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ABSTRACT

Generating point clouds, e.g., molecular structures, in arbitrary rotations, transla-
tions, and enumerations remains a challenging task. Meanwhile, neural networks
utilizing symmetry invariant layers have been shown to be able to optimize their
training objective in a data-efficient way. In this spirit, we present an architecture
which allows to produce valid Euclidean distance matrices, which by construc-
tion are already invariant under rotation and translation of the described object.
Motivated by the goal to generate molecular structures in Cartesian space, we use
this architecture to construct a Wasserstein GAN utilizing a permutation invari-
ant critic network. This makes it possible to generate molecular structures in a
one-shot fashion by producing Euclidean distance matrices which have a three-
dimensional embedding.

1 INTRODUCTION

Recently there has been great interest in deep learning based on graph structures (Defferrard et al.,
2016; Kipf & Welling, 2016; Gilmer et al., 2017) and point clouds (Qi et al., 2017; Li et al., 2018b;
Yang et al., 2019). A prominent application example is that of molecules, for which both inference
based on the chemical compound, i.e., the molecular graph structure (Kearnes et al., 2016; Janet &
Kulik, 2017; Winter et al., 2019a), and based on the geometry, i.e. the positions of atoms in 3D
space (Behler & Parrinello, 2007; Rupp et al., 2012; Schütt et al., 2017b; Smith et al., 2017) are
active areas of research.

A particularly interesting branch of machine learning for molecules is the reverse problem of gen-
erating molecular structures, as it opens the door for designing molecules, e.g., obtain new materi-
als (Sanchez-Lengeling & Aspuru-Guzik, 2018; Barnes et al., 2018; Elton et al., 2018; Li et al.,
2018a), design or discover pharmacological molecules such as inhibitors or antibodies (Popova
et al., 2018; Griffen et al., 2018), optimize biotechnological processes (Guimaraes et al., 2017).
While this area of research has exploded in the past few years, the vast body of work has been done
on the generation of new molecular compounds, i.e. the search for new molecular graphs, based
on string encodings of that graph structure or other representations (Gómez-Bombarelli et al., 2018;
Winter et al., 2019b). On the other hand, exploring the geometry space of the individual chemical
compound is equally important, as the molecular geometries and their probabilities determine all
equilibrium properties, such as binding affinity, solubility etc. Sampling different geometric struc-
tures is, however, still largely left to molecular dynamics (MD) simulation that suffers from the rare
event sampling problem, although recently machine learning has been used to speed up MD simu-
lation (Ribeiro et al., 2018; Bonati et al., 2019; Zhang et al., 2019; Plattner et al., 2017; Doerr &
Fabritiis, 2014) or to perform sampling of the equilibrium distribution directly, without MD (Noé
et al., 2019). All of these techniques only sample one single chemical compound in geometry space.

Here we explore—to our best knowledge for the first time in depth—the simultaneous generation
of chemical compounds and geometries. The only related work we are aware of (Gebauer et al.,
2018; 2019) demonstrates the generation of chemical compounds, placing atom by atom with an
autoregressive model. It was shown that the model can recover compounds contained in the QM9
database of small molecules (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) when trained on a
subset, but different configurations of the same molecule were not analyzed.

While autoregressive models seem to work well in the case of small (< 9 heavy atoms) molecules
like the ones in the QM9 database, they can be tricky for larger structures as the probability to
completely form complex structures, such as rings, decays with the number of involved steps.

1



Under review as a conference paper at ICLR 2020

To avoid this limitation, in our method we investigate in one shot models for point clouds which
have no absolute orientation, i.e., the point cloud structure is considered to be the same independent
of its rotation, translation, and of the permutation of points.

A natural representation, which is independent of rotation and translation is the Euclidean distance
matrix, which is the matrix of all squared pairwise Euclidean distances. Furthermore, Euclidean
distance matrices are useful determinants of valid molecular structures.

While a symmetric and non-negative matrix with a zero diagonal can easily be parameterized by,
e.g., a neural network, it is not immediately clear that this matrix indeed belongs to a set of n points
in Euclidean space and even then, that this space has the right dimension.

Here we develop a new method to parameterize and generate valid Euclidean distance matrices
without placing coordinates directly, hereby taking away a lot of the ambiguity.

We furthermore propose a Wasserstein GAN architecture for learning distributions of pointclouds,
e.g., molecular structures invariant to rotation, translation, and permutation. To this end the data
distribution as well as the generator distribution are represented in terms of Euclidean distance ma-
trices.

In summary, our main contributions are as follows:

• We introduce a new method of training neural networks so that their output are Euclidean
distance matrices with a predefined embedding dimension.

• We propose a GAN architecture, which can learn distributions of Euclidean distance ma-
trices, while treating the structures described by the distance matrices as set, i.e., invariant
under their permutations.

• We apply the proposed architecture to a set of C7O2H10 isomers contained in the QM9
database and show that it can recover parts of the training set as well as generalize out of it.

2 GENERATING EUCLIDEAN DISTANCE MATRICES

We describe a way to generate Euclidean distance matrices D ∈ EDMn ⊂ Rn×n without placing
coordinates in Cartesian space. This means in particular that the parameterized output is invariant to
translation and rotation.

A matrix D is in EDMn by definition if there exist points x1, . . . ,xn ∈ Rd such that Dij =
‖xi − xj‖22 for all i, j = 1, . . . , n. Such a matrix D defines a structure in Euclidean space Rd up to
a combination of translation, rotation, and mirroring. The smallest integer d > 0 for which a set of
n points in Rd exists that reproduces the matrix D is called the embedding dimension.

The general idea of the generation process is to produce a hollow (i.e., zeros on the diagonal) sym-
metric matrix D̃ and then weakly enforce D̃ ∈ EDMn through a term in the loss. It can be shown
that

D̃ ∈ EDMn ⇔ −1

2
JD̃J positive semi-definite, (1)

where J = I − 1
n11

> and 1 = (1, . . . , 1)> ∈ Rn (Schoenberg, 1935; Gower, 1982). However
trying to use this relationship directly in the context of deep learning by parameterizing the matrix
D̃ poses a problem, as the set of EDMs forms a cone (Dattorro (2010)) and not a vector space, which
is the underlying assumption of the standard optimizers in common deep learning frameworks. One
can either turn to optimization techniques on Riemannian manifolds (Zhang et al. (2016)) or find
a reparameterization in which the network’s output behaves like a vector space and that can be
transformed into an EDM.

Here, we leverage a connection between EDMs and positive semi-definite matrices Alfakih et al.
(1999); Krislock & Wolkowicz (2012) in order to parameterize the problem in a space that behaves
like a vector space. In particular, for D ∈ EDMn by definition there exist points x1, . . . ,xn ∈ Rd
generating D. The EDM D has a corresponding Gram matrix M ∈ Rn×n by the relationship

Mij = 〈yi,yj〉2 =
1

2
(D1j +Di1 −Dij) (2)
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with yk = xk − x1, k = 1, . . . , n and vice versa

Dij =Mii +Mjj − 2Mij . (3)

The matrix M furthermore has a specific structure

M =

(
0 0>

0 L

)
(4)

with L ∈ Rn−1×n−1 and is symmetric and positive semi-definite. It therefore admits an eigen-
value decomposition M = USU> = (U

√
S)(U

√
S)> = Y Y > which, assuming that S =

diag(λ1, . . . , λn) with λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, reveals a composition of coordinates Y in
the first d rows where d is the embedding dimension and the number of non-zero eigenvalues of M
associated to D.

Therefore, the embedding dimension d of D is given by the rank of M or equivalently the number
of positive eigenvalues. In principle it would be sufficient to parameterize a symmetric positive
semi-definite matrix L ∈ Rn−1×n−1, as it then automatically is also a Gram matrix for some set
of vectors. However, also the set of symmetric positive semi-definite matrices behaves like a cone,
which precludes the use of standard optimization techniques.

Instead, we propose to parameterize an arbitrary symmetric matrix L̃ ∈ Rn−1×n−1, as the set of
symmetric matrices behaves like a vector space. This symmetric matrix can be transformed into a
symmetric positive semi-definite matrix

L = g(L̃) = g

U
λ1

. . .
λn−1

U>

 = U

g(λ1)
. . .

g(λn−1)

U> (5)

by any non-negative function g(·) and then used to reconstruct D via (3) and (4).

This approach is shown in Algorithm 1 for the context of neural networks and the particular choice
of g = sp, the softplus activation function. A symmetric matrix L̃ is parameterized and transformed
into a Gram matrix M and a matrix D. For M there is a loss in place that drives it towards a specific
rank and for D we introduce a penalty on negative eigenvalues of (1).

Algorithm 1 Algorithm to train a generative neural network to produce Euclidean distance matrices,
where Nz is the dimension of the input vector, m the batch size, and n the number of points to place
relative to one another.

1: Sample z ∼ N (0, 1)m×Nz

2: Generate X = G(z) ∈ Rm×(n−1)×(n−1)

3: for i = 1 to m do
4: Symmetrize L̃← 1

2

(
Xi +X>i

)
5: Make positive semi-definite L← sp(L̃)
6: Assemble M =M(L) with (4)
7: Assemble D = D(M) with (3)
8: Compute eigenvalues µ1, . . . , µn of (1) for D
9: L

(i)
edm ←

∑n
k=1 ReLU(−µk)2

10: Compute eigenvalues λ1, . . . , λn of M such that λ1 ≥ λ2 ≥ . . . λn
11: L

(i)
rank ←

∑n
k=d+1 λ

2
k

12: end for
13: L← η1

1
m

∑m
i=1 L

(i)
edm + η2

1
m

∑m
i=1 L

(i)
rank

14: Optimize weights of G with respect to∇L.

3 EUCLIDEAN DISTANCE MATRIX WGAN

We consider the class of generative adversarial networks (Goodfellow et al. (2014)) (GANs) and
in particular Wasserstein GANs (WGANs), i.e., the ones that minimize the Wasserstein-1 distance
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in contrast to the original formulation, where the former can be related to minimizing the Jensen-
Shannon divergence Arjovsky et al. (2017). WGANs consist of two networks, one generator network
G(·), which transforms a prior distribution into a target distribution Pg which should match the data’s
underlying distribution Pr as closely as possible. The other network is a so-called critic network
C(·) ∈ R, which assigns scalar values to individual samples from either distribution. The overall
optimization objective reads

min
G

max
C∈D

Ex∼Pr
[C(x)]− Ex∼Pg

[C(x)] , (6)

where D is the set of all Lipschitz continuous functions with a Lipschitz constant L ≤ 1. We
enforce the Lipschitz constant using a gradient penalty (WGAN-GP) introduced in Gulrajani et al.
(2017). One can observe that the maximum in Eq. (6) is attained when as large as possible values
are assigned to samples from Pr and as small as possible values to samples from Pg . Meanwhile
the minimum over the generator network G tries to minimize that difference, which turns out to be
exactly the Wasserstein-1 distance according to the Kantorovich–Rubinstein duality (Villani (2008)).
Since the Wasserstein-1 distance is a proper metric of distributions, the generated distribution Pg is
exactly the data distribution Pr if and only if the maximum in Eq. (6) is zero. The networks G and
C are trained in an alternating fashion.

We choose for the critic network the message-passing neural network SchNet (Schütt et al., 2017c;a;
2018) CSchNet(·), which was originally designed to compute energies of molecules.

It operates on the pairwise distances (
√
Dij)

n
i,j=1, D ∈ EDMn in a structure and the atom types

T n. If there is no atom type information present, these can be just constant vectors that initially
carry no information. These atom types are then embedded into a state vector and transformed with
variable sharing across all atoms. Furthermore there are layers in which continuous convolutions are
performed based on the relative distances between the atoms. In a physical sense this corresponds
to learning energy contributions of, e.g., bonds and angles. Finally all states are mapped to a scalar
and then pooled in a sum.

Due to the pooling and the use of only relative distances but never absolute coordinates, the output
is invariant under translation, rotation, and permutation.

The generator network G employs the construction of Section 2 to produce approximately EDMs
with a fixed embedding dimension. Therefore this architecture is able to learn distributions of Eu-
clidean distance matrices.

4 APPLICATION AND RESULTS

The WGAN-GP introduced in Sec. 3 is applied to a subset of the QM9 dataset consisting of 6095
isomers with the chemical formula C7O2H10. To this end the distribution not only consists of the
Euclidean distance matrices describing the molecular structure but also of the atom types. The
generator produces an additional type vector in a multi-task fashion which is checked against a
constant type reference with a cross-entropy loss. Furthermore the prior of a minimal distance
between atoms is applied, i.e., we have a loss penalizing distances that are too small. Altogether we
optimize the losses

Lcritic = E(D,t)∼Pg
[C(D, t)]− E(D,t)∼Pr

[C(D, t)] (original WGAN loss) (7)

+ λLGP (gradient penalty of WGAN-GP) (8)

+ εdriftE(D,t)∼Pr

[
C(D, t)2

]
(drift term Karras et al. (2017)) (9)

Lgen = −E(D,t)∼Pg
[C(D, t)] (original WGAN loss) (10)

+−E(D,t)∼Pg
[H(t, tref)] (cross entropy for types) (11)

+ k · E(D,t)∼Pg

1
2

∑
i 6=j

(
√
Dij − r)2

 (harmonic repulsion) (12)

+ Ledm (for EDMs, see Alg. 1) (13)

with C(·) being a SchNet critic, tref a reference type order, λ = 10, εdrift = 10−3, k = 10, and r
being the minimal pairwise distance achieved in the considered QM9 subset. Although in principle
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Figure 1: Distribution of pairwise distances between different kinds of atom type after training a
Euclidean distance matrix WGAN-GP (Sec. 3) on the C7O2H10 isomer subset of QM9.
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Figure 2: Number of unique molecular structures in terms of their topology for roughly 4000 valid
generated samples and whether they could be found in the training set (blue), the test set (orange),
or had a new topology altogether (green).

the cross entropy loss (11) is not required we found in our experiments that it qualitatively helps
convergence. The generator network G(·) uses a combination of deconvolution and dense layers.

The function g(·) ensuring positive semi-definiteness (5) was chosen to be the softplus activation
g = sp for the largest three eigenvalues and we explicitly set all other eigenvalues to zero. This
leads to a Gram matrix with exactly the right rank and the constraint does not need to be weakly
enforced anymore in the generator’s loss.

Prior to training the data was split into 50% training and 50% test data. After training on the training
data set we evaluate the distribution of pairwise distances between different types of atoms, see
Fig. 1. The overall shape of the distributions is picked up and only the distance between pairs of
oxygen atoms are not completely correctly distributed.

After generation we perform a computationally cheap validity test by inferring bonds and bond
orders with Open Babel O’Boyle et al. (2011). On the inferred bonding graph we check for con-
nectivity and valency, i.e., if for each atom the number of inferred bonds add up to its respective
valency. This leaves us with roughly 7.5% of the generated samples.

For the valid samples we infer canonical SMILES representations which are a fingerprint of the
molecule’s topology in order to determine how many different molecule types can be produced using
the trained generator. Fig. 2 shows the cumulative number of unique SMILES fingerprints when
producing roughly 4000 valid samples. It can be observed that the network is able to generalize out
of the training set and is able to generate not only topologies which can be found in the test set but
also entirely new ones. Nevertheless, the current performance with respect to the number of found
topologies is not optimal and can likely be improved by a better hyperparameter selection.
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Figure 3: Unique generated conformations up to a maximal heavy atom distance cutoff of dcutoff =
0.6 Å after assignment and superposition. We distinguish the categories of known conformations
in the considered subset of the QM9 database (blue), new conformations for contained molecular
structures (orange), and distinct conformations for molecular structures that are not contained.

While SMILES can be used to get an idea about the different bonding structures that were generated,
it contains no information about different possible conformations in these bonding structures. To
analyze the number of unique conformations that were generated, we compared each generated
structure against all structures in the considered QM9 subset. Since the architecture is designed in
such a way that it is permutation invariant, i.e., applying the critic onto a matrix D = (Di,j)

n
i,j=1

and Dσ = (Dσ(i),σ(j))
n
i,j=1 for some permutation σ yields the same result, one first has to find the

best possible assignment of atoms.

To this end, we apply the Hungarian algorithm Kuhn (1955) onto a cost matrixC ∈ Rn×n for EDMs
D1, D2 and type vectors t1, t2 ∈ Rn with

Ci,j =

{∣∣ 1
n

∑n
k=1(D1)i,k − 1

n

∑n
k=1(D2)j,k

∣∣ , if (t1)i = (t2)j ,
∞ , otherwise.

(14)

Intuitively this means that the cost of assigning atom i in the first structure to atom j in the second
structure depends on whether their atom types match, in which case we compare the mean distance
from the i-th atom to all other atoms in its structure to the same quantity for the j-th atom in the
second structure. If the atom types do not match, we assign a very high number so that this particular
mapping is not considered. After we have found an assignment between the atoms, we superpose
the structures using functionality from the software package MDTraj (McGibbon et al. (2015)) and
evaluate the maximal atomic distance between all heavy atoms (i.e., carbons and oxygens) after
alignment. The cutoff at which we consider a structure to be a distinct conformation is a maximal
atomic distance between heavy atoms of more than dcutoff = 0.6 Å, i.e., more than half a carbon–
carbon bond length.

The results of this analysis are depicted in Fig. 3. One can observe that although the reported
number of unique molecular structures via SMILES is rather low, under our similarity criterion a
lot of different valid conformations are discovered; in particular also some new conformations of
structures that were already contained in the QM9 database.

Finally, we also check for the approximate total energies of the generated molecules compared to
the database’s. To this end, we use the semi-empirical method provided by the software package
MOPAC Stewart (1990) to relax all structures in the considered QM9 subset as well as all valid gen-
erated valid structures, see Fig. 4. It can be observed that after relaxation all energies are contained
within the same range of roughly −1586 eV to −1581 eV.

In Figure 5 we show examples of generated molecules in the top row (A–D) and the closest re-
spective matches in the QM9 database in the bottom row (A’–D’). The closeness of a match was
determined by the maximal atomic distance after assignment of atom identities and superposition.
Configurations A and B could be matched with a maximal atomic distance of less than dcutoff .
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Figure 4: Total energies of structures that were relaxed with the semi-empirical method implemented
by MOPAC, in particular for molecules contained in the considered QM9 subset (blue), structures
that correspond to new conformations for contained molecules (orange), and unique conformations
that belong to new molecules.
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Figure 5: Sampled structures with the Euclidean distance matrix WGAN. Top row A to D are gener-
ated samples, bottom row A’ to D’ are closest matches from the QM9 database. Generated molecules
A and B could be matched with A’ and B’ up to a maximum atom distance of 0.6 Å. Generated
molecules C and D are new molecular structures with their closest matches C’ and D’, respectively.
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5 CONCLUSION AND DISCUSSION

We have developed a way to parameterize the output of a neural network so that it produces valid
Euclidean distance matrices with a predefined embedding dimension without placing coordinates
in Cartesian space directly. This enables us to be naturally invariant under rotation and translation
of the described object. Given a network that is able to produce valid Euclidean distance matrices
we introduce a Wasserstein GAN that can learn to one-shot generate distributions of point clouds
irrespective of their orientation, translation, or permutation. The permutation invariance is achieved
by incorporating the message passing neural network SchNet as critic.

We applied the introduced WGAN to the C7O2H10 isomer subset of the QM9 molecules database
and could generalize out of the training set as well as achieve a good representation of the distribution
of pairwise distances in this set of molecules.

In future work we want to improve on the performance of the network on the isomer subset as well
as extend it to molecules of varying size and chemical composition. We expect the ideas of this work
to be applicable for, e.g., generating, transforming, coarse graining, or upsampling point clouds.
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