can conclude

Pr[〈x, y′〉 ≥ β] ≥ 1/(1 + 1/
√

2(1− β))m.

Theorem 10 (A formal version of Theorem 2). Consider N data points x1, x2, · · · , xN ∈ Rm and
a weight matrix W ∈ Rl×m where each entry of W is an i.i.d. sample drawn from the Gaussian
distribution N(0, 1/l). Suppose ∀i 6= j ∈ [N], 〈xi, xj〉/(‖xi‖2‖xj‖2) ≤ α for some α ∈ (0.5, 1).
Fix k ≥ 1 and δ ∈ (0, 1), if l is sufficiently large, then with probability at least 1− δ,

∀i, j ∈ [N],A(Wxi) ∩ A(Wxj) = ∅.

Proof. Notice that the scale of W and x1, x2, · · · , xN do not affect either 〈xi, xj〉/(‖xi‖2‖xj‖2) or
the activation pattern. Thus, we can assume ‖x1‖2 = ‖x2‖2 = · · · = ‖xN‖2 = 1 and each entry of
W is an i.i.d. standard Gaussian random variable.
Let β = 2+α+

√
2−α2

4 and εα be the same as mentioned in Lemma 9. Set ε and β′ as

ε =
1
β−1

2 , β′ = (1 + ε)β.

Now, set

η =
δ/100

100k log(N/δ) · (1 + 2/
√

2(1− β′))m
,

and let R satisfies

Pr
Z∼χ2

m

[Z ≥ (1 + ε)2R2] =
δ/100

l
.

According to Lemma 8, if l is sufficiently large, then R is sufficiently large such that

Pr
Z∼χ2

m

[Z ≥ (1 + ε)2R2]/ Pr
Z∼χ2

m

[(1 + ε)2R2 ≥ Z ≥ R2] ≤ η.

Notice that for t ∈ [l], ‖Wt‖22 is a random variable with χ2
m distribution. Thus, Pr[‖Wt‖2 ≥

(1 + ε)R] = δ/100
l . By taking union bound over all t ∈ [l], with probability at least 1 − δ/100,

∀t ∈ [l], ‖Wt‖2 ≤ (1 + ε)R. In the remaining of the proof, we will condition on that ∀t ∈
[l], ‖Wt‖2 ≤ (1 + ε)R. Consider i, j ∈ [N], t ∈ [l], if Wtxi > β′R, then we have

Wtxi
‖Wt‖2

>
β′R

(1 + ε)R
≥ β′/(1 + ε) = β.

24

Under review as a conference paper at ICLR 2020

Due to Lemma 9, we have

Wtxj
‖Wt‖2

< (1− εα)β.

Thus,

Wtxj < (1− εα)β‖Wt‖2 ≤ (1− εα)β(1 + ε)R ≤ (1− εα)β′R. (20)

Notice that for i ∈ [N], t ∈ [l], we have

Pr[Wtxi > β′R] ≥ Pr[‖Wt‖2 ≥ R] Pr

[
Wtxi
‖Wt‖2

≥ β′
]

≥ δ/100

l
· 1

η
· 1

(1 + 1/
√

2(1− β′))m

≥ 1

l
· 100k log(N/δ).

By Chernoff bound, with probability at least 1− δ/(100N),

l∑
t=1

1(Wtxi > β′R) ≥ k.

By taking union bound over i ∈ [N], with probability at least 1− δ/100, ∀i ∈ [N],

l∑
t=1

1(Wtxi > β′R) ≥ k.

This implies that ∀i ∈ [N], if t ∈ A(Wxi), then Wtxi > β′R. Due to Equation (20), ∀j ∈ [N], we
have Wtxj < β′R which implies that t 6∈ A(Wxj). Thus, with probability at least 1− δ/50 ≥ 1− δ
probability, ∀i 6= j, A(Wxi) ∩ A(Wxj) = ∅.

Remark 1. Consider any x1, x2, · · · , xN ∈ Rm with ‖x1‖2 = ‖x2‖2 = · · · = ‖xN‖2 = 1. If
∀i 6= j ∈ [N], 〈xi, xj〉 ≤ α for some α ∈ (0.5, 1), then |N | ≤ (1 + 2/

√
2(1− α))m.

Proof. Since 〈xi, xj〉 ≤ α, ‖xi − xj‖22 = ‖xi‖22 + ‖xj‖22 − 2〈xi, xj〉 ≥ 2− 2α. Let S be the unit
sphere, i.e., S = {x ∈ Rm | ‖x‖2 = 1}. Due to Lemma 6, there is a (

√
2(1− α)/2)-net N of S

with size at most |N | ≤ (1 + 2/
√

2(1− α))m. Consider xi, xj , and y ∈ N . By triangle inequality,
if ‖xi − y‖2 <

√
2(1− α)/2, then ‖xj − y‖2 >

√
2(1− α)/2 due to ‖xi − xj‖2 ≥

√
2(1− α).

Since N is a net of S , for each xi, we can find a y ∈ N such that ‖xi − y‖2 <
√

2(1− α)/2. Thus,
we can conclude N ≤ |N | ≤ (1 + 2/

√
2(1− α))m.

Theorem 11. Consider N data points x1, x2, · · · , xN ∈ Rm with their corresponding labels
z1, z2, · · · , zN ∈ R and a weight matrixW ∈ Rl×m where each entry ofW is an i.i.d. sample drawn
from the Gaussian distribution N(0, 1/l). Suppose ∀i 6= j ∈ [N], 〈xi, xj〉/(‖xi‖2‖xj‖2) ≤ α for
some α ∈ (0.5, 1). Fix k ≥ 1 and δ ∈ (0, 1), if l is sufficiently large, then with probability at least
1− δ, there exists a vector v ∈ Rl such that

∀i ∈ [N], 〈v, φk(Wxi)〉 = zi.

Proof. Due to Theorem 10, with probability at least 1 − δ, ∀i 6= j, A(Wxi) ∩ A(Wxj) = ∅. Let
t1, t2, · · · , tN ∈ [l] such that ti ∈ A(Wxi). Then ti 6∈ A(Wxj) for j 6= i.
For each entry vt, if t = ti for some i ∈ [N], then set vt = zi/(Wtxi). Then for i ∈ [N], we have

〈v, φk(Wxi)〉 =
∑

t∈A(Wxi)

vt ·Wtxi = zi/(Wtixi) ·Wtixi = zi.

25

Under review as a conference paper at ICLR 2020

D ADDITIONAL EXPERIMENTAL RESULTS

This section presents details of our experiment settings and additional results for evaluating and
empirically understanding the robustness of k-WTA networks.

D.1 EXPERIMENT SETTINGS

First, we describe the details of setting up the experiments described in Sec. 4. To compare k-WTA
networks with their ReLU counterparts, we replace all ReLU activations in a network with k-WTA
activation, while retaining all other modules (such as BatchNorm, Convolution, and pooling). To test
on different network architectures, including ResNet18, DenseNet121, and Wide ResNet, we use the
standard implementations that are publicly available3. All experiments are conducted using PyTorch
framework.

Training setups. We follow the same training procedure on CIFAR-10 and SVHN datasets. All the
ReLU networks are trained with stochastic gradient descent (SGD) method with momentum=0.9. We
use a learning rate 0.1 from the first to 50-th epoch and 0.01 from 50-th to 80-th epoch. To compare
with ReLU networks, the k-WTA networks are trained in the same way as ReLU networks. All
networks are trained with a batch size of 256.
For k-WTA networks with a sparsity ratio γ = 0.1, when adversarial training is not used, we train
them incrementally (recall in Sec. 2.2). starting with γ = 0.2 for 50 epochs with SGD (using learning
rate=0.1, momentum=0.9) and then decreasing γ by 0.005 every 2 epochs until γ reaches 0.1.
When adversarial training is enabled, we use untargeted PGD attack with 8 iterations to construct ad-
versarial examples. To train networks with TRADES (Zhang et al., 2019), we use the implementation
of its original paper4 with the parameter 1/λ = 6, a value that reportedly leads to the best robustness
according to the paper. To train networks with the free adversarial training method (Shafahi et al.,
2019b), we implement the training algorithm by following the original paper. We set the parameter
m = 8 as suggested in the paper.

Attack setups. All attacks are evaluated under the `∞ metric, with perturbation size ε = 0.031
(CIFAR-10) and 0.047 (SVHN) for pixels ranging in [0, 1]. We use Foolbox (Rauber et al., 2017), a
third-party toolbox for evaluating adversarial robustness.
We use the following setups for generating adversarial examples in various attack methods: For PGD
attack, we use 40 iterations with random start, the step size is 0.003. For C&W attack, we set the
binary search step to 5, maximum number of iterations to 20, learning rate to 0.01, and initial constant
to 0.01. For Deepfool, we use 20 steps and 10 sub-samples in its configuration. For momentum
attack, we set the step size to 0.003 and number of iterations to 20. All other parameters are set by
Foolbox to be its default values.

D.2 EFFICACY OF INCREMENTAL TRAINING

We now report additional experiments to demonstrate the efficacy of the incremental fine-tuning
method (described in Sec. 2.2). As shown in Figure 6 and described its caption, models trained with
incremental fine-tuning (denoted as w/ FT in the plots’ legend) performs better in terms of both
standard accuracy (denoted as std in the plots’ legend) and robust accuracy (denoted as Rob in the
plots) when the k-WTA sparsity γ < 0.2, suggesting that fine-tuning is worthwhile when γ is small.

D.3 ADDITIONAL RESULTS ON CIFAR-10

Tests on different network architectures. We evaluate the robustness of k-WTA on different
network architectures, including ResNet-18, DenseNet-121 and WideResNet-22-10. The results are
reported in Table 2, where similar to the notation used in Table 1 of the main text, Arob is calculated
as the worst-case robustness, i.e., under the most effective attack among PGD, C&W, Deepfool and
MIM. The training and attacking settings are same as other experiments described Sec. D.1.
As shown in Table 2, while the standard and robustness accuracies, Astd and Arob, vary on different
network architectures, k-WTA networks consistently improves the worst-case robustness Arob over
ReLU networks, no matter what the network architecture and training method are used.

3https://github.com/kuangliu/pytorch-cifar
4https://github.com/yaodongyu/TRADES

26

Under review as a conference paper at ICLR 2020

ResNet18 Wide ResNet

A
cc

ur
ac

y

A
cc

ur
ac

y

Sparsity Sparsity

Figure 6: Efficacy of incremental training. We sweep through a range of sparsity ratios, and
evaluate the standard and robust accuracies of two network structures (left: ResNet18 and right: Wide
ResNet). We compare the performance differences between the regular training (i.e., training without
incremental fine-tuning) and the training with incremental fine-tuning.

Table 2: Additional CIFAR-10 results.
Training Model Activation Astd Arob

Natural ResNet-18

ReLU 92.9% 0.0%
LWTA-0.1 82.8% 3.7%
LWTA-0.2 84.6% 0.9%
k-WTA-0.1 89.3% 13.1%
k-WTA-0.2 91.7% 4.2%

AT ResNet-18

ReLU 83.5% 43.6%
LWTA-0.1 71.4% 46.6%
LWTA-0.2 78.7% 43.1%
k-WTA-0.1 78.9% 50.7%
k-WTA-0.2 81.4% 47.4%

Natural DenseNet-121

ReLU 93.6% 0.0%
LWTA-0.1 86.1% 4.6%
LWTA-0.2 88.5% 1.4%
k-WTA-0.1 90.5% 12.3%
k-WTA-0.2 93.3% 6.2%

AT DenseNet-121

ReLU 84.2% 46.3%
LWTA-0.1 74.0% 49.1%
LWTA-0.2 80.2% 44.9%
k-WTA-0.1 81.6% 52.4%
k-WTA-0.2 83.4% 49.6%

Natural WideResNet-22-10

ReLU 93.4% 0.0%
LWTA-0.1 83.7% 4.2%
LWTA-0.2 86.1% 2.8%
k-WTA-0.1 88.6% 18.3%
k-WTA-0.2 92.7% 7.4%

AT WideResNet-22-10

ReLU 83.3% 43.1%
LWTA-0.1 74.2% 47.5%
LWTA-0.2 79.8% 44.7%
k-WTA-0.1 78.9% 50.4%
k-WTA-0.2 82.4% 47.1%

Comparison with LWTA. We in addition compare k-WTA to LWTA activation (Srivastava et al.,
2013; 2014). For fair comparisons, we use the same sparsity ratio γ in both k-WTA and LWTA. As
shown in Table 2, on all network architectures and training methods we tested, k-WTA networks con-
sistently have better robustness performance than LWTA networks (in terms of both Astd and Arob).
These results suggest that k-WTA is more suitable then LWTA for defending against adversarial
attacks.

Transfer attack. Since a k-WTA network is architecturally similar to its ReLU counterpart—with
the only difference being the activation—we evaluate their robustness under (black-box) transfer

27

Under review as a conference paper at ICLR 2020

Table 3: Transferability test on CIFAR-10.

Target Model Source Model
ReLU k-WTA-0.1 ReLU (AT) k-WTA-0.1 (AT)

ReLU 4.8% 75.5% 59.4% 84.7%
k-WTA-0.1 61.2% 71.2% 67.8% 86.4%
ReLU (AT) 62.7% 80.9% 61.6% 78.6%
k-WTA-0.1 (AT) 79.2% 78.6% 69.2% 67.2%

Table 4: White-box attack results on MNIST dataset.
Activation Training Astd Arob Activation Training Astd Arob

ReLU

Natural 99.4% 0.0%

k-WTA-0.1

Natural 99.3% 62.2%
AT 99.2% 95.0% AT 99.2% 96.4%
TRADES 99.2% 96.0% TRADES 99.0% 96.9%
FAT 98.2% 94.7% FAT 98.1% 96.0%

attacks across k-WTA and ReLU networks. To this end, we build a ReLU and a k-WTA-0.1 network
on ResNet-18, and train both networks with natural (non-adversarial) training as well as adversarial
training. This gives us four different models denoted (in Table 3) as ReLU, k-WTA-0.1, ReLU (AT),
and k-WTA-0.1 (AT). We then launch transfer attacks across each pair of models. We also consider
by-far the strongest black-box attack (according to Papernot et al. (2017)): for the same model, for
example, a k-WTA-0.1 network optimized by adversarial training, we train two independent versions,
each with a different random initialization, and apply the transfer attacks across the two versions.
The results are reported in Table 3, where each row corresponds to a target (attacked) model, and
each column corresponds to a source model from which the adversarial examples are generated. On
the diagonal line of Table 3, each entry corresponds to the robustness under aforementioned transfer
attacks across the two versions of the same models.
The results suggest that 1) it is more difficult to transfer attack k-WTA networks than ReLU networks
using adversarial examples from other models, and 2) it is also more difficult to use adversarial
examples of a k-WTA network to attack other models. In a sense, the adversarial examples of a
k-WTA network tend to be “disjoint” from the adversarial examples of a ReLU network, despite their
architectural similarity. Inspecting the diagonal entries of Table 3, we also find that k-WTA networks
are more robust than their ReLU counterparts under the strongest black-box attack (Papernot et al.,
2017) (i.e., transfer attacks across two different versions of the same model).

D.4 MNIST RESULTS

On MNIST dataset, we conduct experiments with an adversarial perturbation size ε=0.3 for pixels
ranging in [0, 1]. We use Stochastic Gradient Descent (SGD) with learning rate=0.01 and momen-
tum=0.9 to train a 3-layer CNN. The training takes 20 epochs for all the methods we evaluate. The
robust accuracy are evaluated under PGD attacks that take 20 iterations with random initialization
and a step size of 0.03.
The results are summarized in Table 4. Again, k-WTA activation consistently improves robustness
under all different training methods. Even with natural (non-adversarial) training, the resulting
k-WTA network still has 62.2% robust accuracy, significantly outperforming ReLU network.

D.5 LOSS LANDSCAPE VISUALIZATION

In addition to the experiments shown in Figure 5 and Sec. 4.3 of the main text, we further we visualize
the loss landscapes of k-WTA networks when different sparsity ratios γ are used. The plots are shown
in Figure 7, produced in the same way as Figure 5 described in Sec. 4.3.
As analyzed in Sec. 3, a larger γ tends to smooth the loss surface of the k-WTA network with respect
to the input, while a smaller γ renders the loss surface more discontinuous and “spiky”. In addition,
adversarial training tends to reduce the range of the loss values—a similar phenomenon in ReLU
networks has already been reported Madry et al. (2017); Tramèr et al. (2017)—but that does not mean
that the loss surface becomes smoother; the loss surface remains spiky.

28

Under review as a conference paper at ICLR 2020

ResNet18-0.3 ResNet18-0.2

ResNet18-0.1 DenseNet121-0.2

DenseNet121-0.1 DenseNet121-0.1+adv

Figure 7: Visualization of ResNet18 and DenseNet121 with different γ values. The last one
(DenseNet121-0.1+adv) is the result using adversarial training. The others are optimized using
natural (non-adversarial) training.

29

	Introduction
	Related Work: Obfuscated Gradients as a Defense Mechanism

	k-Winners-Take-All Activation
	Deep Neural Networks Activated by k-Winners-Take-All
	Training k-WTA Networks

	Understanding k-WTA Discontinuity
	Experimental Results
	Robustness under White-box Attacks
	Varying sparsity ratio and model architecture.
	Loss Landscape in Gradient-Based Attacks

	Conclusion
	Other Related Work
	Discontinuity Jump of Wk(x)
	Theoretical Proofs
	Discontinuity with Respect to the Input
	Disjointness of Activation Patterns of Different Input Points

	Additional Experimental Results
	Experiment Settings
	Efficacy of Incremental Training
	Additional results on CIFAR-10
	MNIST Results
	Loss Landscape Visualization

