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ABSTRACT

Neural sequence-to-sequence models are finding increasing use in editing of doc-
uments, for example in correcting a text document or repairing source code. In
this paper, we argue that existing seq2seq models (with a facility to copy single
tokens) are not a natural fit for such tasks, as they have to explicitly copy each
unchanged token. We present an extension of seq2seq models capable of copying
entire spans of the input to the output in one step, greatly reducing the number of
decisions required during inference. This extension means that there are now many
ways of generating the same output, which we handle by deriving a new objective
for training and a variation of beam search for inference that explicitly handle this
problem.
In our experiments on a range of editing tasks of natural language and source code,
we show that our new model consistently outperforms simpler baselines.

1 INTRODUCTION

Intelligent systems that assist users in achieving their goals have become a focus of recent research.
One class of such systems are intelligent editors that identify and correct errors in documents while
they are written. Such systems are usually built on the seq2seq (Sutskever et al., 2014) framework,
in which an input sequence (the current state of the document) is first encoded into a vector repre-
sentation and a decoder then constructs a new sequence from this information. Many applications
of the seq2seq framework require the decoder to copy some words in the input. An example is ma-
chine translation, in which most words are generated in the target language, but rare elements such
as names are copied from the input. This can be implemented in an elegant manner by equipping
the decoder with a facility that can “point” to words from the input, which are then copied into the
output (Vinyals et al., 2015; Grave et al., 2017; Gulcehre et al., 2016; Merity et al., 2017).

Editing sequences poses a different problem from other seq2seq tasks, as in many cases, most of the
input remains unchanged and needs to be reproduced. When using existing decoders, this requires
painstaking word-by-word copying of the input. In this paper, we propose to extend a decoder with
a facility to copy entire spans of the input to the output in a single step, thus greatly reducing the
number of decoder steps required to generate an output. This is illustrated in Figure 1, where we
show how our model inserts two new words into a sentence by copying two spans of (more than)
twenty tokens each.

However, this decoder extension exacerbates a well-known problem in training decoders with a
copying facility: a target sequence can be generated in many different ways when an output token
can be generated by different means. In our setting, a sequence of tokens can be copied token-by-
token, in pairs of tokens, . . . , or in just a single step. In practice, we are interested in encouraging
our decoder to use as few steps as possible, both to speed up decoding at inference time as well
as to reduce the potential for making mistakes. To this end, we derive a training objective that
marginalises over all different generation sequences yielding the correct output, which implicitly
encourages copying longer spans. At inference time, we solve this problem by a variation of beam
search that “merges” rays in the beam that generate the same output by different means.

In summary, this paper (i) introduces a new sequence decoder able to copy entire spans (Sect. 2); (ii)
derives a training objective that encourages our new decoder to copy long spans when possible, as
well as an adapted beam search method approximating the exact objective; (iii) includes extensive
experiments showing that the span-copying decoder improves on editing tasks on natural language
and program source code (Sect. 4).
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Input
charles Bdea lt ry C Bloc ock C ( september
27 , 1862 – may 13 , 1946 ) , was a british
literary scholar , who wrote on a wide ar-
ray of subjects , including chess , billiards
and Bcro que t C .

Output
charles Bdea lt ry C Bloc ock C ( september
27 , 1862 – may 13 , 1946 ) , was a british
literary scholar and translator , who wrote
on a wide array of subjects , including chess
, billiards and Bcro que t C .

a1: Copy(1 : 28)

a4: Copy(28 : 48)

Figure 1: Sample edit generated by our span-copying model on the WikiAtomicEdits dataset on the
edit representation task of Yin et al. (2019). B and C represent the BPE start/end tokens. The model
first copies a long initial span of text Copy(1 : 28). The next two actions generate the tokens “and”
and “translator”, as in a standard sequence generation models. Then, the model again copies a long
span of text and finally generates the end-of-sentence token (not shown).

2 MODEL

The core of our new decoder is a span-copying mechanism that can be viewed as a generalisation of
pointer networks used for copying single tokens (Vinyals et al., 2015; Grave et al., 2017; Gulcehre
et al., 2016; Merity et al., 2017). Concretely, modern sequence decoders treat copying from the input
sequence as an alternative to generating a token from the decoder vocabulary, i.e. at each step, the
decoder can either generate a token t from its vocabulary or it can copy the i-th token of the input.
We view these as potential actions the decoder can perform and denote them by Gen(t) and Copy(i).

Formally, given an input sequence in = in1 . . . inn, the probability of a target sequence o1 . . . om is
commonly factorised into sequentially generating all tokens of the output.

p(o1 . . . om | in) =
∏

1≤j≤m

p(oj | in , o1 . . . oj−1) (1)

Here, p(oj | in , o1 . . . oj−1) denotes the probability of generating the token oj , which is simply the
probability of the Gen(t) action in the absence of a copying mechanism.1 When we can additionally
copy tokens from the input, this probability is the sum of probabilities of all correct actions. To
formalise this, we denote evaluation of an action a into a concrete token as JaK, where JGen(t)K = t
and JCopy(i)K = ini. Using q(a | o) to denote the probability of emitting an action a after generating
the partial output o, we complete Eq. (1) by defining

p(oj | o1 . . . oj−1) =
∑

a,JaK=oj

q(a | o1 . . . oj−1),

i.e. the sum of the probabilities of all correct actions.

Modelling Span Copying In this work, we are interested in copying whole subsequences of the
input, introducing a sequence copying action Copy(i : j) with JCopy(i : j)K = ini . . . inj−1 (in-
dexing follows the Python in[i:j] notation here). This creates a problem because the number of
actions required to generate an output token sequence is not equal to the length of the output sequence
anymore; indeed, there may be many action sequences of different length that can produce the correct
output.

As an example, consider Fig. 2, which illustrates all action sequences generating the output a b f d e
given the input a b c d e. For example, we can initially generate the token a, or copy it from the input,
or copy the first two tokens. If we chose one of the first two actions, we then have the choice of
either generating the token b or copying it from the input and then have to generate the token f .
Alternatively, if we initially choose to copy the first two tokens, we have to generate the token f next.
We can compute the probability of generating the target sequence by traversing the diagram from
the right to the left. p(ε | a b f d e) is simply the probability of emitting a stop token and requires
no recursion. p(e | a b f d) is the sum of the probabilities q(Gen(e) | a b f d) · p(ε | a b f d e) and
q(Copy(4 : 5) | a b f d) · p(ε | a b f d e), which re-uses the term we already computed. Following
this strategy, we can compute the probability of generating the output token sequence by computing

1Note that all occurrences of p (and q below) are implicitly (also) conditioned on the input sequence in , and
so we drop this in the following to improve readability.
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Gen(a)

Copy(0 : 1)

Copy(0 : 2)

p(a b f d e | ε)

Gen(b)

Copy(1 : 2)

p(b f d e | a)

Gen(f)

p(f d e | a b)

Gen(d)

Copy(3 : 4)

Copy(3 : 5)

p(d e | a b f)

Gen(e)

Copy(4 : 5)

p(e | a b f d) p(ε | a b f d e)

Figure 2: Illustration of different ways of generating the sequence a b f d e given an input of a b c d e.
Each box lists all correct actions at a given point in the generation process, and the edges after an
action indicate which suffix token sequence still needs to be generated after it. We use ε to denote
the empty sequence, either as prefix or suffix.

probabilities of increasing longer suffixes of it (essentially traversing the diagram in Fig. 2 from right
to left).

Formally, we reformulate Eq. (1) into a recursive definition that marginalises over all different
sequences of actions generating the correct output sequence, following the strategy illustrated in
Fig. 2. For this we define |a|, the length of the output of an action, i.e., |Gen(t)| = 1 and |Copy(i :
j)| = j − i. Note that we simply assume that actions Copy(i : j) with j ≤ i do not exist.

p(ok+1 . . . om | o1 . . . ok) =
∑

a,∃`.|a|=`
JaK=ok+1...ok+`

q(a | o1 . . . ok) · p(ok+`+1 . . . om | o1 . . . ok+`) (2)

Note that here, the probability of generating the correct suffix is only conditioned on the sequence
generated so far and not on the concrete actions that yielded it. In practice, we implement this by
conditioning our modelling of q at timestep k on a representation hk computed from the partial
output sequence o1 . . . ok. In RNNs, this is modelled by feeding the sequence of emitted tokens into
the decoder, no matter how the decoder determined to emit these, and thus, one Copy(i : j) action
may cause the decoder RNN to take multiple timesteps to process the copied token sequence. In
causal self-attentional settings, this is simply the default behaviour.

We found that using the marginalisation in Eq. (2) during training is crucial for good results. In
initial experiments, we tried an ablation in which we generate a per-token loss based only on the
correct actions at each output token, without taking the remainder of the sequence into account (i.e.,
at each point in time, we used a “multi-hot” objective in which the loss encourages picking any one
of the correct actions). In this setting, training yielded a decoder which would most often only copy
sequences of length one, as the objective was not penalising the choice of long action sequences
explicitly. Our marginalised objective in Eq. (2) does exactly that, as it explicitly reflects the cost of
having to emit more actions than necessary, pushing the model towards copying longer subsequences.
Finally, note that for numerical stability purposes our implementation works on the log-probability
space as it is common for such methods, implementing the summation of probabilities with the
standard log-sum-exp tricks.

Modelling Action Choices It remains to explain how we model the per-step action distribution
q(a | o). We assume that we have per-token encoder representations r1 . . . rn of all input tokens
and a decoder state hk obtained after emitting the prefix o1 . . . ok−1. This can be the state of an
RNN cell after processing the sequence o1 . . . ok (potentially with attention over the input) or the
representation of a self-attentional model processing that sequence.

As in standard sequence decoders, we use an output embedding projection applied to hk to obtain
scores sk,v for all tokens in the decoder vocabulary. To compute a score for a Copy(i : j) action, we
use a linear layer W to project the concatenation ri‖rj of the (contextualised) embeddings of the
respective input tokens to the same dimension as hk and then compute their inner product:

sk,(i,j) = (W · (ri‖rj)) · h>k

We then concatenate all sk,v and sk,(i,j) and apply a softmax to obtain our action distribution q(a | o).
Note that for efficient computation in GPUs, we compute the sk,(i,j) for all i and j and mask all
entries where j ≤ i.
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Algorithm 1 Python-like pseudocode of beam search for span-copying decoders.

def beam_search(beam_size)
beam = [ {toks: [START_OF_SEQ], prob: 1} ]
out_length = 1
while unfinished_rays(beam):
new_rays = []
for ray in beam:
if len(ray.toks) > out_length or ray.toks[-1] == END_OF_SEQ:
new_rays.append(ray)

else:
for (act, act_prob) in q(· | ray.toks):
new_rays.append({toks: ray.toks ‖ JactK, prob: ray.prob*act_prob})

beam = top_k(group_by_toks(new_rays), k=beam_size)
out_length += 1

return beam

Training Objective We train in the standard supervised sequence decoding setting, feeding to the
decoder the correct output sequence independent of its decisions. We train by maximising p(o | ε)
unrolled according to Eq. (2). One special case to note is that we make a minor but important
modification to handle generation of out-of-vocabulary words: iff the correct token can be copied
from the input, Gen(UNK) is considered to be an incorrect action; otherwise only Gen(UNK) is
correct. This is necessary to avoid pathological cases in which there is no action sequence to generate
the target sequence correctly.

Beam Decoding Our approach to efficiently evaluate Eq. (2) at training time relies on knowledge
of the ground truth sequence and so we need to employ another approach at inference time. We use
a variation of standard beam search which handles the fact that action sequences of the same length
can lead to sequences of different lengths. For this, we consider a forward version of Eq. (2) in which
we assume to have a set of action sequences A and compute a lower bound on the true probability of
a sequence o1 . . . ok by considering all action sequences in A that evaluate to o1 . . . ok:

p(o1 . . . ok) ≥
∑

[a1...an]∈A
Ja1K‖...‖JanK=o1...ok

∏
1≤i≤n

q(ai | Ja1K‖ . . . ‖Jai−1K). (3)

If A contains the set of all action sequences generating the output sequence o1 . . . ok, Eq. (3) is an
equality. At inference time, we under-approximate A by generating likely action sequences using
beam search. However, we have to explicitly implement the summation of the probabilities of action
sequences yielding the same output sequence. This could be achieved by a final post-processing
step (as in Eq. (3)), but we found that it is more effective to “merge” rays generating the same
sequence during the search. In the example shown in Fig. 2, this means to sum up the probabilities
of (for example) the action sequences Gen(a)Gen(b) and Copy(0 : 2), as they generate the same
output. To achieve this grouping of action sequences of different lengths, our search procedure is
explicitly considering the length of the generated token sequence and “pauses” the expansion of
action sequences that have generated longer outputs. We show the pseudocode for this procedure in
Alg. 1, where merging of different rays generating the same output is done using group_by_toks.

3 RELATED WORK

Copying mechanisms are common in neural natural language processing. Starting from pointer net-
works (Vinyals et al., 2015), such mechanisms have been used across a variety of domains (Allamanis
et al., 2016; Gu et al., 2016; See et al., 2017) as a way to copy elements from the input to the output,
usually as a way to alleviate issues around rare, out-of-vocabulary tokens such as names. To our
knowledge, we are the first to suggest a neural model that copies longer spans.

Our method is somewhat related to the work of van Merriënboer et al. (2017), who consider “multi-
scale” generation of sequences using a vocabulary of potentially overlapping word fragments. Doing
this also requires to marginalise out different decoder actions that yield the same output: in their case,
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generating a sequence from different combinations of word fragments, in contrast to our problem of
generating a sequence token-by-token or copying a span. Hence, their training objective is similar
to our objective in Eq. (2). A more important difference is that they use a standard autoregressive
decoder in which the emitted word fragments are fed back as inputs. This creates the problem of
having different decoder states for the same output sequence (dependent on its decomposition into
word fragments), which van Merriënboer et al. (2017) resolve by averaging the states of the decoder
(an RNN using LSTM cells). Instead, we are following the idea of the graph generation strategy
of Liu et al. (2018), where a graph decoder is only conditioned on the partial graph that is being
extended, and not the sequence of actions that generated the graph.

Recently, a number of approaches to sequence generation avoiding the left-to-right paradigm have
been proposed (Welleck et al., 2019; Stern et al., 2019; Gu et al., 2019), usually by considering
the sequence generation problem as an iterative refinement procedure that changes or extends a
full sequence in each iteration step. Editing tasks could be handled by such models by learning
to refine the input sequence with the goal of generating the output sequence. However, besides
early experiments by Gu et al. (2019), we are not aware of any work that is trying to do this. Note
however that our proposed span-copying mechanism is also naturally applicable in settings that
require duplication of parts of the input, e.g. when phrases or subexpressions need to be appear
several times in the output (cf. obj in Figure 3 for a simple example). Finally, sequence-refinement
models could also be extended to take advantage of our technique without large modifications, though
we believe the marginalisation over all possible insertion actions (as in Eq. (2)) to be intractable in
this setting.

An alternative to sequence generation models for edits is the work of Gupta et al. (2017), who propose
to repair source code by first pointing to a single line in the output and then only generate a new
version of that line. However, this requires a domain-specific segmentation of the input – lines are
often a good choice for programs, but (multi-line) statements or expressions are valid choices as well.
Furthermore, the approach still requires to generate a sequence that is similar to the input line and
thus could profit from our span-copying approach.

4 EXPERIMENTAL EVALUATION

We have implemented our span-copying decoder in PyTorch on top of both RNNs and Transformer
models and will release the source code on http://shown/after/double/blind. We eval-
uate the our RNN-based implementation on two types of tasks. First, we consider correction-style
tasks in which a model has to identify an error in an input sequence and then generate an output
sequence that is a corrected version of the input. Second, we evaluate the performance of our models
in the more complex setting of learning edit representations (Yin et al., 2019). In the evaluation be-
low, COPY+SEQ2SEQ denotes a baseline sequence-to-sequence model with (single) token copying,
which is implemented as a simplification of our span-copying model SEQCOPYSPAN.

4.1 CORRECTION TASKS

Correction tasks were one of the core motivations for our new decoding strategy, as they usually
require to reproduce most of the input without changing it, whereas only few tokens are removed,
updated or added. We consider both corrections on source code as well as on natural language.

Code Repair Automated code repair systems (Monperrus, 2018) are commonly composed of
two components, namely a (heuristic) component that suggests potentially fixed versions of the
input, and an oracle (e.g., a harness executing a test suite) that checks the candidates for correctness.
Recent software engineering research has started to implement the heuristic component using seq2seq
models (Chen et al., 2018; Tufano et al., 2019; Lutellier et al., 2019). The models are usually viewed
as language models (conditioned on the faulty code) or directly employ standard neural machine
translation pipelines mapping from “faulty” to “correct” code. The task usually only requires minor
changes to the input code and consequently most of the input is copied into the output. We believe
that our model is a natural match for this setting.

To test this hypothesis, we use the two bug-fix pair (BFP) datasets of Tufano et al. (2019). The
BFPsmall dataset contains pairs where each snippet has at most 50 tokens and the BFPmedium dataset
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Table 1: Evaluation of models on the code repair task. Given an input code snippet, each model needs
to predict a corrected version of that code snippet. “Structural Match” indicates that the generated
output is identical to the target output up to renaming the identifiers (i.e., variables, functions).

Accuracy Accuracy@20 MRR Structural Match

On BFPsmall
Tufano et al. (2019) 9.2% 43.5% — —
COPY+SEQ2SEQ 14.8% 42.0% 0.177 18.2%
SEQCOPYSPAN 17.7% 45.0% 0.247 21.2%
SEQCOPYSPAN (greedy) 15.3% — — 17.9%
SEQCOPYSPAN (merge rays at end) 17.5% 41.6% 0.242 21.2%

On BFPmedium
Tufano et al. (2019) 3.2% 22.2% — —
COPY+SEQ2SEQ 7.0% 23.8% 0.073 9.4%
SEQCOPYSPAN 8.0% 25.4% 0.105 13.7%

Input
Ipublic boolean equals(Object IobjI ){I

I return this.equals(obj);
} I

Output
Ipublic boolean equals( Object obj ){I

if ( IobjI == null)
return false;

I return this.equals(obj);
} I

a1: Copy(1 : 9)

a4: Copy(6 : 7)

a8: Copy(9 : 18)

Figure 3: Generation of a test example in BFPsmall (slightly modified for space and clarity). The
SEQCOPYSPAN model learns to copy long spans while generating the necessary edits. The non-
highlighted tokens in the output are generated using Gen(t), whereas all other tokens are copied from
the input.

has snippets containing from 50 up to 150 tokens. For both the COPY+SEQ2SEQ and SEQCOPYSPAN
models we employ a 2-layer biGRU as an encoder and a single layer GRU decoder. The hidden
dimensions of the GRUs are 128, whereas the embedding layer has a dimensionality of 32. Note
that the vocabulary size for this task is just 400 by construction of the dataset. We employ a Luong-
style (Luong et al., 2015) attention mechanism in the the decoders of both models.

Table 1 shows the results of our models, as well as the original results reported by Tufano et al. (2019).
Overall, the SEQCOPYSPAN model performs better on both datasets, achieving better prediction
accuracy. This suggests that the span-copying mechanism is indeed beneficial in this setting, as it
becomes quite visible in a qualitative analysis. Figure 3 shows an example (slightly modified for
readability) of a code repair prediction and the span-copying actions. In this case, the model has
learned to copy all of the input code in chunks, extending it only by inserting some new tokens in the
middle.

For a quantitative analysis, we additionally compute statistics for the greedy decoding strategy of SE-
QCOPYSPAN.2 In the BFPsmall dataset, SEQCOPYSPAN picks a Copy(· : ·) action with a span longer
than one token about three times per example, copying spans eight tokens long on average (median
six). This suggests that the model has learned to take advantage of the span-copying mechanism,
substantially reducing the number of actions that the decoder needs to perform.

We also find that the COPY+SEQ2SEQ model tends to (mistakenly) assign higher scores to the input
sequence, with the input sequence being predicted as an output more often compared to the span-
copying model: the MRR of the input sentence is 0.74 for the baseline COPY+SEQ2SEQ model
compared to 0.28 for the SEQCOPYSPAN model in the BFPsmall dataset. This suggests that the strong
bias towards copying required of the baseline model (as most of the decoding actions are single-token
copies) has the negative effect of sometimes “forgetting” to generate a change.

2We focus on greedy decoding here, as statistics in the presence of merged rays in the beam easily become
confusing.
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Table 2: Span-based Correction (Bryant et al., 2017): Evaluation on Grammar Error Correction
(GEC) Task. Note that our models use no pretraining, spell checking or other external data, which
are commonly used in GEC tasks.

Precision (%) Recall (%) F0.5

COPY+SEQ2SEQ 34.9 6.4 0.1853
SEQCOPYSPAN 28.9 10.4 0.2134

Finally, we use this task to evaluate our choices in the beam decoding algorithm Alg. 1 on the
BFPsmall dataset (Table 1). First, using only a greedy decoding mechanism achieves an exact match
2.4% less often than our beam search method, indicating that beam decoding is still helpful. Second,
when using a “standard” beam decoding algorithm in which we merge the probabilities of different
rays only in a single post-processing step (i.e. directly implementing Eq. (3)), the accuracy of the
top beam search result is only marginally worse, but the accuracy when considering the full beam is
considerably affected. This is expected, as Alg. 1 ensures that rays are merged earlier, “freeing up”
space in the beam for other results. This suggests that the added computational effort for merging
beams allows the model to generate more diverse hypotheses.

Grammar Error Correction A counterpart to code repair in natural language processing is gram-
mar error correction (GEC). Again, our span-copying model is a natural fit for this task. However, this
is a rich area of research with highly optimised systems, employing a series of pretraining techniques,
corpus filtering, deterministic spell-checkers, etc. We do not wish to compete with existing methods,
but instead are only interested in showing that our method can also benefit systems in this setting.
Instead we compare our SEQCOPYSPAN model to our baseline COPY+SEQ2SEQ model. Our models
have a 2-layer bi-GRU encoder with a hidden size of 64, a single layer GRU decoder with hidden
size of 64, tied embedding layer of size 64 and use a dropout rate of 0.2.

We use training/validation folds of the FCE (Yannakoudakis et al., 2011) and
W&I+LOCNESS (Granger, 1998; Bryant et al., 2019) datasets for training and test on the
test fold of the FCE dataset. Table 2 shows the results computed with the ERRANT evaluation
metric (Bryant et al., 2017), where we can observe that our span-copying decoder again outperforms
the baseline decoder. Note that the results of both models are substantially below those of state of
the art systems (e.g. Grundkiewicz et al. (2019)), which employ (a) deterministic spell checkers (b)
extensive monolingual corpora for pre-training and (c) ensembling.

4.2 EDIT REPRESENTATIONS

We now turn our attention to the task of learning edit representations (Yin et al., 2019). The core idea
of this task is to use an autoencoder-like model structure to learn useful representations of edits of
natural language and source code. The model consists of an edit encoder f∆(x−, x+) to transform
the edit between x− and x+ into an edit representation. Then, a neural editor α(x−, f∆(x−, x+))
uses x− and the edit representation to reconstruct x+ as accurately as possible. We follow the same
structure and employ our SEQCOPYSPAN decoder to model the neural editor α. We perform our
experiments on the datasets used by Yin et al. (2019).

Our editor models have a 2-layer biGRU encoder with hidden size of 64, a single layer GRU decoder
with hidden size of 64, tied embedding layers with a hidden size of 64 and use a dropout rate of 0.2.
In all cases the edit encoder f∆ is a 2-layer biGRU with a hidden size of 64. The GRU decoders of
both models use a Luong-style attention mechanism (Luong et al., 2015).

Editing Wikipedia First, we consider the task of learning edit representations of small edits to
Wikipedia articles (Faruqui et al., 2018).3 Table 3 suggest that the span-copying model achieves a
significantly better performance in predicting the exact edit, even though our (nominally comparable)
COPY+SEQ2SEQ model performs worse than the model used by Yin et al. (2019). Our initial example
in Figure 1 shows one edit example, where the model, given the input text and the edit representation
vector, is able to generate the output by copying two long spans and generating only the inserted

3According to Yin et al. (2019), a part of the data was corrupted and hence used a smaller portion of the data.
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Table 3: Evaluation of models on the edit representation tasks of Yin et al. (2019).

WikiAtomicEdits GitHubEdits C# Fixers

Accuracy Accuracy Accuracy

Yin et al. (2019) 72.9% 59.6% n/a
COPY+SEQ2SEQ 67.8% 64.4% 18.8%
SEQCOPYSPAN 78.1% 67.4% 24.2%

tokens. Note that the WikiAtomicEdits dataset is made up of only insertions and deletions and the
edit shown in Figure 1 is generally representative of the other edits in the test set.

Editing Code We now focus on the code editing task of Yin et al. (2019) on the GitHubEdits
dataset, constructed from code edits scraped from C# GitHub repositories. Again, the results in
Table 3 suggest that our span-based models outperforms the baseline by predicting the edited code
more accurately.

Yin et al. (2019) also use the edit representations for a one-shot learning-style task on a “C# Fixers”
dataset, which are small changes automatically constructed using automatic source code rewrites.
Each edit is annotated with the used rewrite rule so that the dataset can be used to study how well an
edit representation generalises from one sample to another.

As in Yin et al. (2019), we train the models on the larger and more general GitHubEdits dataset. To
evaluate, we compute the edit representation f∆(x−, x+) of one sample of a group of semantically
similar edits in C# Fixers and feed it to the neural editor with the source code of another sample, i.e.,
compute α(x′−, f∆(x−, x+)). We repeat this experiment by picking the first 100 samples per fixer,
computing the edit representation of each one and applying the edit to the other 99. The results of
this process are shown in the last column of Table 3, suggesting that our span-copying models are
able to improve on the one-shot transfer task as well.

Note that these results are not exactly comparable with those presented in Yin et al. (2019), as they
randomly select 10 pairs (x−, x+) , compute their edit representation and then for a given x′− compute
α(x′−, f∆(x−, x+)) for each of the 10 edit representations, finally reporting the best accuracy score
among the 10 candidates. Since this process cannot be replicated exactly due to the randomness of
selecting samples, we opt for an alternate but reproducible process, as described above. Given, that
our SEQCOPYSPAN baseline is on par with the numbers reported in Yin et al. (2019) on the other
tasks, we believe that our SEQCOPYSPAN improves the results. Table 4 in the appendix presents a
breakdown of the performance on the fixer data per fixer, showing that for some fixers our model can
substantially improve accuracy.

5 CONCLUSION

We have presented a span-copying mechanism for commonly used encoder-decoder models. In many
real-life tasks, machine learning models are asked to edit a pre-existing input. Such models can
take advantage of our proposed model. By correctly and efficiently marginalising over all possible
span-copying actions we can encourage the model to learn to take a single span-copying action rather
than multiple smaller per-token actions.

Of course, in order for a model to copy spans, it needs to be able to represent all possible plans which
is O(n2) to the input size. Although this is memory-intensive, O(n2) representations are common in
sequence processing models (e.g. in transformers). In the future, it would be interesting to investigate
alternative span representation mechanisms. Additionally, directly optimising for the target metrics
of each task (rather than negative log-likelihood) can further improve the results for each task.
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Table 4: C# Fixer Accuracy (%) in the One-Shot Generation Task

COPY+SEQ2SEQ SEQCOPYSPAN

@ 1 @ 5 @ 1 @ 5

CA2007 16.8 24.4 36.9 46.5
IDE0004 14.8 20.8 23.5 33.6
RCS1015 24.0 25.3 23.9 26.8
RCS1021 1.8 4.4 7.8 16.8
RCS1032 1.8 2.7 2.5 3.7
RCS1058 20.6 20.9 19.9 22.7
RCS1077 3.2 3.9 4.5 5.8
RCS1089 59.8 59.8 59.8 59.9
RCS1097 1.6 3.7 14.9 27.7
RCS1118 45.1 69.6 46.0 55.6
RCS1123 15.8 19.5 27.7 22.7
RCS1146 12.2 16.5 19.7 31.5
RCS1197 1.1 1.8 1.7 2.3
RCS1202 6.5 8.4 11.6 23.3
RCS1206 34.9 35.0 36.2 37.5
RCS1207 2.1 4.2 5.0 8.2

Table 5: Indicative evaluation of models on CNN/DM summarization.

BLEU ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-L

COPY+SEQ2SEQ 4.48 26.1 9.8 5.3 21.2
SEQCOPYSPAN 7.78 28.8 11.9 6.5 22.9

A APPENDIX

A.1 DETAILED FIXER EVALUATION RESULTS

Table 4 shows a breakdown of the performance of our models on the fixers dataset of Yin et al.
(2019).

A.2 RESULTS ON SEMI-EXTRACTIVE SUMMARIZATION

Abstractive and extractive summarization are two common tasks in NLP. Often abstractive summa-
rization datasets, such as the CNN-Daily Mail corpus (Hermann et al., 2015) resemble extractive
summarization to some extend. Here we aim to show that our SEQCOPYSPAN model can perform
better than standard COPY+SEQ2SEQ models. However, given the time limitations, we do not fully
replicate the summarization baselines and instead choose to use much smaller hidden states (each
GRU has a hidden state of 64), fewer biRNN layers (2 encoder layers), smaller embedding size (of
hidden dimension 64), a relatively small vocabulary (10k elements) etc. Our goal is merely to show
how the two models compare.

Table 5 presents the results on commonly used evaluation metrics, showing that the SEQCOPYSPAN
performs better than the simpler COPY+SEQ2SEQ. The examples in Figure 4 and Figure 5 show
indicative summaries. Here the model learns to “copy-paste” full sentences or phrases to construct
a summary. Note that in all these examples, the action sequence taken by our model is less than 5
actions.
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Text
Scientists hoping to see 13 billion light years away , giving them a look into the early years of the universe, are facing opposition from

Native Hawaiian groups looking to preserve their past. Demonstrators including Game of Thrones actor Jason Momoa demanded the state

and University of Hawaii stop construction of a new $1.4 billion telescope on sacred land. Dozens of protesters were arrested on Thursday

at the Mauna Kea site, a mountain burial ground said to be visited by the snow goddess Poli’Ahu and a Native Hawaiian leader has called for

a 30-day moratorium on construction . Thirty-one people were arrested during protests blocking access to the construction site for the $1.4

billion Thirty Meter Telescope on Mauna Kea in Hawaii. Protesters say that the mountaintop , where scientists are building the facility to see

13billlion years into the past , is on top of sacred burial ground land . ...

Predicted Summary: Dozens of protesters were arrested at the Mauna Kea site in Hawaii.
Actions:

• Copy Span “Dozens of protesters were arrested”
• Copy Span “at the Mauna Kea site”
• Copy Span “in Hawaii”.
• Generate <eos>

Figure 4: Sample 1: Semi-Extractive Summarization

Text
A Sydney teenage girl last seen leaving for school 40 years ago probably ran away and may still be alive , a coronial inquest has found.

Marian Carole Rees was 13 when she disappeared from Hillsdale in southern Sydney in early April 1975 after telling a friend that she had

forgotten something and jumped off her school bus. The teenager often talked of running away from home and had said goodbye to her brother

on the morning she disappeared, Magistrate Sharon Freund said in findings handed down on Thursday. Marion Carole Rees -LRB- pictured

-RRB- who went missing 40 years ago may still be alive, according to an inquest. ...

Predicted Summary: Marian Carole Rees went missing 40 years ago may still be alive.
Actions:

• Copy Span “Marian Carole Rees”
• Copy Span “went missing 40 years ago may still be alive”
• Generate “.”.
• Generate <eos>

Predicted Summary: Marian Carole Rees was 13 when she disappeared from Hillsdale in southern
Sydney in early April 1975
Actions:

• Copy Span “Marian Carole Rees was 13 when she disappeared from Hillsdale in southern
Sydney in early April 1975“
• Generate “.”.
• Generate <eos>

Figure 5: Sample 2: Semi-Extractive Summarization
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