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ABSTRACT

Learning generative probabilistic models that can estimate the continuous den-
sity given a set of samples, and that can sample from that density, is one of the
fundamental challenges in unsupervised machine learning. In this paper we in-
troduce a new approach to obtain such models based on what we call denoising
density estimators (DDEs). A DDE is a scalar function, parameterized by a neural
network, that is efficiently trained to represent a kernel density estimator of the
data. In addition, we show how to leverage DDEs to develop a novel approach
to obtain generative models that sample from given densities. We prove that our
algorithms to obtain both DDEs and generative models are guaranteed to converge
to the correct solutions. Advantages of our approach include that we do not re-
quire specific network architectures like in normalizing flows, ODE solvers as in
continuous normalizing flows, nor do we require adversarial training as in gener-
ative adversarial networks (GANs). Finally, we provide experimental results that
demonstrate practical applications of our technique.

1 INTRODUCTION

Learning generative probabilistic models from raw data is one of the fundamental problems in unsu-
pervised machine learning. The defining property of such models is that they provide functionality
to sample from the probability density represented by the input data. In other words, such mod-
els can generate new content, which has applications in image or video synthesis for example. In
addition, generative probabilistic models may include capabilities to perform density estimation or
inference of latent variables. Recently, the use of deep neural networks has led to significant ad-
vances in this area. For example, generative adversarial networks (Goodfellow et al., 2014) can
be trained to sample very high dimensional densities, but they do not provide density estimation
or inference. In contrast, Boltzman machines (Salakhutdinov & Hinton, 2009) allow for efficient
inference. Variational autoencoders (Kingma & Welling, 2014) provide functionality for both (ap-
proximate) inference and sampling. Finally, normalizing flows (Dinh et al., 2014) perform all three
operations (sampling, density estimation, inference) efficiently.

In this paper we introduce a novel type of generative model based on what we call denoising density
estimators (DDEs), which supports efficient sampling and density estimation. Our approach to
construct a sampler is straightforward: assuming we have a density estimator that can be efficiently
trained and evaluated, we learn a sampler by forcing its generated density to be the same as the
input data density via minimizing their Kullback-Leibler (KL) divergence. A core component of
this approach is the density estimator, which we derive from the theory of denoising autoencoders,
hence our term denoising density estimator. Compared to normalizing flows, a key advantage of our
theory is that it does not require any specific network architecture, except differentiability, and we
do not need to solve ODEs like in continuous normalizing flows. In contrast to GANs, we do not
require adversarial training. In summary, our contributions are as follows:

• A density estimator based on denoising autoencoders called denoising density estimator
(DDE), and its parameterization using neural networks.

• An algorithm to train samplers for generative models via minimizing the KL divergence
between the DDE of the sampler and the DDE of the input data. The training algorithm is
guaranteed to converge.
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2 RELATED

Generative adversarial networks (Goodfellow et al., 2014) are currently the most widely studied type
of generative probabilistic models for very high dimensional data such as images or videos. How-
ever, they are often difficult to train in practice, they can suffer from mode collapse, and they only
support sampling, but neither inference nor density estimation. Hence, there has been a renewed
interest in alternative approaches to learn generative models. A common approach is to formulate
these models as mappings between a latent space and the data domain, and one way to catego-
rize these techniques is to consider the constraints on this mapping. For example, in normalizing
flows (Dinh et al., 2014; Rezende & Mohamed, 2015) the mapping is invertible and differentiable,
such that the data density can be estimated using the determinant of its Jacobian, and inference
can be perfomed by applying the inverse mapping. Normalizing flows can be trained simply using
maximum likelihood estimation (Dinh et al., 2017). The challenge for these techniques is to de-
sign computational structures so that their inverses and Jacobians, including their determinants, can
be computed efficiently (Huang et al., 2018; Kingma & Dhariwal, 2018). Chen et al. (2018) and
Grathwohl et al. (2018) derive continuous normalizing flows by parameterizing the dynamics (the
time derivative) of an ordinary differential equation (ODE) using a neural network. They show that
this implies that the time derivative of the log density can also be expressed as an ODE, which only
involves the trace (not the determinant) of the Jacobian of the network. This makes it possible to use
arbitrary network architectures to obtain normalizing flows, but it comes at the computation cost of
solving ODEs to produce outputs.

In contrast, in variational techniques the relation between the latent variables and data is probabilis-
tic, usually expressed as a Gaussian likelihood function. Hence computing the marginal likelihood
requires integration over latent space. To make this tractable, it is common to bound the marginal
likelihood using the evidence lower bound (Kingma & Welling, 2014). As an advantage over nor-
malizing flows, variational methods do not require an invertible mapping between latent and data
space. However, Gaussian likelihood functions correspond to an L2 reconstruction error, which ar-
guably leads to blurriness artifacts. Recently, Li & Malik (2018) have shown that an approximate
form of maximum likelihood estimation, which they call implicit maximum likelihood estimation,
can also be performed without requiring invertible mappings. A disadvantage of their approach is
that it requires nearest neighbor queries in (high dimensional) data space.

Not all generative models include a latent space, including autoregressive models (van den Oord
et al., 2016) or denoising autoencoders (DAEs) (Alain & Bengio, 2014). In particular, Alain &
Bengio (2014) use the relation between DAEs and the score of the corresponding data distributions
to construct an approximate Markov Chain sampling procedure. Our approach also builds on DAEs,
but we train a generator instead of requiring Markov chain sampling, which has the disadvantages
of requiring sequential sampling and producing correlated samples.

3 DENOISING DENSITY ESTIMATORS (DDES)

Here we show how to estimate a density using a variant of denoising autoencoders (DAEs). More
precisely, our approach allows us to obtain the density smoothed by a Gaussian kernel, which is
equivalent to kernel density estimation (Parzen, 1962), up to a normalizing factor. Originally, the
optimal DAE r : Rn → Rn (Alain & Bengio, 2014) is defined as the function minimizing the
following denoising loss,

LDAE(r; p, ση) = Ex∼p,η∼N (0,σ2
η)

[
‖r(x+ η)− x‖2

]
, (1)

where the data x is distributed according to a density p over Rn, and η ∼ N (0, σ2
η) represents

n-dimensional, isotropic additive Gaussian noise with variance σ2
η . It has been shown (Raphan &

Simoncelli, 2011) that the optimal DAE r∗(x), which minimizesLDAE, can be expressed as follows,

r∗(x) = x+ σ2
η∇x log p̃(x), (2)

where ∇x is the gradient with respect to the input x, and p̃(s) = [p ∗ k](x) denotes the convolution
between the data and noise distributions p(x) and k = N (0, σ2

η), respectively. Inspired by this
result, we formulate the following noise estimation loss,

LNEs(f ; p, ση) = Ex∼p,η∼N (0,σ2
η)

[
‖f(x+ η) + η/σ2

η‖2
]
, (3)
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where f : Rn → Rn is a vector field that estimates the noise vector −η/σ2
η .

Proposition 1. There is a unique minimizer f∗(x) = arg minf LNEs(f ; p, ση) that satisfies

f∗(x) = ∇x log p̃(x) = ∇x log[p ∗ k](x). (4)

That is, the optimal noise estimator is the gradient of the logarithm of the Gaussian smoothed density
p̃(x).

Proof. Clearly LDAE is convex in f hence the minimizer is unique. We can rewrite the noise esti-
mation loss from Equation 10 as

LNEs(f ; p, ση) =

∫
Rn

Eη∼N (0,σ2
η)

[
p(x)‖f(x+ η) + η/σ2

η‖2
]
dx, (5)

which we minimize with respect to the vector-valued function f : Rn → Rn. Substituting x̃ = x+η
yields

LNEs(f ; p, ση) =

∫
Rn

Eη∼N (0,σ2
η)

[
p(x̃− η)‖f(x̃) + η/σ2

η‖2
]
dx̃. (6)

We can minimize this with respect to f(x̃) by differentiating and setting the derivative to zero, which
leads to

Eη∼N (0,σ2
η)

[p(x̃− η)f(x̃)] =
1

σ2
η

Eη∼N (0,σ2
η)

[p(x̃− η)η] , (7)

and hence

f(x̃) =
1

σ2
η

Eη∼N (0,σ2
η)

[p(x̃− η)η]

Eη∼N (0,σ2
η)

[p(x̃− η)]
(8)

= ∇x̃ log[p ∗ k](x̃) = ∇x̃ log p̃(x̃), (9)

which follows from basic calculus.

The last step also proofs that the desired vector field is the gradient of a scalar function and con-
servative. Hence we can write the noise estimation loss in terms of a scalar function s : Rn → R
instead of the vector field f , which we call the denoising density estimation loss,

LDDE(s; p, ση) = Ex∼p,η∼N (0,σ2
η)

[
‖∇xs(x+ η) + η/σ2

η‖2
]
. (10)

The name is motivated by the following corollary:
Corollary 1. The minimizer s∗(x) = arg mins LDDE(s; p) satisfies

s∗(x) = log p̃(x) + C, (11)

with some constant C ∈ R.

Proof. From Proposition 1 and the definition of LDDE(s; p) we know that∇xs∗(x) = ∇x log p̃(x),
which leads immediately to the corollary.

In summary, we have shown how modifying the denoising autoencoder loss (Eq. 1) into a noise
estimation loss based on the gradients of a scalar function (Eq. 10) allows us to derive a density
estimator (Corollary 1), which we call the denoising density estimator (DDE).

3.1 PARAMETRIZATION USING NEURAL NETS

In practice, we approximate the DDE using a neural network s(x; θ). Assuming that the network
has enough capacity and is everywhere differentiable both with respect to x and its parameters θ,
we can find the unique minimum of Eq. 10 using standard stochastic gradient descent techniques.
For illustration, Figure 1 shows 2D distribution examples, which we approximate using a DDE
implemented as a multi-layer perceptron. We only use Softplus activations in our network since it is
differentiable everywhere.

3



Under review as a conference paper at ICLR 2020

4 LEARNING GENERATIVE MODELS USING DDES

We next describe how to leverage DDEs to construct samplers for given densities, which can be
represented by a set of samples or as a continuous function. In either case, we denote the smoothed
data density p̃, which is obtained by training a DDE in case the input is given as a set of samples as
described in Section 3. We express our samplers using mappings x = g(z), where x ∈ Rn, z ∈ Rm

(usually n > m), and z is typically a latent variable with standard normal distribution. In contrast to
normalizing flows, g(z) does not need to be invertible. Let us denote the distribution of x induced
by the generator as q, that is q ∼ g(z), and also its Gaussian smoothed version q̃ = q ∗ k.

We obtain the generator by minimizing the KL divergenc DKL(q̃||p̃) between the density induced
by the generator q̃ and the data density p̃. Our algorithm is based on the following observation:

Proposition 2. Given a scalar function ∆ : Rn → R that satisfies the following conditions:

DKL(q̃||p̃) = 〈q̃, log q̃ − log p̃〉 > 〈q̃ + ∆, log q̃ − log p̃〉 , (12)
〈∆, 1〉 = 0, (13)

∆2 < ε, (pointwise exponentiation) (14)

then DKL(q̃||p̃) > DKL(q̃ + ∆||p̃) for small enough ε.

Proof. We will use the first order approximation log(q̃ + ∆) = log q̃ + ∆/q̃ + o(∆2), where the
division is pointwise. Then we can write

DKL(q̃ + ∆||p̃) = 〈q̃ + ∆, log(q̃ + ∆)− log p̃〉 (15)

=
〈
q̃ + ∆, log q̃ + ∆/q̃ + o(∆2)− log p̃

〉
(16)

= 〈q̃, log q̃ − log p̃〉+ 〈∆, log q̃ − log p̃〉+ 〈q̃,∆/q̃〉+ 〈∆,∆/q̃〉+ o(∆2). (17)

This means

DKL(q̃ + ∆||p̃)−DKL(q̃||p̃) = 〈∆, log q̃ − log p̃〉+ 〈q̃,∆/q̃〉+ 〈∆,∆/q̃〉+ o(∆2) < 0 (18)

because the first term on the right hand side is negative (first assumption), the second term is zero
(second assumption), and the third and fourth terms are quadratic in ∆ and can be ignored for ∆ < ε
when ε is small enough.

Based on the above observation, Algorithm 1 minimizes DKL(q̃||p̃) by iteratively computing up-
dated densities q̃ + ∆ that satisfy the conditions from Proposition 2, hence DKL(q̃||p̃) > DKL(q̃ +
∆||p̃). This iteration is guaranteed to converge to a global minimum, because DKL(q̃||p̃) is convex
as a function of q̃.

At the beginning of each iteration in Algorithm 1, by definition q is the density obtained by sampling
our generator x = g(z;φ), z ∼ N (0, 1) (n-dimensional standard normal distribution), and the
generator is a neural network with parameters φ. In addition, q̃ = q ∗ k is defined as the density
obtained by sampling x = g(z;φ) + η, z ∼ N (0, 1), η ∼ N (0, σ2

η). Finally, the DDE sq̃ correctly
estimates q̃, that is log q̃(x) = sq̃(x) + C.

In each iteration, we determine an updated generator that satisfies the conditions from Proposition 2.
We achieve this by computing a gradient descent step of Ex=g(z;φ)+η

[
sq̃(x)− log p̃(x)

]
+ C with

respect to the generator parameters φ. The constant C can be ignored since we only need the
gradient. A small enough learning rate guarantees that condition one in Proposition 2 is satisfied.
The second condition is satisfied because we update the distribution by updating its generator, and
the third condition is also satisfied under a small enough learning rate (and assuming the generator
network is Lipschitz continuous). After updating the generator, we update the DDE to correctly
estimate the new density produced by the updated generator.

Note that it is crucial in the first step in the iteration in Algorithm 1 that we sample using g(z;φ) +η
and not g(z;φ). This allows us, in the second step, to use the updated g(z;φ) to train a DDE sq̃

that exactly (up to a constant) matches the density generated by g(z;φ) + η. Even though in this
approach we only minimize the KL divergence with the “noisy” input density p̃, the sampler g(z;φ)
still converges to a sampler of the underlying density p in theory (Section 4.1).
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Algorithm 1: Training steps for the generator.
input : Pre-trained optimal DDE on input data log p̃(x), learning rate δ
initialize generator parameters φ
initialize DDE sq̃ = arg mins LDDE(s; q, ση) with q ∼ g(z;φ), z ∼ N (0, 1)
while not converged do

φ = φ+ δ∇φEx=g(z;φ)+η
[
sq̃(x)− log p̃(x)

]
, with z ∼ N (0, 1), η ∼ N (0, σ2

η)
// q ∼ g(z;φ) now indicates the updated density using the updated φ
sq̃ = arg mins LDDE(s; q, ση)
// sq̃ is now the density (up to a constant) of g(z;φ) + η

4.1 EXACT SAMPLING

Our objective involves reducing the KL divergence between the Gaussian smoothed generated den-
sity q̃ and the data density p̃. This also implies that the density q obtained from sampling the
generator g(z;φ) is identical with the data density p, without Gaussian smoothing, which can be
expressed as the following corollary:
Corollary 2. Let p̃ and q̃ be related to densities p and q, respectively, via convolutions using a
Gaussian k, that is p̃ = p ∗ k, q̃ = q ∗ k. Then the smoothed densities p̃ and q̃ are the same if and
only if the data density p and the generated density q are the same.

This follows immediately from the convolution theorem and the fact that the Fourier transform of
Gaussian functions is non-zero everywhere, that is, Gaussian blur is invertible.

5 EXPERIMENTS

5.1 VISUAL COMPARISONS USING 2D TOY DATASETS

Similar to prior work, we perform experiments for 2D density estimation and visualization over three
datasets (Grathwohl et al., 2018). Additionally, we use these datasets to learn generative models. For
our DDE networks, we used multi-layer perceptrons with residual connections. All networks have
25 layers, each with 32 channels and Softplus activation. Trainings have 2048 samples per iteration.
As shown in Figure 1, the DDEs can estimate the density accurately and capture the underlying
complexities of each density. Due to inherent KDE estimation, our method induces a small blur
to the distribution to the density compared to BNAF. However, our DDE can estimate the density
coherently through the data domain, whereas BNAF produces noisy approximation across the data
manifold, where the estimated density is sometimes too small or too large. To demonstrate, we show
DDEs trained with both small and large noise standard deviations ση = 0.05, 0.2.

Generator training and sampling is demonstrated in Figure 2. The sharp edges of the checkerboard
samples implies that the generator learns to sample from the target density although the DDEs
estimate noisy densities. The generator update requires DDE networks to be optimal at each gradient
step. For faster convergence, we take 10 DDE gradient descent steps for each generator update. In
Figure 3 we illustrate the influence of the noise level ση on the generated densities. This shows that
in practice larger ση do not lead to accurate sampling, since inverting the Gaussian blur becomes
ill-posed. We summarize the training parameters in the table in Figure 2.

5.2 HIGH DIMENSIONAL DATA

To experiment with higher dimensional signals, we tested our generative training using the
MNIST(LeCun, 1998) and Fashion-MNIST (Xiao et al., 2017) datasets. We used the Dense Block
architecture (Huang et al., 2017) with 15 fully-connected layers and 256 additional neurons each.
The last layer of the network maps all its inputs to one value, which we train to approximate the
density of input images. For the generator network, we used Dense Blocks with 15 fully con-
nected layers and 256 additional neurons each. The last layer maps all outputs to the image size of
28 × 28 = 784. For the input of the generator, we used noise with a 16 dimensional standard nor-
mal distribtion. In addition, the DDEs were trained with noise standard deviation ση = 0.5, where
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Figure 1: Density estimation on toy 2D data. We show that we can accurately capture these densities
with few visual artifacts. The size of the 2D domain shown is 4× 4.

Fig. ση Dataset Lrng. rate Its.

1
0.05, 0.2 Checkerbrd.

Two spirals 0.001 15k

0.2 8 Gaussians 0.005 15k
0.05 8 Gaussians 0.0005 23k

2,3
0.2 Checkerbrd. 0.001

1/2 every
1000 it.

200k
0.2 Two spirals 250k
0.1 8 Gaussians 250k

Eight Gaussians Checkerboard

Figure 2: Training parameters for 2D datasets (left). Generating samples from 2D densities (right).

pixel values were scaled to range between 0 and 1. Figures 4 and 5 show the results for these two
datasets. As we show, the generator is able to replicate the underlying distribution for both datasets.
Finally, we show results with latent-sapce interpolation for the generator input, and we can see that
the network learns an intuitive and interpretable mapping from noise to samples of the distribution.

5.3 REAL DATA DENSITY ESTIMATION

We follow the experiments in BNAF (De Cao et al., 2019) on real data measurements. This includes
POWER, GAS, HEPMASS, and MINIBOON datasets (Asuncion & Newman, 2007). Since DDEs
can estimate densities up to their normalizing constant, we approximate the normalizing constant
using Monte Carlo estimation for these experiments. We show average log-likelihoods over test
sets and compare to state-of-the-art methods for normalized density estimation in Table 1. We have
omitted the results of the BSDS300 dataset (Martin et al., 2001), since we could not estimate the
normalizing constant reliably (due to high dimensionality of the data).

To train our DDEs, we used Multi-Layer Perceptrons (MLP) with residual connections between each
layer. All networks have 25 layers, with 64 channels and Softplus activations, except for GAS and
HEPMASS, which employ 128 channels. We trained the models for 400 epochs using learning rate
of 2.5e− 4 with linear decay with scale of 2 every 100 epochs. Similarly, we started the training by
using noise standard deviation ση = 0.1 and decreased it linearly with the scale of 1.1 up to a dataset
specific value, which we set to 5e − 2 for POWER, 4e − 2 for GAS, 2e − 2 for HEPMASS, and
1.5e−1 for MINIBOON. In order to estimate the normalizing constant, we use importance sampling
using a Gaussian distribution as the base density. For all datasets we used the mean and variance of
the DDE input distribution for the base model. We average 5 instances of estimation using 51200
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Figure 3: The influence of ση on sample generation. We observe that the smoothed sampled density
is close to the training density. However, for large ση , the sampled density without smoothing can
be quite different from the true density because inversion of Gaussian smoothing becomes ill-posed.

(a) Generated samples (b) Real samples

(c) Interpolated samples using our model

Figure 4: MNIST samples using our generator (a) and from the real dataset (b). Latent space
interpolation using our generator (c).

samples (we used 10 times more samples for GAS) to estimate the normalizing constant, and we
indicate the variance of this average in Table 1.

5.4 DISCUSSION AND LIMITATIONS

Our approach relies on a key hyperparameter ση that determines the training noise for the DDE,
which we currently set manually. In the future we will investigate thorough strategies to determine
this parameter in a data-dependent manner. An other challenge is to obtain high-quality results
using extremely high-dimensional data such as high-resolution images. In practice, one strategy is
to combine our approach with latent embedding learning methods (Bojanowski et al., 2018), in a
similar fashion as proposed by Hoshen et al. (2019). Finally, our framework uses three networks
to learn a generator based on input samples (a DDE for the samples, the generator, and a DDE
for the generator). Our generator training approach, however, is independent of the type of density
estimator, and techniques other than DDEs could also be used in this step.
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(a) Generated samples (b) Real samples

(c) Interpolated samples using our model

Figure 5: Fashion-MNIST results using our generator training algorithm (a). Samples from the real
dataset (b). Interpolated samples using our Generator (c).

Model POWER
d = 6, N ≈ 2M

GAS
d = 8, N ≈ 1M

HEPMASS
d = 21, N ≈ 500K

MINIBOON
d = 43, N ≈ 36K

RealNVP 0.17 ±.01 8.33 ±.14 −18.71 ±.02 −13.55 ±.49

Glow 0.17 ±.01 8.15 ±.40 −18.92 ±.08 −11.35 ±.07

MADE MoG 0.40 ±.01 8.47 ±.02 −15.15 ±.02 −12.27 ±.47

MAF-affine 0.24 ±.01 10.08 ±.02 −17.73 ±.02 −12.24 ±.45

MAF-affine MoG 0.30 ±.01 9.59 ±.02 −17.39 ±.02 −11.68 ±.44

FFJORD 0.46 ±.01 8.59 ±.12 −14.92 ±.08 −10.43 ±.04

NAF-DDSF 0.62 ±.01 11.96 ±.33 −15.09 ±.40 −8.86 ±.15

TAN 0.60 ±.01 12.06 ±.02 −13.78 ±.02 −11.01 ±.48

BNAF 0.61 ±.01 12.06 ±.09 −14.71 ±.38 −8.95 ±.07

Ours 0.97 ±.18 9.73 ±1.14 -11.3 ±.16 -6.94 ±1.81

Table 1: Average log-likelihood comparison in four datasets (Asuncion & Newman, 2007). Input
size and dimensionality is shown below each dataset name. Best performances are shown in bold.

6 CONCLUSIONS

In conclusion, we presented a novel approach to learn generative models using a novel density esti-
mator, called the denoising density estimator (DDE). We developed simple training algorithms and
our theoretical analysis proves their convergence to a unique optimum. Our technique is derived
from a reformulation of denoising autoencoders, and does not require specific neural network archi-
tectures, ODE integration, nor adversarial training. We achieve state of the art results on a standard
log-likelihood evaluation benchmark compared to recent techniques based on normalizing flows,
continuous flows, and autoregressive models.
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