
Under review as a conference paper at ICLR 2020

SELF-SUPERVISED GAN COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning’s success has led to larger and larger models to handle more and
more complex tasks; trained models can contain millions of parameters. These
large models are compute- and memory-intensive, which makes it a challenge to
deploy them with minimized latency, throughput, and storage requirements. Some
model compression methods have been successfully applied on image classifica-
tion and detection or language models, but there has been very little work com-
pressing generative adversarial networks (GANs) performing complex tasks. In
this paper, we show that a standard model compression technique, weight prun-
ing, cannot be applied to GANs using existing methods. We then develop a self-
supervised compression technique which uses the trained discriminator to super-
vise the training of a compressed generator. We show that this framework has
a compelling performance to high degrees of sparsity, generalizes well to new
tasks and models, and enables meaningful comparisons between different pruning
granularities.

1 INTRODUCTION

Deep Neural Networks (DNNs) have proved successful in various tasks like computer vision, natu-
ral language processing, recommendation systems, and autonomous driving. Modern networks are
comprised of millions of parameters, requiring significant storage and computational effort. Though
accelerators such as GPUs make realtime performance more accessible, compressing networks for
faster inference and simpler deployment is an active area of research. Compression techniques have
been applied to many networks, reducing memory requirements and improving their performance.
Though these approaches do not always harm accuracy, aggressive compression can adversely af-
fect the behavior of the network. Distillation (Hinton et al., 2015) can improve the accuracy of a
compressed network by using information from the original, uncompressed network.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a class of DNN that con-
sist of two sub-networks: a generative model and a discriminative model. Their training process
aims to achieve a Nash Equilibrium between these two sub-models. GANs have been used in semi-
supervised and unsupervised learning areas, such as fake dataset synthesis (Radford et al., 2016;
Brock et al., 2019), style transfer (Zhu et al., 2017b; Azadi et al., 2018), and image-to-image trans-
lation (Zhu et al., 2017a; Choi et al., 2018). As with networks used in other tasks, GANs have
millions of parameters and nontrivial computational requirements.

In this work, we explore compressing the generative model of GANs for more efficient deploy-
ment. We show that applying standard pruning techniques, with and without distillation, can cause
the generator’s behavior to no longer achieve the network’s goal. Similarly, past work targeted at
compressing GANs for simple image synthesis fall short when they are applied to large tasks. In
some cases, this result is masked by loss curves that look identical to the original training. By mod-
ifying the loss function with a novel combination of the pre-trained discriminator and the original
and compressed generators, we can overcome this behavioral degradation and achieve compelling
compression rates with little change in the quality of the compressed generator’s ouput. We apply
our technique to several networks and tasks to show generality. Finally, we study the behavior of
compressed generators when pruned with different amounts and types of sparsity, finding that filter
pruning, a technique commonly used for accelerating image classification networks, is not trivially
applicable to GANs.

Our main contributions are:

1

Under review as a conference paper at ICLR 2020

• We illustrate that and explain why pruning the generator of a GAN with existing methods
is unsatisfactory for complex tasks. (Section 3)
• We propose self-supervised compression for the generator in a GAN (Section 4)
• We show that our technique generalizes to several networks and tasks (Section 5)
• We show and analyze qualitative differences in pruning ratio and granularities. (Section 6)

2 RELATED RESEARCH

A common method of DNN compression is network pruning (Han et al., 2015): setting the small
weights of a trained network to zero and fine-tuning the remaining weights to recover accuracy. Zhu
& Gupta (2018) proposed a gradual pruning technique (AGP) to compress the model during the
initial training process. Wen et al. (2016) proposed a structured sparsity learning method that uses
group regularization to force weights towards zero, leading to pruning groups of weights together.
Li et al. (2017) pruned entire filters and their connecting feature maps from models, allowing the
network to run with standard dense software libraries. Though it was initially applied to image clas-
sification networks, network pruning has been extended to natural language processing tasks (See
et al., 2016; Narang et al., 2017) and to recurrent neural networks (RNNs) of all types - vanilla
RNNs, GRUs (Cho et al., 2014), and LSTMs (Hochreiter & Schmidhuber, 1997). As with classifi-
cation networks, structured sparsity within recurrent units has been exploited (Wen et al., 2018).

A complementary method of network compression is quantization. Sharing weight values among a
collection of similar weights by hashing (Chen et al., 2015) or clustering (Han et al., 2016) can save
storage and bandwidth at runtime. Changing fundamental data types adds the ability to accelerate
the arithmetic operations, both in training (Micikevicius et al., 2018) and inference regimes (Jain
et al., 2019).

Several techniques have been devised to combat lost accuracy due to compression, since there is
always the chance that the behavior of the network may change in undesirable ways when the net-
work is compressed. Using GANs to generate unique training data (Liu et al., 2018b) and extracting
knowledge from an uncompressed network, known as distillation (Hinton et al., 2015), can help keep
accuracy high. Since the pruning process involves many hyperparameters, Lin et al. (2019) use a
GAN to guide pruning, and Wang et al. (2019a) structure compression as a reinforcement learning
problem; both remove some of the burden from the user.

3 EXISTING TECHNIQUES FAIL TO PRUNE A COMPLEX TASK

Though there are two networks in a single GAN, the main workload at deployment is usually from
the generative model, or generator. For example, in image synthesis and style transfer tasks, the final
output images are created solely by the generator. The discriminative model (discriminator) is vital
in training, but it is abandoned afterward for many tasks. So, when we try to apply state-of-the-art
compression methods to GANs, we focus on the generator for efficient deployment. As we will see,
the generative performance of the compressed generators is quite poor for the selected image-to-
image translation task. We look at two broad categories of baseline approaches: standard pruning
techniques that have been applied to other network architectures, and techniques that were devised
to compress the generator of a GAN performing image synthesis. We compare to the dense baseline
[a], our technique [b], as well as a small, dense network with the same number of parameters [c].
An overview of the techniques, including if they include the dense generator and a sparse or dense
discriminator, how the sparse generator was initialized, if the discriminator is frozen, which loss
terms are included (see Section 4 for an explanation of each term), and qualitative and quantitative
results for the entire data set are shown in Table 1.

Standard Pruning Techniques. To motivate GAN-specific compression methods, we try varia-
tions of two state-of-the-art pruning methods: manually pruning and fine tuning (Han et al., 2015) a
trained dense model [d], and AGP (Zhu & Gupta, 2018) from scratch [e] and during fine-tuning [f].
We also include distillation (Hinton et al., 2015) to improve the performance of the pruned network
with manual pruning [g] and AGP fine-tuning [h]. Distillation is typically optional for other network
types, since it is possible to get decent accuracy with moderate pruning in isolation. For very ag-
gressive compression or challenging tasks, distillation aims to extract knowledge for the compressed

2

Under review as a conference paper at ICLR 2020

(student) network from original (teacher) network’s behavior. We also fix the discriminator of [g] to
see if the discriminator was being weakened by the compressed generator [i].

Targeted GAN Compression. There has been some work in compressing GANs with methods
other than pruning, and only one technique applied to an image-to-image translation task. We first
examine two approaches similar to ours. Adversarial training (Wang et al., 2018) [j] posits that
during distillation of a classification network, the student network can be thought of as a generative
model attempting to produce features similar to that of the teacher model. So, a discriminator was
trained alongside the student network, trying to distinguish between the student and the teacher. One
could apply this technique to compress the generator of a GAN, but we find that its key shortcoming
is that it trains a discriminator from scratch. Similarly, distillation has been used to compress GANs
in Aguinaldo et al. (2019) [k], but again, the “teacher” discriminator was not used when teaching
the “student” generator.

Learned Intermediate Representation Training (LIT) (Koratana et al., 2019) [l] compresses StarGAN
by a factor of 1.8× by training a shallower network. Crucially, LIT does not use the pre-trained dis-
criminator in any loss function. Quantized GANs (QGAN) (Wang et al., 2019b) [m] use a training
process based on Expectation-Maximization to achieve impressive compression results on small
generative tasks with output images of 32x32 or 64x64 pixels. Liu et al. (2018a) find that maintain-
ing a balance between discriminator and generator is key: their approach is to selectively binarize
parts of both networks in the training process on the Celeb-A generative task, up to 64x64 pixels.
So, we try pruning both networks during the training process [n].

Experiments. For these experiments, we use StarGAN (Choi et al., 2018) trained with the Dis-
tiller (Zmora et al., 2018) library for the pruning. StarGAN1 extends the image-to-image translation
capability from two domains to multiple domains within a single unified model. It uses the Celeb-
Faces Attributes (CelebA) (Liu et al., 2015) as the dataset. CelebA contains 202,599 images of
celebrities’ faces, each annotated with 40 binary attributes. As in the original work, we crop the
initial images from size 178× 218 to 178× 178, then resize them to 128× 128 and randomly select
2,000 images as the test dataset and use remaining images for training. The aim of StarGAN is facial
attribute translation: given some image of a face, it generates new images with five domain attributes
changed: 3 different hair colors (black, blond, brown), different gender (male/female), and different
age (young/old). Our target sparsity is 50% for each approach.

We stress that we attempted to find good hyperparameters when using the existing techniques, but
standard approaches like reducing the learning rate for fine-tuning (Han et al., 2015), etc., were
not helpful. Further, the target sparsity, 50%, is not overly aggressive, and we do not impose any
structure; other tasks readily achieve 80%-90% fine-grained sparsity with minimal accuracy impact.

The results of these trials are shown in Figure 1. Subjectively, it is easy to see that the existing
approaches (1c through 1n) produce inferior results to the original, dense generator. Translated facial
images from pruning & naı̈ve fine-tuning (1d and 1e) do give unique results for each latent variable,
but the images are hardly recognizable as faces. These fine-tuning procedures, along with AGP
from scratch (1f) and distillation from intermediate representations (1l), simply did not converge.
One-shot pruning and traditional distillation (1g), adversarial learning (1j), knowledge distillation
(1k), training a “smaller, dense” half-sized network from scratch (1c) and pruning both generator
and discriminator (1n) keep facial features intact, but the image-to-image translation effects are
lost to mode collapse (see below). There are obvious mosaic textures and color distortion on the
translated images from fine-tuning & distillation (1h), without fine-tuning the original loss (1i), and
from the pruned model based on the Expectation-Maximization (E-M) algorithm (1m). However,
the translated facial images from a generator compressed with our proposed self-supervised GAN
compression method (1b) are more natural, nearly indistinguishable from the dense baseline (1a),
matching the quantitative Frechet Inception Distance (FID) scores (Heusel et al., 2017) in Table 1.
While past approaches have worked to prune some networks on other tasks (DCGAN generating
MNIST digits, see the supplementary material), we show that they do not succeed on larger image-
to-image translation tasks, while our approach works on both. Similarly, though LIT (Koratana
et al., 2019) [l] was able to achieve a compression rate of 1.8× on this task by training a shallower
network, it does not see the same success at network pruning.

1StarGAN baseline implementation: https://github.com/yunjey/StarGAN.

3

https://github.com/yunjey/StarGAN

Under review as a conference paper at ICLR 2020

Table 1: GAN compression comparison

Generator(s) Discriminator Loss Terms Results
Technique Compressed? Init Scheme Init Scheme Fixed? L-Gc L-Dc L-Go L-Do Qualitative FID Score

(a) No Compression Dense Random Dense,Random No - - Yes Yes Good 6.113
(b) Self-Supervised (ours) Dense,Sparse From Dense Dense,Pretrained No Yes Yes Yes Yes Good 6.929
(c) Small & Dense Network Dense Random Dense,Random No - - Yes Yes Mode collapse 72.821
(d) One-shot Pruning & Fine-Tuning Sparse From Dense Dense,Pretrained No Yes Yes - - Facial artifacts 24.404
(e) Gradual Pruning & Fine-Tuning Sparse From Dense Dense,Random No Yes Yes - - Facial artifacts 35.677
(f) Gradual Pruning during Training Sparse Random Dense,Random No Yes Yes - - No faces 84.941
(g) One-shot Pruning & Distillation Dense,Sparse From Dense - - Yes - Yes - Mode collapse 45.461
(h) (d) & Distillation Dense,Sparse From Dense Dense,Pretrained No Yes Yes Yes - Color artifacts 38.985
(i) (g) & Fix Original Loss Dense,Sparse From Dense Dense,Pretrained Yes Yes Yes - - Facial artifacts 15.182
(j) Adversarial Learning Dense,Sparse Random Dense,Random No Yes Yes Yes Yes Mode collapse 92.721
(k) Knowledge Distillation Dense,Sparse From Dense Dense,Random No Yes - Yes Yes Mode collapse 103.094
(l) Distill Intermediate (LIT) Dense,Sparse From Dense Dense,Pretrained Yes - - - - No faces 194.026
(m) E-M Pruning Dense,Sparse From Dense Sparse,Pretrained No Yes Yes Yes - Color artifacts 159.767
(n) G & D Both Pruning Dense,Sparse From Dense Sparse,Pretrained No Yes Yes Yes - Mode collapse 46.453

a b

c d

e f

g h

i j

k l

m n

Figure 1: Various approaches to compress StarGAN. Each group shows one input face translated
with different methods of compressing the network: a. Uncompressed, b. Self-Supervised (ours),
c. Small and dense, d. One-shot pruning and fine-tuning, e. AGP as fine-tuning, f. AGP from
scratch, g. One-shot pruning and distilling, h. AGP during distillation, i. AGP during distillation
with fixed discriminator, j. Adversarial learning, k. Knowledge distillation, l. Distillation on output
of intermediate layers, m. E-M pruning, and n. Prune both G and D models.

Discussion. It is tempting to think that the loss curves of the experiment for each technique can
tell us if the result is good or not. We found that for many of these experiments, the loss curves
correctly predicted that the final result would be poor. However, the curves for [h] and [m] look very
good - the compressed generator and discriminator losses converge at 0, just as they did for baseline
training. It is clear from the results of querying the generative models (Figures 1h and 1m), though,
that this promising convergence is a false positive. In contrast, the curves for our technique predict
good performance, and, as we prune more aggressively in Section 6, higher loss values correlate
well with worsening FID scores. (Loss curves are provided in the Appendix.)

As pruning and distillation are very effective when compressing models for image classification
tasks, why do they fail to compress this generative model? We share three potential reasons:

4

Under review as a conference paper at ICLR 2020

1. Standard pruning techniques need explicit evaluation metrics; softmax easily reflects the
probability distribution and classification accuracy. GANs are typically evaluated subjec-
tively, though some imperfect quantitative metrics have been devised.

2. GAN training is relatively unstable (Arjovsky et al., 2017; Liu et al., 2018a) and sensitive
to hyperparameters. The generator and discriminator must be well-matched, and pruning
can disrupt this fine balance.

3. The energy of the input and output of a GAN is roughly constant, but other tasks, such as
classification, produce an output (1-hot label vector) with much less entropy than the input
(three-channel color image of thousands of pixels).

Elaborating on this last point, there is more tolerance in the reduced-information space for the com-
pressed classification model to give the proper output. That is, even if the probability distribution
inferred by the original and compressed classification models are not exactly the same, the classified
labels can be the same. On the other hand, tasks like style-transfer and dataset synthesis have no
obvious energy reduction. We need to keep entropy as high as possible (Kumar et al., 2019) during
the compression process to avoid mode collapse – generating the same output for different inputs or
tasks. Attempting to train a new discriminator to make the compressed generator behave more like
the original generator (Wang et al., 2018) suffers from this issue – the new discriminator quickly
falls into a low-entropy solution and cannot escape. Not only does this preclude its use on genera-
tive tasks, but it means that the compressed network for any task must also be trained from scratch
during the distillation process, or the discriminator will never be able to learn.

4 SELF-SUPERVISED GENERATOR COMPRESSION

We seek to solve each of the problems highlighted above. Our main insight is found in the formu-
lation of GAN training: the purpose of the generative model is to generate new samples which are
very similar to the real samples, but the purpose of the discriminative model is to distinguish be-
tween real samples and those synthesized by the generator. A fully-trained discriminator is good at
spotting differences, but a well-trained generator will cause it to believe that the a generated sample
is both real and generated with a probability of 0.5.

By using this powerful discriminator that is already well-trained on the target data set, we can allow
it to stand in as a quantitative subjective judge (point 1, above) – if the discriminator can’t tell the
difference between real data samples and those produced by the compressed generator, then the
compressed generator is of the same quality as the uncompressed generator. A human no longer
needs to inspect the results to judge the quality of the compressed generator. This also addresses our
second point: by starting with a trained discriminator, we know it is well-matched to the generator
and will not be overpowered. Finally, since it is so capable (there is no need to prune it to maintain
a balance with the compressed generator), it also helps to avoid mode collapse. As distillation
progresses, it can adapt to and induce fine changes in the compressed generator.

Since the original discriminator is used as a proxy for a human’s subjective evaluation, we refer to
this as “self-supervised” compression. We illustrate the workflow in Figure 2, using a GAN charged
with generating a map image from a satellite image in a domain translation task.

In the right part of Figure 2, the Real Satellite Image (RSI) goes through the original generative
model (GO) to produce a Fake Map Image (FMI-GO). The corresponding generative loss value is
l-GO. Accordingly, in the left part of Figure 2, RSI goes through the compressed generative model
(GC) to produce a Fake Map Image (FMI-GC). The corresponding generative loss value is l-GC .
This is the inference process of the original and compressed generators, expressed as follows:

FMI-GO = GO(RSI) (1)

FMI-GC = GC(RSI) (2)

The overall generative difference is measured between the two corresponding generative losses2. We
use a generative consistent loss function (LGC) in the bottom of Figure 2 to represent this process.

LGC(l-GO, l-GC)→ 0 (3)
2In different GANs, the generative loss may consist of several sub-items. For example, StarGAN combines

adversarial loss, domain classification loss and reconstruction loss into overall generative loss.

5

Under review as a conference paper at ICLR 2020

Original Discriminator: DO

Original Generator: GOCompressed Generator: GC

Real Satellite Image: RSI Fake Map Image from GO: FMI-GO

Real Map Image: RMI

Fake Map Image from GC: FMI-GC

Original Discriminator: DO
Discriminative Consistent Loss

Function: LDC

Generative Consistent Loss
Function: LGC

Discriminative Loss: L-DC Discriminative Loss: L-DO

Generative Loss: L-GC Generative Loss: L-GO

Figure 2: Workflow chart of GAN compression process.

Since the GAN training process aims to reduce the differences between real and generated samples,
we stick to this principle in the compression process. In the upper right of Figure 2, Real Map Image
(RMI) and Fake Map Image (FMI-GO) go through the original discriminative model DO. DO tries
to ensure that the distribution of FMI-GO is indistinguishable from RMI using an adversarial loss.
The corresponding discriminative loss value is l-DO. In the upper left of Figure 2, RMI and FMI-GC

also go through the original discriminative model DO. In this way, we use the original discriminative
model as a ”self-supervisor.” The corresponding discriminative loss value is l-DC .

l-DO = DO(RMI,FMI-GO) (4)

l-DC = DO(RMI,FMI-GC) (5)

So the discriminative difference is measured between two corresponding discriminative losses. We
use the discriminative consistent loss function LDC in the top of Figure 2 to represent this process.

LDC(l-DO, l-DC)→ 0 (6)

The generative and discriminative consistent loss functions (LGC and LDC) use the weighted nor-
malized Euclidean distance. Taking the StarGAN task as the example (other tasks may use different
losses):

LGC(l-GO, l-GC) = |l-GenO − l-GenC |/|l-GenO|+ α|l-ClaO − l-ClaC |/|l-ClaO|
+β|l-RecO − l-RecC |/|l-RecO|

(7)

where l-Gen is the generation loss term, l-Cla is the classification loss term, and l-Rec is the recon-
struction loss term. α and β are the weight ratios among three loss types. (We use the same values
of α and β used in the original StarGAN baseline.)

LDC(l-DO, l-DC) = |l-DisO − l-DisC |/|l-DisO|+ δ|l-GPO − l-GPC |/|l-GPO| (8)

where l-Dis is the discriminative loss item, l-GP is the gradient penalty loss item, and δ is a weighting
factor (again, we use the same value as the baseline).

The overall loss function of GAN compression consists of generative and discriminative differences:

LOverall = LGC(l-GO, l-GC) + λLDC(l-DO, l-DC), (9)

where λ is the parameter to adjust the percentages between generative and discriminative losses.

We showed promising results with this method above in the context of prior methods. In the fol-
lowing experiments, we investigate how well the method generalizes to other networks and tasks
(Section 5) and how well the method works on different sparsity ratios and pruning granularities
(Section 6).

6

Under review as a conference paper at ICLR 2020

Table 2: Tasks and networks overview

Task Network Dataset Resolution FID Scores when Pruned to

0% (dense) 25% 50% 75% 90%

Image Synthesis DCGAN MNIST 64x64 50.391 50.128 50.634 50.805 51.356
Domain Translation Pix2Pix Sat→Map 256x256 17.636 17.897 17.990 20.235 24.892
Domain Translation Pix2Pix Sat←Map 256x256 30.826 30.628 30.720 34.051 38.936
Style Transfer CycleGAN Monet→ Photo 256x256 63.152 63.410 63.662 66.394 70.933
Style Transfer CycleGAN Monet← Photo 256x256 31.987 32.102 32.346 33.913 41.409
Image-Image Translation CycleGAN Zebra→ Horse 256x256 60.930 61.005 61.102 65.898 68.450
Image-Image Translation CycleGAN Zebra← Horse 256x256 52.862 52.631 52.688 58.356 63.274
Image-Image Translation StarGAN CelebA 128x128 6.113 6.307 6.929 6.714 7.144
Super Resolution SRGAN DIV2K ≥ 512x512 14.653 15.236 16.609 17.548 18.376

5 GENERALIZATION TO NEW TASKS AND NETWORKS

For the experiments in this section, we choose to prune individual weights in the generator. The
final sparsity rate is 50% for all convolution and deconvolution layers in the generator. Following
AGP (Zhu & Gupta, 2018), we gradually increase the sparsity from 5% at the beginning to our
target of 50% halfway through the self-supervised training process, and we set the loss adjustment
parameter λ to 0.5 in all experiments. We use PyTorch (Paszke et al., 2017), implement the pruning
and training schedules with Distiller (Zmora et al., 2018), and train and generate results with a V100
GPU (NVIDIA, 2017) using FP32 to match public baselines. In all experiments, the data sets, data
preparation, and baseline training all follow from the public repositories. We start by assuming an
extra 10% of the original number of epochs will be required; in some cases, we reduced the overhead
to only 1% while maintaining subjective quality. We include representative results for each task, but
a more comprehensive collection of outputs for each experiment is included in the Appendix.

Image Synthesis. We apply the proposed compression method to DCGAN (Radford et al., 2016)3,
a network that learns to synthesize novel images belonging to a given distribution. We task DCGAN
with generating images that could belong to the MNIST data set, with results shown in Figure 3.

Domain Translation. We apply the proposed compression method to pix2pix (Isola et al., 2017)4,
an approach to learn the mapping between paired training examples by applying conditional adver-
sarial networks. In our experiment, the task is synthesizing fake satellite images from label maps
and vice-versa. Representative results of this bidirectional task are shown in Figure 4.

Style Transfer. We apply the proposed compression method to CycleGAN (Zhu et al., 2017a),
used to exchange the style of images from a source domain to a target domain in the absence of
paired training examples. In our experiment, the task is to transfer the style of real photos with that

FID: 32.7786 33.3191 82.1903

Figure 3: Image synthesis on MNIST dataset with DCGAN. Columns 1-3: Handwritten numbers
generated by the original generator, pruned generator of 50%, 75% fine-grained sparsity.

3DCGAN baseline: https://github.com/pytorch/examples/tree/master/dcgan.
4Pix2pix, CycleGAN: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

7

https://github.com/pytorch/examples/tree/master/dcgan
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

Under review as a conference paper at ICLR 2020

Input Dense 50% Sparse Difference (10x)

Map
to

Satellite

FID: 35.627 33.366 -

Satellite
to

Map

FID: 17.097 17.945 -

Figure 4: Representative results for domain translation: pix2pix.

Input Dense 50% Sparse Difference (10x)

Monet
to

Photo

FID: 59.381 60.546 -

Photo
to

Monet

FID: 35.781 34.263 -

Figure 5: Representative results for style transfer: CycleGAN.

of the Monet’s paintings. Representative results of this bidirectional task are shown in Figure 5:
photographs are given the style of Monet’s paintings and vice-versa.

Image-to-image Translation. In addition to the StarGAN results above (Section 3, Figure 1), we
apply the proposed compression method to CycleGAN (Zhu et al., 2017a) performing bidirectional
translation between zebra and horse images. Results are shown in Figure 6.

Input Dense 50% Sparse Difference (10x)

Zebra
to

Horse

FID: 47.929 48.112 -

Horse
to

Zebra

FID: 52.627 53.165 -

Figure 6: Representative image-to-image translation results: CycleGAN.

8

Under review as a conference paper at ICLR 2020

Table 3: PSNR (dB), SSIM and FID indicators for Validation Datasets

Dataset Original Generator Filter-Compressed G Element-Compressed G

PSNR SSIM FID PSNR SSIM FID PSNR SSIM FID

Set5 30.063393 0.852733 30.761999 30.234316 0.859817 35.514204 30.484014 0.862475 36.824148
Set14 26.643850 0.716294 55.457409 27.314664 0.744525 82.118059 27.417112 0.744101 70.125821
DIV2K Validation 28.205665 0.778364 14.653151 28.875953 0.800625 18.499896 28.974868 0.800767 16.608606

Ground Truth
Dense

Generator
Filter-pruned

Generator
Fine-grained

Generator

Figure 7: Representative super resolution results: SRGAN (with enlargements of boxed areas).

Super Resolution. We apply self-supervised compression to SRGAN (Ledig et al., 2017)5, which
uses a discriminator network trained to differentiate between upscaled and the original high-
resolution images. We trained SRGAN on the DIV2K data set Agustsson & Timofte (2017), and use
the DIV2K validation images, as well as Set5 Bevilacqua et al. (2012) and Set14 Zeyde et al. (2010)
to report deployment quality. In this task, quality is often evaluated by two metrics: Peak Signal-to-
Noise Ratio (PSNR) (Huynh-Thu & Ghanbari, 2008) and Structural Similarity (SSIM) (Wang et al.,
2004). We also show FID scores (Heusel et al., 2017) for our results in the results summarized in
Table 3, and a representative output is shown in Figure 7. These results also include filter-pruned
generators (see Section 6).

6 EFFECT OF PRUNING RATIO AND GRANULARITY

After showing that self-supervised compression generalizes to many tasks and networks with a mod-
erate, fine-grained sparsity of 50%, we expand the scope of the investigation to include different
pruning granularities and rates. From coarse to fine, we can compress and remove the entire fil-
ters (3D-level), kernels (2D-level), vectors (1D-level) or individual elements (0D-level). In general,
finer-grained pruning results in higher accuracy for a given sparsity rate, but coarser granularities
are easier to exploit for performance gains due to their regular structure. Similarly, different spar-
sity rates, leaving many nonzero weights or few, can result in varying levels of quality in the final
network.

We pruned all tasks by removing both single elements (0D) and entire filters (3D). Further, for each
granularity, we pruned to final sparsities of 25%, 50%, 75%, and 90%. Representative results for
CycleGAN (Monet → Photo) are shown in Figure 8, but in general, 0D pruning is less invasive,
even at higher sparsities. Up to 90% fine-grained sparsity, some fine details faded away in pix2pix,
but filter pruning results in drastic color shifts and loss of details at even 25% sparsity.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose using a pre-trained discriminator to self-supervise the compression of a
generative adversarial network. We show that it is effective and generalizes to many tasks commonly
solved with GANs, unlike traditional compression approaches. Comparing the compressed gener-
ators with the baseline models on different tasks, we can conclude that the compression method

5SRGAN baseline implementation: https://github.com/xinntao/BasicSR.

9

https://github.com/xinntao/BasicSR

Under review as a conference paper at ICLR 2020

Sparsity 0% 25% 50% 75% 90%

Fine-grained

FID: 32.006 32.462 33.387 34.543 41.251

Filter-pruned

FID: 32.006 82.349 105.884 182.277 204.795

Figure 8: Representative results for pruning rate and granularity study of style transfer.

performs well both in subjective and quantitative evaluations. Advantages of the proposed method
include:

• The results from the compressed generators are greatly improved over past work.
• The self-supervised compression is much shorter than the original GAN training process.

It only takes 1%-10% training effort to get an optimal compressed generative model.
• It is an end-to-end compression schedule that does not require objective evaluation metrics.
• We introduce a single optional hyperparameter (fixed to 0.5 for all our experiments).

We use self-supervised GAN compression to show that pruning whole filters, which can work well
for image classification models (Li et al., 2017), may perform poorly for GAN applications. Even
pruned at a moderate sparsity (e.g. 25% in Figure 8), the generated image has an obvious color
shift and does not transfer the photorealistic style. In contrast, the fine-grained compression stategy
works well for all tasks we explored. SRGAN seems to be an exception to filter-pruning’s poor
results; we have to look closely to see differences, and it’s not clear which is subjectively better.

We have not tried to achieve extremely aggressive compression rates with complicated pruning
strategies. Different models may be able to tolerate different amounts of pruning when applied
to a task, which we leave to future work. Similarly, we have used network pruning to show the
importance and utility of the proposed method, but self-supervised compression is general to other
techniques, such as quantization, weight sharing, etc. There are other tasks for which GANs can
provide compelling results, and newer networks for tasks we have already explored; future work
will extend our self-supervised compression method to these new areas. Finally, self-supervised
compression may apply to other network types and tasks if a discriminator is trained alongside the
teacher and student networks.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Angeline Aguinaldo, Ping-Yeh Chiang, Alexander Gain, Ameya Patil, Kolten Pearson, and Soheil
Feizi. Compressing GANs using knowledge distillation. CoRR, abs/1902.00159, 2019. URL
http://arxiv.org/abs/1902.00159.

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 126–135, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pp. 214–223, 2017.

Samaneh Azadi, Matthew Fisher, Vladimir G Kim, Zhaowen Wang, Eli Shechtman, and Trevor
Darrell. Multi-content gan for few-shot font style transfer. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 7564–7573, 2018.

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-
complexity single-image super-resolution based on nonnegative neighbor embedding. 2012.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. In International Conference on Learning Representations, 2019.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In Proceedings of the 32nd on International Conference
on Machine Learning - Volume 37, ICML’15, pp. 2285–2294. JMLR.org, 2015. URL http:
//dl.acm.org/citation.cfm?id=3045118.3045361.

Kyunghyun Cho, Bart van Merriënboer, Ça?lar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. As-
sociation for Computational Linguistics. URL http://www.aclweb.org/anthology/
D14-1179.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–
8797, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems, pp. 6626–6637, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015. URL http://arxiv.
org/abs/1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

11

http://arxiv.org/abs/1902.00159
http://dl.acm.org/citation.cfm?id=3045118.3045361
http://dl.acm.org/citation.cfm?id=3045118.3045361
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

Under review as a conference paper at ICLR 2020

Q. Huynh-Thu and M. Ghanbari. Scope of validity of psnr in image/video quality assessment.
Electronics Letters, 44(13):800–801, June 2008. ISSN 0013-5194. doi: 10.1049/el:20080522.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Sambhav R. Jain, Albert Gural, Michael Wu, and Chris Dick. Trained uniform quantization for
accurate and efficient neural network inference on fixed-point hardware. CoRR, abs/1903.08066,
2019. URL http://arxiv.org/abs/1903.08066.

Animesh Koratana, Daniel Kang, Peter Bailis, and Matei Zaharia. LIT: Learned intermediate rep-
resentation training for model compression. In Proceedings of the International Conference on
Machine Learning, ICML’19, 2019.

Rithesh Kumar, Anirudh Goyal, Aaron Courville, and Yoshua Bengio. Maximum entropy generators
for energy-based models. arXiv preprint arXiv:1901.08508, 2019.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic sin-
gle image super-resolution using a generative adversarial network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4681–4690, 2017.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017.

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue
Huang, and David Doermann. Towards optimal structured cnn pruning via generative adversarial
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Jinglan Liu, Jiaxin Zhang, Yukun Ding, Xiaowei Xu, Meng Jiang, and Yiyu Shi. PBGen: partial
binarization of deconvolution based generators. CoRR, abs/1802.09153, 2018a. URL http:
//arxiv.org/abs/1802.09153.

Ruishan Liu, Nicolo Fusi, and Lester Mackey. Model compression with generative adversarial
networks. In International Conference on Learning Representations, 2018b.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In International Conference on Learning Representations, 2018.

Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring sparsity in recurrent
neural networks. In International Conference on Learning Representations, 2017.

NVIDIA. NVIDIA Tesla V100 GPU architecture, 2017. URL https:
//images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In International Conference on Learning Repre-
sentations, 2016.

Abigail See, Minh-Thang Luong, and Christopher D. Manning. Compression of neural machine
translation models via pruning. In CoNLL, 2016.

12

http://arxiv.org/abs/1903.08066
http://arxiv.org/abs/1802.09153
http://arxiv.org/abs/1802.09153
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Under review as a conference paper at ICLR 2020

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-
tization. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2019a.

Peiqi Wang, Dongsheng Wang, Yu Ji, Xinfeng Xie, Haoxuan Song, XuXin Liu, Yongqiang Lyu, and
Yuan Xie. QGAN: quantized generative adversarial networks. CoRR, abs/1901.08263, 2019b.
URL http://arxiv.org/abs/1901.08263.

Yunhe Wang, Chang Xu, Chao Xu, and Dacheng Tao. Adversarial learning of portable student
networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in neural information processing systems, pp. 2074–2082,
2016.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan Wang, Fang Liu, Bin Hu,
Yiran Chen, and Hai Li. Learning intrinsic sparse structures within long short-term memory. In
International Conference on Learning Representations, 2018.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In International conference on curves and surfaces, pp. 711–730. Springer, 2010.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 2223–2232, 2017a.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and Eli
Shechtman. Toward multimodal image-to-image translation. In Advances in Neural Information
Processing Systems, pp. 465–476, 2017b.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. In International Conference on Learning Representations, 2018.

Neta Zmora, Guy Jacob, and Gal Novik. Neural network distiller, June 2018. URL https:
//doi.org/10.5281/zenodo.1297430.

13

http://arxiv.org/abs/1901.08263
https://doi.org/10.5281/zenodo.1297430
https://doi.org/10.5281/zenodo.1297430

Under review as a conference paper at ICLR 2020

A APPENDIX

Since GANs are typically judged with subjective, qualitative observations, we present several results
for each of the experiments in the main paper so readers can see the motivation for the conclusions
drawn therein. We organize this document in the following way:

• Section A.1: Naı̈ve Compression with StarGAN
• Section A.2: Image Synthesis with DCGAN
• Section A.3: Domain Translation with Pix2Pix
• Section A.4: Style Transfer with CycleGAN
• Section A.5: Image-Image Translation with CycleGAN
• Section A.6: Image-Image Translation with StarGAN
• Section A.7: Super Resolution with SRGAN
• Section A.8: Effect of Sparsity Granularity and Ratio

14

Under review as a conference paper at ICLR 2020

A.1 NAÏVE COMPRESSION: STARGAN

The loss curves for the comparative experiment in Figure 1 are shown in Figure 9.

a b c

d e f

g h i

j k l

m n

Figure 9: Loss curves of image-to-image translation pruning. (a). Loss curve of StarGAN baseline.
Loss curve of training the compressed generator from (b). Self-Supervised fine-tuning (ours), (c).
Smaller dense network, (d). One-shot pruning and naive fine-tuning, (e). Gradual pruning and naive
fine-tuning, (f). Gradual pruning during the initial training, (g). One-shot pruning and distillation as
fine-tuning, (h). Gradual pruning and distillation as fine-tuning, (i). AGP as fine-tuning and distil-
lation without fine-tuning the original loss, (j). Adversarial learning (fine-tuning), (k). Knowledge
distillation, (l). Distillation on output of intermediate layers, (m). E-M Quantization, and (n). Prune
both G and D models. (a), (c) and (f) start from a randomly-initialized network at epoch 0, others
pick up at the end of (a).

Figures 10-12 show outputs of StarGAN compressed with various existing techniques (c-n), and
the proposed self-supervised method (b). The baseline output is at the top (a) of each figure for
comparison. Each row shows one input face translated to have black hair, blond hair, brown hair, the
opposite gender, and a different age, and each row is a different method of compressing the network
(the key is identical to that of Figure 9).

15

Under review as a conference paper at ICLR 2020

a

b

c

d

e

f

g

h

i

j

k

l

m

n

Figure 10: Example 1 of various approaches to compress StarGAN.
16

Under review as a conference paper at ICLR 2020

a

b

c

d

e

f

g

h

i

j

k

l

m

n

Figure 11: Example 2 of various approaches to compress StarGAN.
17

Under review as a conference paper at ICLR 2020

a

b

c

d

e

f

g

h

i

j

k

l

m

n

Figure 12: Example 3 of various approaches to compress StarGAN.
18

Under review as a conference paper at ICLR 2020

A.2 IMAGE SYNTHESIS: DCGAN (50% AND 75% FINE-GRAINED SPARSITY)

FID: 37.1296 38.6406 42.6728

Figure 13: Image synthesis on MNIST dataset with DCGAN pruned to 50% with fine-grained spar-
sity. Column 1: Handwritten numbers generated by the original generator, 2: Handwritten numbers
generated by the generator pruned with our method, 3: Handwritten numbers generated by the
pruned generator with traditional knowledge distillation adapted for GANs (Aguinaldo et al., 2019).

FID: 37.1296 118.3160 172.9123

Figure 14: Image synthesis on MNIST dataset with DCGAN of 75% fine-grained sparsity. Column
1: Handwritten numbers generated by the original generator, 2: Handwritten numbers generated by
the generator pruned with our method, Column 3: Handwritten numbers generated by the pruned
generator with traditional knowledge distillation adapted for GANs.

19

Under review as a conference paper at ICLR 2020

A.3 DOMAIN TRANSLATION: PIX2PIX (50% FINE-GRAINED SPARSITY)

Figure 15: Image synthesis: from label maps to fake satellite images. Row 1: Original label maps,
Row 2: Satellite images generated by the original generator, Row 3: Satellite images generated by
the pruned generator, Row 4: Residual difference between generated images in Row 2 and 3, Row
5: Residuals amplified by 10x.

Figure 16: Image synthesis: Two different random seeds, unpruned. Row 1: Original label maps,
Rows 2-3: Generated fake satellite images by original generator trained with random seeds 15 and
63, Row 4: Residual difference between generated images in Row 2 and 3. Row 5: Residuals
amplified by 10x for higher contrast.

20

Under review as a conference paper at ICLR 2020

Figure 17: Image synthesis: from satellite images to fake label maps. Row 1: Original satellite
images, Row 2: Label maps generated by the original generator, Row 3: Label maps generated by
the pruned generator, Row 4: Residual difference between generated images in Row 2 and 3, Row
5: Residuals amplified by 10x.

Figure 18: Image synthesis: Two different random seeds, unpruned. Row 1: Original satellite
images, Rows 2-3: Generated fake label maps by original generator trained with random seeds 15
and 63, Row 4: Residual difference between generated images in Row 2 and 3. Row 5: Residuals
amplified by 10x for higher contrast.

21

Under review as a conference paper at ICLR 2020

A.4 STYLE TRANSFER: CYCLEGAN (50% FINE-GRAINED SPARSITY)

Figure 19: Style transfer: from Monet to real photo style. Row 1: Original artwork images from
Monet, Row 2: photographic style applied by the original generator, Row 3: photographic style
applied by the compressed generator, Row 4: Residual difference between style transferred images
in Row 2 and 3, amplified by 10x.

Figure 20: Style transfer: from real photo to Monet artwork style. Row 1: Original photos, Row
2: Monet’s style applied by the original generator, Row 3: Monet’s style applied by the compressed
generator, Row 4: Residual difference between style transferred images in Row 2 and 3 amplified
by 10x.

22

Under review as a conference paper at ICLR 2020

A.5 IMAGE-IMAGE TRANSLATION: CYCLEGAN (50% FINE-GRAINED SPARSITY)

Figure 21: Image-to-image translation experiment: from real zebra images to fake horse images.
Row 1: Original real zebra images, Row 2: Corresponding translated horse images by original
generator, Row 3: Translated horse images by compressed generator, Row 4: Residual difference
between translated images in Row 2 and 3 amplified by 10x.

Figure 22: Image-to-image translation experiment: from real horse images to fake zebra images.
Row 1: Original real horse images, Row 2: Corresponding translated zebra images by original
generator, Row 3: Translated zebra images by compressed generator, Row 4: Residual difference
between translated images in Row 2 and 3 amplified by 10x.

23

Under review as a conference paper at ICLR 2020

A.6 IMAGE-IMAGE TRANSLATION: STARGAN (50% FINE-GRAINED SPARSITY)

Figure 23: Image-to-image translation example 1: facial attribute translation. Columns: 1. Original
facial images, 2-4. Translated images to (black, blond, brown) hair colors, 5. Translated images to
other gender, 6. Translated images to other age. Rows: Images translated by 1. original generator
and 2. compressed generator, 3. Residual difference between Rows 1 and 2, 4. Residuals amplified
by 10x.

Figure 24: Image-to-image translation example 2: facial attribute translation. Columns: 1. Original
facial images, 2-4. Translated images to (black, blond, brown) hair colors, 5. Translated images to
other gender, 6. Translated images to other age. Rows: Images translated by 1. original generator
and 2. compressed generator, 3. Residual difference between Rows 1 and 2, 4. Residuals amplified
by 10x.

24

Under review as a conference paper at ICLR 2020

Figure 25: Image-to-image translation example 3: facial attribute translation. Columns: 1. Original
facial images, 2-4. Translated images to (black, blond, brown) hair colors, 5. Translated images to
other gender, 6. Translated images to other age. Rows: Images translated by 1. original generator
and 2. compressed generator, 3. Residual difference between Rows 1 and 2, 4. Residuals amplified
by 10x.

Figure 26: Image-to-image translation example 4: facial attribute translation. Columns: 1. Original
facial images, 2-4. Translated images to (black, blond, brown) hair colors, 5. Translated images to
other gender, 6. Translated images to other age. Rows: Images translated by 1. original generator
and 2. compressed generator, 3. Residual difference between Rows 1 and 2, 4. Residuals amplified
by 10x.

25

Under review as a conference paper at ICLR 2020

A.7 SUPER RESOLUTION: SRGAN (50% FINE-GRAINED AND FILTER-PRUNED SPARSITY)

Ground Truth Baseline Filter-Pruned Fine-Grained

Figure 27: Super resolution experiment. Column 1: Original high resolution images, Columns
2-4: Corresponding generated real high resolution images by original, filter-compressed, element-
compressed generators. Each second row provides a detailed view of boxed regions.

26

Under review as a conference paper at ICLR 2020

A.8 EFFECT OF SPARSITY GRANULARITY AND RATIO

Pix2Pix: map to satellite domain translation.

Figure 28: Domain translation: filter pruning to different sparsity levels. Row 1: Output of the
baseline generator. Rows 2-5: Synthesized satellite images by generators pruned to sparsities of
25%, 50%, 75%, 90%.

Figure 29: Domain translation: fine-grained pruning to different sparsity levels. Row 1: Output of
the baseline generator. Rows 2-5: Synthesized satellite images by generators pruned to sparsities of
25%, 50%, 75%, 90%.

27

Under review as a conference paper at ICLR 2020

CycleGAN: photographic style applied to Monet’s paintings.

Figure 30: Style transfer: filter pruning to different sparsity levels. Row 1: Output of the baseline
generator. Rows 2-5: Generated real photo style images by generators pruned to sparsities of 25%,
50%, 75%, 90%.

Figure 31: Style transfer: fine-grained pruning to different sparsities. Row 1: Output of the baseline
generator. Rows 2-5: Generated real photo style images by generators pruned to sparsities of 25%,
50%, 75%, 90%.

28

Under review as a conference paper at ICLR 2020

CycleGAN: style of Monet’s paintings applied to photographs.

Figure 32: Style transfer: filter pruning to different sparsity levels. Row 1: Output of the baseline
generator. Rows 2-5: Generated real photo style images by generators pruned to sparsities of 25%,
50%, 75%, 90%.

Figure 33: Style transfer: fine-grained pruning to different sparsities. Row 1: Output of the baseline
generator. Rows 2-5: Generated real photo style images by generators pruned to sparsities of 25%,
50%, 75%, 90%.

29

Under review as a conference paper at ICLR 2020

CycleGAN: zebra to horse image-to-image translation.

Figure 34: Image-to-image translation: filter pruning to different sparsities. Row 1: Baseline gener-
ator output. Rows 2-5: Generated real photo style images by generators pruned to sparsities of 25%,
50%, 75%, 90%.

Figure 35: Image-to-image translation: fine-grained pruning to different sparsities. Row 1: Baseline
generator output. Rows 2-5: Generated real photo style images by generators pruned to sparsities of
25%, 50%, 75%, 90%.

30

Under review as a conference paper at ICLR 2020

CycleGAN: horse to zebra image-to-image translation.

Figure 36: Image-to-image translation: filter pruning to different sparsities. Row 1: Baseline gener-
ator output. Rows 2-5: Generated real photo style images by generators pruned to sparsities of 25%,
50%, 75%, 90%.

Figure 37: Image-to-image translation: fine-grained pruning to different sparsities. Row 1: Baseline
generator output. Rows 2-5: Generated real photo style images by generators pruned to sparsities of
25%, 50%, 75%, 90%.

31

Under review as a conference paper at ICLR 2020

StarGAN: facial attribute image-to-image translation.

Figure 38: Image-to-image translation example 1: filter pruning to different sparsities. Row 1:
Baseline generator output. Rows 2-5: Facial attribute translated images by generators pruned to
sparsities of 25%, 50%, 75%, 90%.

Figure 39: Image-to-image translation example 1: fine-grained pruning to different sparsities. Row
1: Baseline generator output. Rows 2-5: Facial attribute translated images by generators pruned to
sparsities of 25%, 50%, 75%, 90%.

32

Under review as a conference paper at ICLR 2020

Figure 40: Image-to-image translation example 2: filter pruning to different sparsities. Row 1:
Baseline generator output. Rows 2-5: Facial attribute translated images by generators pruned to
sparsities of 25%, 50%, 75%, 90%.

Figure 41: Image-to-image translation example 2: fine-grained pruning to different sparsities. Row
1: Baseline generator output. Rows 2-5: Facial attribute translated images by generators pruned to
sparsities of 25%, 50%, 75%, 90%.

33

Under review as a conference paper at ICLR 2020

25%
Fine-Grained-Pruned

50%
Fine-Grained-Pruned

75%
Fine-Grained-Pruned

90%
Fine-Grained-Pruned

Figure 42: Super resolution: fine-grained pruning to different sparsities. Columns 1-4: Correspond-
ing generated real high resolution images by generators pruned to sparsities of 25%, 50%, 75%,
90%.

34

Under review as a conference paper at ICLR 2020

The loss curves for the comparative experiment in Figure 38 and 40 are shown in Figure 43.

a b

c d

Figure 43: Loss curves of image-to-image translation experiments of filter pruning to different spar-
sities. (a)-(d): Corresponding loss curve of the generator pruned to sparsities of 25%, 50%, 75%,
90%.

The loss curves for the comparative experiment in Figure 39 and 41 are shown in Figure 44.

a b

c d

Figure 44: Loss curves of image-to-image translation experiments of fine-grained pruning to differ-
ent sparsities. (a)-(d): Corresponding loss curve of the generator pruned to sparsities of 25%, 50%,
75%, 90%.

35

	Introduction
	Related Research
	Existing Techniques Fail to Prune a Complex Task
	Self-Supervised Generator Compression
	Generalization to New Tasks and Networks
	Effect of Pruning Ratio and Granularity
	Conclusion and Future Work
	Appendix
	Naïve Compression: StarGAN
	Image Synthesis: DCGAN (50% and 75% Fine-Grained Sparsity)
	Domain Translation: Pix2Pix (50% Fine-Grained Sparsity)
	Style Transfer: CycleGAN (50% Fine-Grained Sparsity)
	Image-Image Translation: CycleGAN (50% Fine-Grained Sparsity)
	Image-Image Translation: StarGAN (50% Fine-Grained Sparsity)
	Super Resolution: SRGAN (50% Fine-Grained and Filter-Pruned Sparsity)
	Effect of Sparsity Granularity and Ratio

