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ABSTRACT

Identifiability, or recovery of the true latent representations from which the ob-
served data originates, is a fundamental goal of representation learning. How-
ever, most deep generative models do not address the question of identifiability,
and cannot recover the true latent sources that generate the observations. Recent
work proposed identifiable generative modelling using variational autoencoders
(iVAE) with a theory of identifiability. However, due to the intractablity of KL di-
vergence between variational approximate posterior and the true posterior, iVAE
has to maximize the evidence lower bound of the marginal likelihood, leading to
suboptimal solutions in both theory and practice. In contrast, we propose an iden-
tifiable framework for estimating latent representations using a flow-based model
(iFlow). Our approach directly maximizes the marginal likelihood, allowing for
theoretical guarantees on identifiability, without the need for variational approx-
imations. We derive its learning objective in analytical form, making it possible
to train iFlow in an end-to-end manner. Simulations on synthetic data validate the
correctness and effectiveness of our proposed method and demonstrate its practi-
cal advantages over other existing methods.

1 INTRODUCTION

A fundamental question in representation learning relates to identifiability: when is it possible to
recover the true latent representations that generate the observed data? Most existing approaches
for deep generative modelling, such as Variational Autoencoders (VAE) (Kingma & Welling, 2013)
and flow-based methods (Kobyzev et al., 2019), focus on learning latent-variable distributions and
generating realistic data samples, but do not address the question of identifiability, i.e. recovering
the true latent representations.

The question of identifiability is closely related to the goal of learning disentangled representa-
tions (Bengio et al., 2013). A disentangled representation is defined as one where individual latent
units are sensitive to changes in single generative factors, while being relatively invariant to nui-
sance factors (Bengio et al., 2013). A good representation for human faces, for example, should
encompass different latent factors that separately encode different characteristics including gender,
hair color, facial expression, etc. By aiming to recover the true latent representation, identifiable
models also allow for principled disentanglement; this suggests that rather than being entangled in
disentanglement learning in a completely unsupervised manner, we go a step further towards iden-
tifiability, since existing literature on disentangled representation learning, such as β-VAE (Higgins
et al., 2017), β-TCVAE (Chen et al., 2018), DIP-VAE (Kumar et al., 2017) and FactorVAE (Kim &
Mnih, 2018) are neither general endeavors to achieve identifiability, nor do they provide theoretical
guarantees on recovering the true latent sources.

Recently, Khemakhem et al. (2019) introduced a theory of identifiability for deep generative models,
based upon which they proposed an identifiable variant of VAEs called iVAE, to learn the distribu-
tion over latent variables in an identifiable manner. However, the downside of learning such an
identifiable model within the VAE framework lies in the intractability of KL divergence between the
approximate posterior and the true posterior. Therefore, in both theory and practice, iVAE inevitably
leads to a suboptimal solution, which, rigorously speaking, renders the learned model unidentifiable.

In this paper, we propose to learn an identifiable generative model through flows (short for normaliz-
ing flows (Tabak et al., 2010; Rezende & Mohamed, 2015)). A normalizing flow is a transformation
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of a simple probability distribution (e.g. a standard normal) into a more complex probability distri-
bution by a composition of a series of invertible and differentiable mappings (Kobyzev et al., 2019).
Hence, they can be exploited to effectively model complex probability distributions. In contrast
to VAEs relying on variational approximations, flow-based models allow for latent-variable infer-
ence and likelihood evaluation in an exact and efficient manner, making them a perfect choice for
identifiability.

To this end, unifying identifiablity with flows, we propose iFlow, a framework for deep latent-
variable models which allows for recovery of the true latent representations from which the observed
data originates. We demonstrate that our flow-based model makes it possible to directly maximize
the conditional marginal likelihood and thus achieves identifiability in a rigorous manner. We pro-
vide theoretical guarantees on the recovery of the true latent representations, and show experiments
on synthetic data to validate the theoretical and practical advantages of our proposed formulation
over previous approaches. We will release our source code shortly.

2 BACKGROUND

The objective of generative models is to model the data distribution, which can be arbitrarily com-
plex. Normalizing Flows are a family of generative models that learns an invertible mapping be-
tween the observed data and certain latent variables over which a tractable distribution is defined.
Formally, let x ∈ X ⊆ Rn be an observed random variable, and z ∈ Z ⊆ Rn a latent variable with
a tractable distribution. Let f be an invertible function such that x = f(z). By using the change of
variable formula, the probability density function (pdf) of x is given by

pX(x) = pZ(h(x))

∣∣∣∣det

(
∂h

∂x

)∣∣∣∣ = pZ(z))

∣∣∣∣det

(
∂f

∂z

)∣∣∣∣−1

where h is the inverse of f . To approximate an arbitrarily complex nonlinear invertible bijection, we
can compose a series of such functions, since the composition of invertible functions is also invert-
ible, and its Jacobian determinant is the product of the individual functions’ Jacobian determinants.
Specifically, let f1, f2, ..., fL be a set of L invertible functions with their corresponding inverses
h1, h2, ..., hL. Then, the probability density function (pdf) of x can be obtained by successively
transforming z through a sequence of L invertible functions fl’s:

x = fL ◦ · · · ◦ f1(z)

log pX(x) = log pZ(z)−
L∑
l=1

log

∣∣∣∣det
∂fl
∂zl

∣∣∣∣
where zl

def
= fl ◦ · · · ◦ f1(z) and zL

def
= x.

3 RELATED WORK

Nonlinear ICA Nonlinear ICA is a fundamental task in unsupervised learning that has attracted a
great amount of attention in recent years. Given the observations alone, it aims to recover the inverse
mixing function as well as their corresponding independent sources. In contrast with the linear case,
research on nonlinear ICA is hampered by the fact that without auxiliary variables, recovering the
independent latents is impossible (Hyvärinen & Pajunen, 1999). Similar impossibility result can
be found in (Locatello et al., 2018). Fortunately, by exploiting additional temporal structure on
the sources, recent work (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2018) established the first
identifiability results for deep latent-variable models. These approaches, however, do not explicitly
learn the data distribution, nor are they capable of generating “fake” data.

Khemakhem et al. (2019) bridged this gap by establishing a principled connection between VAEs
and an identifiable model for nonlinear ICA. Their method with an identifiable VAE (known as
iVAE) approximates the true joint distribution over observed and latent variables under mild condi-
tions. However, due to the intractablity of KL divergence between variational approximate posterior
and the true posterior, iVAE maximizes the evidence lower bound on the data log-likelihood, which
in both theory and practice inevitably leads to suboptimal identifying performance.
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We instead propose identifying through flows (normalizing flow), which maximizes the likelihood in
a straightforward way, providing theoretical guarantees and practical advantages for identifiability.

Normalizing Flows Normalizing Flows are a family of generative approaches that models a data
distribution by learning a bijection from observations to latent codes, and vice versa. Compared
with VAEs which learn a posterior approximation to the true posterior, normalizing flows directly
deal with marginal likelihood with exact inference while maintaining efficient sampling. Formally,
a normalizing flow is a transform of a tractable probability distribution into a complex distribution
by compositing a sequence of invertible and differentiable mappings. In practice, the challenge lies
in designing a normalizing flow that satisfies the following conditions: (1) it should be bijective
and thus invertible; (2) it is efficient to compute its inverse and its Jacobian determinant while
maintaining sufficient capabilities.

The framework of normalizing flows was first defined in (Tabak et al., 2010) and (Tabak & Turner,
2013) and then explored for density estimation in (Rippel & Adams, 2013). Rezende & Mohamed
(2015) applied normalizing flows to variational inference by introducing planar and radial flows.
Since then, various flows have been proposed. Kingma & Dhariwal (2018) parameterizes linear
flows with the LU factorization and “1 × 1” convolutions for the sake of efficient determinant cal-
culation and invertibility of convolution operations. Despite their limits in expressive capabilities,
linear flows serve as essential building blocks of affine coupling flows as in (Dinh et al., 2014;
2016). Kingma et al. (2016) applied autoregressive models as a form of normalizing flows, which
exhibit strong expressiveness in modelling statistical dependencies among variables. However, the
forwarding operation of autoregressive models is inherently sequential, which makes it inefficient
for training. Splines have also been used as building blocks of normalizing flows: Müller et al.
(2018) suggested modelling a linear and quadratic spline as the integral of a univariate monotonic
function for flow construction. Durkan et al. (2019a) proposed a natural extension to the frame-
work of neural importance sampling and also suggested modelling a coupling layer as a monotonic
rational-quadratic spine (Durkan et al., 2019b), which can be implemented either with a coupling
architecture RQ-NSF(C) or with autoregressive architecture RQ-NSF(AR).

The expressive capabilities of normalizing flows and their theoretical guarantee of invertibility make
them a natural choice for recovering the true mixing mapping from sources to observations, and
thus identifiability can be rigorously achieved. In our work, we show that by introducing normaliz-
ing flows it is possible to learn an identifiable latent-variable model with theoretical guarantees of
identifiability.

4 IDENTIFIABLE FLOW

In this section, we first introduce the identifiable latent-variable family and the theory of identifiabil-
ity that makes it possible to recover the joint distribution between observations and latent variables.
Then we derive our model, iFlow, and its optimization objective which leads to principled disentan-
glement with theoretical guarantees of identifiability.

4.1 IDENTIFIABLE LATENT-VARIABLE FAMILY

The primary assumption leading to identifiability is a conditionally factorized prior distribution over
the latent variables, pθ(z|u), where u is an auxiliary variable, which can be the time index in a time
series, categorical label, or an additionally observed variable (Khemakhem et al., 2019).

Formally, let x ∈ X ⊆ Rn and u ∈ U ⊆ Rm be two observed random variables, and z ∈ Z ⊆
Rn a latent variable that is the source of x. This implies that there can be an arbitrarily complex
nonlinear mapping f : Z → X . Assuming that f is a bijection, it is desirable to recover its inverse
by approximating using a family of invertible mappings hφ parameterized by φ. The statistical
dependencies among these random variables are defined by a Bayesian net: u → z → x, from
which the following conditional generative model can be derived:

p(x, z|u; Θ) = p(x|z;φ)p(z|u;T,λ) (1)

where p(x|z;φ)
def
= pε(x−h−1(z)) and p(z|u;T,λ) is assumed to be a factorized exponential fam-

ily distribution conditioned upon u. Note that this density assumption is valid in most cases, since
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the exponential families have universal approximation capabilities (Sriperumbudur et al., 2017).
Specifically, the probability density function is given by

pT,λ(z|u) =

n∏
i=1

pi(zi|u) =
∏
i

Qi(zi)

Zi(u)
exp

[
k∑
j=1

Ti,j(zi)λi,j(u)

]
(2)

where Qi is the base measure, Zi(u) is the normalizing constant, Ti,j’s are the components of
the sufficient statistic and λi,j(u) the natural parameters, critically depending on u. Note that k
indicates the maximum order of statistics under consideration.

4.2 IDENTIFIABILITY THEORY

The objective of identifiability is to learn a model that is subject to:

for each quadruplet (Θ,Θ′,x, z), pΘ(x) = pΘ′(x) =⇒ pΘ(x, z) = pΘ′(x, z) (3)

where Θ and Θ′ are two different choices of model parameters that imply the same marginal density.
One possible way to achieve this objective is to introduce the definition of identifiability up to
equivalence class:
Definition 4.1. (Identifiability up to equivalence class) Let ∼ be an equivalence relation on Θ. A
model defined by p(x, z; Θ) = p(x|z; Θ)p(z; Θ) is said to be identifiable up to ∼ if

pΘ(x) = pΘ′(x) =⇒ Θ ∼ Θ′ (4)

where such an equivalence relation in the identifiable latent-variable family is defined as follows:

Proposition 4.1. (φ, T̃, λ̃) and (φ′, T̃′, λ̃′) are of the same equivalence class if and only if there
exist A and c such that ∀ x ∈ X ,

T(hφ(x)) = AT′(hφ′(x)) + c (5)

where
T̃(z) = (Q1(z1), ..., Qn(zn), T1,1(z1), ..., Tn,k(zn))

λ̃(u) = (Z1(u), ..., Zn(u), λ1,1(u), ..., λn,k(u))

One can easily verify that∼ is an equivalence relation by showing its reflexivity, symmetry and tran-
sitivity. Then, the identifiability of the latent-variable family is given by Theorem 4.1 (Khemakhem
et al., 2019).
Theorem 4.1. Let Z = Z1

⊗
· · ·
⊗
Zn and suppose the following holds: (i) The set {x ∈

X |Ψε(x) = 0} has measure zero, where Ψε is the characteristic function of the density pε; (ii)
The sufficient statistics Ti,j in (2) are differentiable almost everywhere and ∂Ti,j/∂z 6= 0 almost
surely for z ∈ Zi and for all i ∈ {1, ..., n} and j ∈ {1, ..., k}. (iii) There exist (nk + 1) distinct
priors u0, ...,unk such that the matrix

L =

λ1,1(u1)− λ1,1(u0) · · · λ1,1(unk)− λ1,1(u0)
...

. . .
...

λn,k(u1)− λn,k(u0) · · · λn,k(unk)− λn,k(u0)

 (6)

of size nk × nk is invertible. Then, the parameters (φ, T̃, λ̃) are ∼-identifiable.

4.3 OPTIMIZATION OBJECTIVE OF IFLOW

We propose identifying through flows (iFlow) for recovering latent representations. Our proposed
model falls into the identifiable latent-variable family with ε = 0, that is, pε(·) = δ(·), where δ
is a point mass, i.e. Dirac measure. Note that assumption (i) in Theorem 4.1 holds true for iFlow.
In stark contrast to iVAE which resorts to variational approximations and maximizes the evidence
lower bound, iFlow directly maximizes the marginal likelihood conditioned on u:

max
Θ

pX(x|u; Θ) = pZ(hφ(x)|u;θ)

∣∣∣∣det

(
∂hφ

∂x

)∣∣∣∣ (7)

4



Under review as a conference paper at ICLR 2020

where pZ(·|u) is modeled by a factorized exponential family distribution. Therefore, the log
marginal likelihood is given by

log pX(x|u;θ) =

n∑
i=1

(
logQi(zi)− logZi(u) + Ti(zi)

T
λi(u)

)
+ log

∣∣∣∣det

(
∂hφ

∂x

)∣∣∣∣ (8)

where zi is the ith component of the source z = hφ(x), and T and λ are both n-by-k matrices.
Here, hφ is a normalizing flow of any kind. For the sake of simplicity, we set Qi(zi) = 1 for all i’s
and consider maximum order of sufficient statistics of zi’s up to 2, that is, k = 2. Hence, T and λ
are given by

T(z) =


z2

1 z1

z2
2 z2

...
...

z2
n zn

 and λ(u) =


ξ1 η1

ξ2 η2

...
...

ξn ηn

 (9)

Therefore, the optimization objective is to minimize

L(Θ) = E(x,u)∼pD

[( n∑
i=1

logZi(u)

)
− trace

(
T(z)λ(u)T

)
− log

∣∣∣∣det

(
∂hφ

∂x

)∣∣∣∣
]

(10)

where pD denotes the empirical distribution, and the first term in (10) is given by
n∑
i=1

logZi(u) = log

∫
Rn

( n∏
i=1

Qi(zi)

)
exp

(
trace

(
T(z)λ(u)T

))
dz

= log

∫
Rn

exp

( n∑
i=1

ξiz
2
i + ηizi

)
dz

= log

n∏
i=1

∫
R

exp (ξiz
2
i + ηizi)dzi

= log

n∏
i=1

(√
− π
ξi

)
exp

(
− η

2
i

4ξi

)

=

n∑
i=1

(
log

√
− π
ξi
− η2

i

4ξi

)

(11)

In practice, λ(u) can be modelled by a muli-layer perceptron with learnable parameters θ, where
λθ : Rm → R2n. Here, m is the dimension of the space in which u’s lies. Note that ξi should
be strictly negative in order for the exponential family’s probability density function to be finite.
Negative softplus activation can be exploited to force this constraint. Therefore, the optimization
objective has the following closed-form to be optimized:

min
Θ
L(Θ) = E(x,u)∼pD

[
n∑
i=1

(
log

√
− π
ξi
− η2

i

4ξi

)
− trace

(
T(z)λθ(u)T

)
− log

∣∣∣∣det

(
∂hφ

∂x

)∣∣∣∣
]

(12)
where Θ = {θ,φ}.

4.4 IDENTIFIABILITY OF IFLOW

The identifiability of our proposed model, iFlow, is characterized by Theorem 4.2.
Theorem 4.2. Minimizing LΘ with respect to Θ, in the limit of infinite data, learns a model that is
∼-identifiable.

Proof. Minimizing LΘ with respect to Θ is equivalent to maximizing the log conditional like-
lihood, log pX(x|u; Θ). Given infinite amount of data, maximizing log pX(x|u; Θ) will give
us the true marginal likelihood conditioned on u, that is, pX(x|u; Θ̂) = pX(x|u; Θ∗), where
Θ̂ = arg maxΘ log pX(x|u; Θ) and Θ∗ is the true parameter. According to Theorem 4.1, we obtain
that Θ̂ and Θ∗ are of the same equivalence class defined by ∼. Thus, according to Definition 4.1,
the joint distribution parameterized by Θ is identifiable up to ∼.
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Consequently, Theorem 4.2 guarantees a strong identifiablity of our proposed generative model,
iFlow. Note that unlike Theorem 3 in (Khemakhem et al., 2019), Theorem 4.2 makes no assumption
that the family of approximate posterior distributions contains the true posterior. And we show in
experiments that this assumption is unlikely to hold true empirically.

5 SIMULATIONS

To evaluate our method, we run simulations on a synthetic dataset. This section will elaborate on
the details of the generated data set, implementation, evaluation metric and fair comparison with the
existing methods.

5.1 DATASET

We generate a synthetic dataset where the sources are non-stationary Gaussian time-series, as de-
scribed in (Khemakhem et al., 2019): the sources are divided into M segments of L samples each.
The auxiliary variable u is set to be the segment index. For each segment, the conditional prior
distribution is chosen from the exponential family (2), where k = 2, Qi(zi) = 1, and Ti,1(zi) = z2

i ,
Ti,2(zi) = zi, and the true λi,j’s are randomly and independently generated across the segments
and the components such that their variances obey a uniform distribution on [0.5, 3]. The sources to
recover are mixed by an invertible multi-layer perceptron (MLP) whose weight matrices are ensured
to be full rank.

5.2 IMPLEMENTATION DETAILS

The mapping λθ that outputs the natural parameters of the conditional factorized exponential family
is modeled by a multi-layer perceptron with the activation of the last layer being the softplus func-
tion. Additionally, a negative activation is taken on the second-order natural parameters in order to
ensure the density to be finite. The bijection hφ is modeled by RQ-NSF(AR) (Durkan et al., 2019b)
with the flow length of 10 and the bin 8, which gives rise to sufficient flexibility and expressiveness.
For each training iteration, we use a mini-batch of size 64, and an Adam optimizer with learning
rate chosen in {0.01, 0.001} to optimize the learning objective (12).

5.3 EVALUATION METRIC

As a standard measure used in ICA, the mean correlation coefficient (MCC) between the original
sources and the corresponding predicted latents is chosen to be the evaluation metric. A high MCC
indicates the strong correlation between the identified latents recovered and the true sources. In
experiments, we found that such a metric can be sensitive to the synthetic data generated by different
random seeds. We argue that unless one specifies the overall generating procedure including random
seeds in particular any comparison remains debatable. This is crucially important since most of the
existing works failed to do so. Therefore, we run each simulation of different methods through seed
1 to seed 100 and report averaged MCCs with standard deviations, which makes the comparison fair
and meaningful.

5.4 COMPARISON AND RESULTS

We compare our model, iFlow, with iVAE. These two models are trained on the same aforementioned
synthetic dataset, with M = 40, L = 1000, n = d = 5. For visualization, we also apply another
setting with M = 40, L = 1000, n = d = 2. To evaluate iVAE’s identifying performance, we use
the original implementation that is officially released1 with exactly the same settings as described in
(Khemakhem et al., 2019).

First, we demonstrate a visualization of identifiablity of these two models in a 2-D case (n = d =
2) as illustrated in Figure 1, in which we plot the original sources (latent), observations and the
identified sources recovered by iFlow and iVAE, respectively. Segments are marked with different
colors. Clearly, iFlow outperforms iVAE in identifying the original sources while maintaining the

1https://github.com/ilkhem/iVAE/
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(a) (b)

(c) (d)

Figure 1: Visualization of 2-D cases (better viewed in color).

(a) (b)

Figure 2: Comparison of identifying performance (MCC) and the energy value (likelihood in loga-
rithm) versus seed number, respectively.

original geometry of source manifold. It is evident that the learned prior of iFlow bears much higher
resemblance to the generating prior than that of iVAE in the presence of some trivial indeterminacies
of scaling, global sign and permutation of the original sources, which are inevitable even in some
cases of linear ICA. This exhibits consistency with the definition of identifiability up to equivalence
class that allows for existence of an affine transformation between sufficient statistics, as described
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Figure 3: Comparison of identifying performance (correlation coefficient) in each single dimension
of the latent space, respectively. The dashed cyan line represents the source signal.

in Proposition 4.1. As shown in Figure 1(a), 1(c), and 1(d), iVAE achieves inferior identifying
performance in the sense that its estimated priors tend to retain the manifold of the observations.
Notably, we also find that despite the relatively high MCC performance of iVAE in Figure 1(d),
iFlow is much more likely to recover the true geometric manifold in which the latent sources lie.
In Figure 1(b), iVAE’s estimated prior collapses in face of a highly nonlinearly mixing case, while
iFlow still works well in identifying the sources. Note that these are not rare occurrences. More
visualization examples can be found in Appendix A.2.

Second, regarding quantitative results as shown in Figure 2(a), our model, iFlow, consistently out-
performs iVAE in MCC by a considerable margin across different random seeds under consideration
while experiencing less uncertainty (standard deviation as indicated in the brackets). Moreover, Fig-
ure 2(b) also demonstrates that the energy value of iFlow is much higher than that of iVAE, which
serves as evidence that the optimization of the evidence lower bound, as in iVAE, would lead to
suboptimal identifiability. The gap between the evidence lower bound and the conditional marginal
likelihood is inevitably far from being negligible in practice. For clearer analysis, we also report the
correlation coefficients for each source-latent pair in each dimension. As shown in Figure 3, iFlow
exhibits much stronger correlation than does iVAE in each single dimension of the latent space.

Finally, we investigate the impact of different choices of activation for generating natural param-
eters of the exponential family distribution (see Appendix A.1 for details). All of these choices
are valid since theoretically the natural parameters form a convex space. However, iFlow(Softplus)
achieves the highest identifying performance, suggesting that the range of softplus allows for greater
flexibility, which makes itself a perfect choice for our network design.

6 CONCLUSION

Among the most significant goals of unsupervised learning is to learn the disentangled representa-
tions of observed data, or to identify original latent codes that generate observations (i.e. identifia-
bility). Bridging the theoretical and practical gap of rigorous identifiability, we propose to identify
through flows, which directly maximizes the marginal likelihood conditioned on auxiliary variables,
establishing a natural framework for recovering original independent sources. In theory, our con-
tribution provides a rigorous proof of identifiability and hence the recovery of the joint distribution
between observed and latent variables that leads to principled disentanglement. Empirically, our
approach also shows practical advantages over previous methods.
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A APPENDIX

A.1 ABLATION STUDY ON ACTIVATIONS FOR NATURAL PARAMETERS

Figure A.1 demonstrates the comparison of MCC of iFlows implemented with different nonlinear
activations for natural parameters and that of iVAE, in which relu+eps denotes the ReLU activation
added by a small value (e.g. 1e-5) and sigmoid×5 denotes the Sigmoid activation multiplied by 5.

Figure 4: Comparison of MCC of iFlows implemented with different nonlinear activations for natu-
ral parameters and that of iVAE (better viewed in color).

A.2 VISUALIZATION OF 2D CASES
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Visualization of 2-D cases (i) (better viewed in color).
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(g) (h)

Figure 6: Visualization of 2-D cases (ii) (better viewed in color).
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Figure 7: Visualization of 2-D cases (iii) (better viewed in color).
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Figure 8: Visualization of 2-D cases (iv) (better viewed in color).
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