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ABSTRACT

Measuring Mutual Information (MI) between high-dimensional, continuous, ran-
dom variables from observed samples has wide theoretical and practical applica-
tions. Recent works have developed accurate MI estimators through provably low-
bias approximations and tight variational lower bounds assuming abundant supply
of samples, but require an unrealistic number of samples to guarantee statistical
significance of the estimation. In this work, we focus on improving data efficiency
and propose a Data-Efficient MINE Estimator (DEMINE) that can provide a tight
lower confident interval of MI under limited data, through adding cross-validation
to the MINE lower bound (Belghazi et al., 2018). Hyperparameter search is em-
ployed and a novel meta-learning approach with task augmentation is developed
to increase robustness to hyperparamters, reduce overfitting and improve accu-
racy. With improved data-efficiency, our DEMINE estimator enables statistical
testing of dependency at practical dataset sizes. We demonstrate the effectiveness
of DEMINE on synthetic benchmarks and real world fMRI data, with application
of inter-subject correlation analysis.

1 INTRODUCTION

Mutual Information (MI) is an important, theoretically grounded measure of similarity between ran-
dom variables. MI captures general, non-linear, statistical dependencies between random variables.
MI estimators that estimate MI from samples are important tools widely used in not only subjects
such as physics and neuroscience, but also machine learning ranging from feature selection and
representation learning to explaining decisions and analyzing generalization of neural networks.

Existing studies on MI estimation between general random variables focus on deriving asymptotic
lower bounds and approximations to MI under infinite data, and techniques for reducing estima-
tor bias such as bias correction, improved signal modeling with neural networks and tighter lower
bounds. Widely used approaches include the k-NN-based KSG estimator (Kraskov et al., 2004) and
the variational lower-bound-based MINE estimator family (Belghazi et al., 2018; Poole et al., 2018).

Despite the empirical and asymptotic bias improvements, MI estimation has not seen wide adop-
tion. The challenges are two-fold. First, the analysis of dependencies among variables - let alone
any MI analyses for scientific studies - requires not only an MI estimate, but also confidence inter-
vals (Holmes & Nemenman, 2019) around the estimate to quantify uncertainty and statistical sig-
nificance. Existing MI estimators, however, do not provide confidence intervals. As low probability
events may still carry a significant amount of information, the MI estimates could vary greatly given
additional observations (Poole et al., 2018). Towards providing upper and lower bounds of true MI
under limited number of observations, existing MI lower bound techniques assume infinite data and
would need further relaxations when a limited number of observations are provided. Closest to our
work, Belghazi et al. (2018) studied the lower bound of the MINE estimator under limited data, but
it involves bounds on generalization error of the signal model and would not yield useful confidence
intervals for realistic datasets. Second, practical MI estimators should be insensitive to the choice
of hyperparameters. An estimator should return a single MI estimate with its confidence interval
irrespective of the type of the data and the number of observations. For learning-based approaches,
this means that the model design and optimization hyperparameters need to not only be determined
automatically but also taken into account when computing the confidence interval.

Towards addressing these challenges, our estimator, DEMINE, introduces a predictive MI lower
bound for limited samples that enables statistical dependency testing under practical dataset sizes.
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Our estimator builds on top of the MINE estimator family, but performs cross-validation to remove
the need to bound generalization error. This yields a much tighter lower bound agnostic to hyper-
parameter search. We automatically selected hyperparameters through hyperparameter search, and
a new cross-validation meta-learning approach is developed, based upon few-shot meta-learning,
to automatically decide initialization of model parameters. Meta-overfitting is strongly controlled
through task augmentation, a new task generation approach for meta-learning. With these improve-
ments, we show that DEMINE enables practical statistical testing of dependency for not only syn-
thetic datasets but also for real world functional Magnetic Resonance Imaging (fMRI) data analysis
capturing nonlinear and higher-order brain-to-brain coupling.

Our contributions are summarized as follows: 1) A data-efficient Mutual Information Neural Esti-
mator (DEMINE) for statistical dependency testing; 2) A new formulation of meta-learning using
Task Augmentation (Meta-DEMINE); 3) Application to real life, data-scarce applications (fMRI).

2 RELATED WORK

2.1 MI ESTIMATION

A widely used approach for estimating MI from samples is using k-NN estimates, notably the KSG
estimator (Kraskov et al., 2004). Gao et al. (2017) provided a comprehensive review and studied
the consistency and of asymptotic confidence bound of the KSG estimator (Gao et al., 2018). MI
estimation can also be achieved by estimating individual entropy terms through kernel density es-
timation (Ahmad & Lin, 1976) or cross-entropy (McAllester & Statos, 2018). Despite their good
performance on random variables with few dimensions, MI estimation on high-dimensional random
variables remains challenging for commonly used Gaussian kernels. Fundamentally, estimating
MI requires accurately modeling the random variables, where high-capacity neural networks have
shown excellent performance on complex high-dimensional signals such as text, image and audio.

Recent works on MI estimation have focused on developing tight asymptotic variational MI lower
bounds where neural networks are used for signal modeling. The IM algorithm (Agakov, 2004)
introduces a variational MI lower bound, where a neural network q(z|x) is learned as a variational
approximation to the conditional distribution P (Z|X). The IM algorithm requires the entropy,
H(Z), andEXZ log q(z|x) to be tractable, which applies to latent codes of Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs) as well as categorical variables. Belghazi
et al. (2018) introduces MI lower bounds MINE and MINE-f which allow the modeling of general
random variables and shows improved accuracy for high-dimensional random variables, with appli-
cation to improving generative models. Poole et al. (2018) introduces a spectrum of energy-based
MI estimators based on MINE and MINE-f lower bounds and a new TCPC estimator for the case
when multiple samples from P (Z|X) can be drawn.

Our work introduces cross-validation to the MINE-f estimator. We derive the lower bound of MINE-f
under limited number of samples, and introduce meta-learning and hyperparameter search to enable
practical statistical dependency testing.

2.2 META LEARNING

Meta-learning, or “learning to learn”, seeks to improve the generalization capability of neural net-
works by searching for better hyperparameters (Maclaurin et al., 2015), network architectures (Pham
et al., 2018), initialization (Finn et al., 2017a; 2018; Kim et al., 2018) and distance metrics (Vinyals
et al., 2016; Snell et al., 2017). Meta-learning approaches have shown significant performance im-
provements in applications such as automatic neural architecture search (Pham et al., 2018), few-shot
image recognition (Finn et al., 2017a) and imitation learning (Finn et al., 2017b).

In particular, our estimator benefits from the Model-Agnostic Meta-Learning (MAML) (Finn et al.,
2017a) framework which is designed to improve few-shot learning performance. A network initial-
ization is learned to maximize its performance when fine-tuned on few-shot learning tasks. Appli-
cations include few-shot image classification and navigation.

We leverage the model-agnostic nature of MAML for MI estimation between generic random vari-
able and adopt MAML for maximizing MI lower bounds. To construct a collection of diverse tasks
for MAML learning from limited samples, inspired by MI’s invariance to invertible transformations,
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we propose a task-augmentation protocol to automatically construct tasks by sampling random trans-
formations to transform the samples. Results show reduced overfitting and improved generalization.

3 BACKGROUND

In this section, we will provide the background necessary to understand our approach1. We define
X and Z to be two random variables, P (X,Z) is the joint distribution, and P (X) and P (Z) are
the marginal distributions over X and Z respectively. Our goal is to estimate MI, I(X;Z) given
independent and identically distributed (i.i.d.) sample pairs (xi, zi), i = 1, 2 . . . n from P (X,Z).
Let F = {Tθ(x, z)}θ∈Θ be a class of scalar functions, where θ is the set of model parameters. Let
q(x|z) = p(x) eTθ(x,z)

E(x,z)∼PXZ e
Tθ(x,z)

. Results from previous works (Belghazi et al., 2018; Poole et al.,

2018) show that the following energy-based family of lower bounds of MI hold for any θ:

I(X;Z) ≥ E(x,z)∼PXZ log q(x|z)
p(x)

= E(x,z)∼PXZTθ(x, z)− Ex∼PX logEz∼PZ e
Tθ(x,z) , IEB1

≥ E(x,z)∼PXZTθ(x, z)− logEx∼PX ,z∼PZ e
Tθ(x,z) , IMINE

≥ E(x,z)∼PXZTθ(x, z)− Ex∼PX ,z∼PZ e
Tθ(x,z) + 1 , IMINE-f,IEB

(1)

where, E is the expectation over the given distribution. Based on IMINE, the MINE estimator
I(X,Z)
∧

n is defined as in Eq.2. Estimators for IEB1, IMINE-f and IEB can be defined similarly.

I(X;Z)
∧

n = sup
θ∈Θ

1

n

n∑
i=1

Tθ(xi, zi)− log
1

n2

n∑
i=1

n∑
j=1

eTθ(xi,zj). (2)

With infinite samples to approximate expectation, Eq.2 converges to the lower bound I(X,Z)
∧

∞ =
supθ∈Θ IMINE. Note that the number of samples n needs to be substantially more than the number
of model parameters d = |θ| to guarantee that Tθ(X,Y ) does not overfit to the samples (xi, zi),
i = 1, 2 . . . n and overestimate MI. Formally, the sample complexity of MINE is defined as the
minimum number of samples n in order to achieve Eq.3,

Pr(|I(X,Z)
∧

n − I(X,Z)
∧

∞| ≤ ε) ≥ 1− δ. (3)

Specifically, MINE proves that under the following assumptions: 1) Tθ(X,Z) is L-Lipschitz; 2)
Tθ(X,Z) ∈ [−M,M ], 3) {θi ∈ [−K,K], ∀i ∈ 1, . . . , d}, the sample complexity of MINE is
given by Eq.4.

n ≥ 2M2(d log(16KL
√
d/ε) + 2dM + log(2/δ))

ε2
. (4)

For example, a neural network with dimension d = 10, 000, M = 1, K = 0.1 and L = 1, achieving
a confidence interval of ε = 0.1 with 95% confidence (δ = 0.05) would require n ≥ 18, 756, 256
samples. This is achievable for synthetic example generated by GANs like that studied in Belghazi
et al. (2018). For real data, however, the cost of data acquisition for reaching statistically significant
estimation can be prohibitively expensive. Our approach instead uses the MI lower bounds specified
in Eq.1 from a prediction perspective, inspired by cross-validation. Our estimator, DEMINE, im-
proves sample complexity by disentangling data for lower bound estimation from data for learning
a generalizable Tθ(X,Z). DEMINE enables high-confidence MI estimation on small datasets.

4 APPROACH

Section 4.1 specifies DEMINE for predictive MI estimation and derives the confidence interval;
Section 4.2 formulates Meta-DEMINE, explains task augmentation, and defines the optimization
algorithms.

4.1 PREDICTIVE MUTUAL INFORMATION ESTIMATION

In DEMINE, we interpret the estimation of MINE-f lower bound2 Eq.1 as a learning problem. The
goal is given a limited number of samples, infer the optimal network Tθ∗(X,Z) with parameters θ∗

1We follow the same notations in Belghazi et al. (2018). We encourage the review of Belghazi et al. (2018);
Poole et al. (2018) for a detailed understanding of IMINE, IEB1, and IEB.

2MINE lower bound can also be interpreted in the predictive way, but will result in a higher sample com-
plexity than MINE-f lower bound. We choose MINE-f in favor of a lower sample complexity over bound
tightness.
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Algorithm 1 DEMINE

Input Data: {(x, z)train, (x, z)val}
Parameters: Batch B, Iterations NO, Learning rate η
Output: MI, Tθ(X,Z)

1: θ(0) ← Xavier Initialization (Glorot & Bengio, 2010)
2: for i = 1 : NO do
3: Sample a batch of (xi, zi)B ∼ (x, z)train

4: Compute L
(
(xi, zi)B, θ

(i−1)
)

5: Compute∇(i)
θ L – gradient for θ

6: Update θ(i) using Adam (Kingma & Ba, 2014) with η
7: end for
8: MI = I(X,Z)
∧

n,θ(NO)

9: return MI, θ(NO)

defined as follows:

θ∗ = argmax
θ∈Θ

EPXZTθ(X,Z)− EPXEPZeTθ(X,Z) + 1.

Specifically, samples from P (X,Z) are subdivided into a training set {(xi, zi)train, i = 1, . . . ,m}
and a validation set {(xi, zi)val, i = 1, . . . , n}. The training set is used for learning a network θ̃ as
an approximation to θ∗ whereas the validation set is used for computing the DEMINE estimation
I(X,Z)
∧

n,θ̃ defined as in Eq.5.

I(X,Z)
∧

n,θ̃ =
1

n

n∑
i=1

Tθ̃(xi, zi)val −
1

n2

n∑
i=1

n∑
j=1

eTθ̃(xi,zj)val + 1 (5)

We propose an approach to learn θ̃, DEMINE. DEMINE learns θ̃ by maximizing the MI lower
bound on the training set as follows:

θ̃ = argmin
θ∈Θ

L({(x, z)}train, θ),where,

L({(x, z)}B, θ) = −
1

|B|

|B|∑
i=1

Tθ(xi, zi)B +
1

|B|2

|B|∑
i=1

|B|∑
j=1

eTθ(xi,zj)B − 1. (6)

The DEMINE algorithm is shown in Algorithm 1.

Sample complexity analysis. Because θ̃ is learned independently of validation samples
{(xi, zi)val, i = 1, . . . , n}, the sample complexity of the DEMINE estimator does not involve the
model class F and the sample complexity is greatly reduced compared to MINE-f. DEMINE esti-
mates I(X,Z)
∧

∞,θ̃ when infinite number of samples are provided, defined as:

I(X,Z)
∧

∞,θ̃ = EPXZTθ̃(X,Z)− EPXEPZ e
T
θ̃
(X,Z) + 1

≤ supθ∈Θ EPXZTθ(X,Z)− EPXEPZ e
Tθ(X,Z) + 1 ≤ I(X;Z)

(7)

We now derive the sample complexity of DEMINE defined as the number of samples n required for
I(X,Z)
∧

n,θ̃ to be a good approximation to I(X,Z)
∧

∞,θ̃ in Theorem 1.

Theorem 1. For Tθ̃(X,Z) bounded by [L,U ], given any accuracy ε and confidence δ, we have:

Pr(|I(X,Z)
∧

n,θ̃ − I(X,Z)
∧

∞,θ̃| ≤ ε) ≥ 1− δ

when the number of validation samples n satisfies:

n ≥ n∗, s.t. f(n∗) ≡ min
0≤ξ≤ε

2e
− 2ξ2n∗

(U−L)2 + 4e
− (ε−ξ)2n∗

2(eU−eL)2 = δ (8)
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Proof. Since Tθ̃(X,Z) is bounded by [L,U ], applying the Hoeffding inequality to the first half of
Eq.5 yields:

Pr(| 1
n

n∑
i=1

Tθ̃(xi, zi)− EPXZTθ̃(X,Z)| ≥ ξ) ≤ 2e
− 2ξ2n

(U−L)2

As eTθ(X,Z) is bounded by [eL, eU ], applying the Hoeffding inequality twice to the second half of
Eq.5:

Pr(|EPXEPZ e
Tθ(X,Z) − 1

n

∑n
i=1 EPZ e

T
θ̃
(xi,z)| ≥ ζ) ≤ 2e

− 2ζ2n

(eU−eL)2

Pr(|EPZ 1
n

∑n
i=1 e

Tθ(xi,z) − 1
n

∑n
j=1

1
n

∑n
i=1 e

T
θ̃
(xi,zj)| ≥ ζ) ≤ 2e

− 2ζ2n

(eU−eL)2

Combining the above bounds results in:

Pr(|I(X,Z)
∧

n,θ̃ − I(X,Z)
∧

∞,θ̃| ≤ ξ + 2ζ) ≥ 1− 2e
− 2ξ2n

(U−L)2 − 4e
− 2ζ2n

(eU−eL)2

By solving ξ to minimize n according to Eq.8 we have:

Pr(|I(X,Z)
∧

n,θ̃ − I(X,Z)
∧

∞,θ̃| ≤ ε) ≥ 1− δ. �

Theorem 1 also implies the following MI lower confidence interval under limited number of samples

Pr(I(X;Z) ≥ I(X,Z)
∧

n,θ̃ − ε) ≥ 1− δ

Compared to MINE, as per the example shown in Section 3, for M = 1 (i.e. L = −1 and U =
1), δ = 0.05, ε = 0.1, our estimator requires n = 10, 742 compared to MINE requiring n =
18, 756, 256 i.i.d validation samples to estimate a lower bound, which makes MI-based dependency
analysis feasible for domains where data collection is prohibitively expensive, e.g. fMRI scans. In
practice, sample complexity can be further optimized by optimizing hyperparameters U and L.

Note that unlike Eq.3, Theorem 1 bounds the closeness of the DEMINE estimate, I(X,Z)
∧

n,θ̃, not to-

wards the MI lower bound supθ∈Θ IMINE-f, but towards the MI lower bound I(X,Z)
∧

∞,θ̃. Therefore,
the sample complexity of DEMINE as in Eq.8 makes fair comparison with the sample complexity of
MINE as in Eq.4. MINE’s higher sample complexity stems from the need to bound the generaliza-
tion error of Tθ(X,Z) on unseen {(x, z)}. Existing generalization bounds are known to be overly
loose, as over-parameterized neural networks have been shown to generalize well in classification
and regression tasks (Zhang et al., 2016). By using a learning-based formulation, DEMINE not only
avoids the need to bound generalization error, but also allows further generalization improvements
by learning θ̃ through meta-learning.

In the following section, we present a meta-learning formulation, Meta-DEMINE, that learns θ̃ for
generalization given the same model class and training samples.

4.2 META-LEARNING

Given training data {(xi, zi)train, i = 1, . . .m}, Meta-DEMINE first generates MI estimation tasks
each consisting of a meta-training split A and a meta-val split B through a novel task augmenta-
tion process. And then a parameter initialization θinit is then learned to maximize MI estimation
performance on the generated tasks using initialization θinit as shown in Eq.9.

θinit = argmin
θ(0)∈Θ

E(A,B)∈T L((x, z)B, θ
(t)),with , θ(t) ≡ MetaTrain

(
(x, z)A, θ

(0)
)
. (9)

Here θ(t) = MetaTrain
(
(x, z)A, θ

(0)
)

is the meta-training process of starting from an initialization
θ(0) and applying Stochastic Gradient Descent (SGD) 3 over t steps to learn θ where in every meta
training iteration we have:

θ(t) ← θ(t−1) − γ∇L((x, z)A, θ
(t−1)).

3In practice, the Adam optimizer (Kingma & Ba, 2014) is used for faster optimization. The Adam optimizer
uses first and second order momentums of the gradient to speed up optimization. Illustrating SGD for simplicity.
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Finally, θ̃ is learned using the entire training set {(xi, zi)train, i = 1, . . . ,m} with θinit as initializa-
tion:

θ̃ = MetaTrain
(
(x, z)train, θinit

)
.

Task Augmentation: Meta-DEMINE adapts MAML (Finn et al., 2017a) for MI lower bound max-
imization. MAML has been shown to improve generalization performance in N -class K-shot im-
age classification. MI estimation, however, does not come with predefined classes and tasks. A
naive approach to produce tasks would be through cross-validation – partitioning training data into
meta-training and meta-validation splits. However, merely using cross-validation tasks is prone to
overfitting – a θinit, which memorizes all training samples would as a result have memorized all meta-
validation splits. Instead, Meta-DEMINE generates tasks by augmenting the cross-validation tasks
through task augmentation. Training samples are first split into meta-training and meta-validation
splits, and then transformed using the same random invertible transformation to increase task diver-
sity. Meta-DEMINE generates invertible transformation by sequentially composing the following
functions:

Mirror : m(x) = (2n− 1)x, n ∼ Bernoulli( 1
2
),

Permute : P (x) =
n

P d, Permute dimensions.
Offset : O(x) = x+ ε, ε ∼ U(−0.1, 0.1),
Gamma : G(x) = sign(x) |x|γ , γ ∼ U(0.5, 2),

Since the MI between two random variables is invariant to invertible transformations on each vari-
able, MetaTrain(·, ·) is expected to arrive at the same MI lower bound estimation regardless of the
transformation applied. At the same time, memorization is greatly suppressed, as the same pair
(x, z) can have different log p(x,z)

p(x)p(z) under different transformations. More sophisticated invertible
transformations (affine, piece-wise linear) can also be added. Task augmentation is an orthogonal
approach to data augmentation. Using image classification as an example, data augmentation gener-
ates variations of the image, translated, or rotated images assuming that they are valid examples of
the class. Task augmentation on the other hand, does not make such an assumption. Task augmenta-
tion requires the initial parameters θinit to be capable of recognizing the same class in a world where
all images are translated and/or rotated, with the assumption that the optimal initialization should
easily adapt to both the upright world and the translated and/or rotated world.

Optimization: Solving θinit using the meta-learning formulation Eq.9 poses a challenging optimiza-
tion problem. The commonly used approach is back propagation through time (BPTT) which com-
putes second order gradients and directly back propagates gradients from MetaTrain((x, z)A, θ

(0))
to θinit. BPTT is very effective for a small number of optimization steps, but is vulnerable to explod-
ing gradients and is memory intensive. In addition to BPTT, we find that stochastic finite difference
algorithms such as Evolution Strategies (ES) (Salimans et al., 2017) and Parameter-Exploring Pol-
icy Gradients (PEPG) (Sehnke et al., 2010) can sometimes improve optimization robustness. In
practice, we switch betwen BPTT and PEPG depending on the number of meta-training iterations.
Meta-DEMINE algorithm is specified in Algorithm 2.

5 EVALUATION ON SYNTHETIC DATASETS

Dataset. We evaluate our approaches DEMINE and Meta-DEMINE against baselines and state-of-
the-art approaches on 3 synthetic datasets: 1D Gaussian, 20D Gaussian and sine wave. For 1D and
20D Gaussian datasets, following Belghazi et al. (2018), we define two k-dimensional multivariate
Gaussian random variables X and Z which have component-wise correlation corr(Xi, Zj) = δijρ,
where ρ ∈ (−1, 1) and δij is Kronecker’s delta. Mutual information I(X;Z) has a closed form
solution I(X;Z) = −k ln(1 − ρ2). For the sine wave dataset, we define two random variables X
and Z, where X ∼ U(−1, 1), Z = sin(aX + π

2 ) + 0.05ε, and ε ∼ N (0, 1). Estimating mutual
information accurately given few pairs of (X,Z) requires the ability to extrapolate the sine wave
given few examples. Ground truth MI for sine wave dataset is approximated by running the the
KSG Estimator (Kraskov et al., 2004) on 1, 000, 000 samples.

Implementation. We compare our estimators, DEMINE and Meta-DEMINE, against the KSG
estimator (Kraskov et al., 2004) MI-KSG and MINE-f (Belghazi et al., 2018). For both DEMINE
and Meta-DEMINE, we study variance reduction mode, referred to as -vr, where hyperparameters
are selected by optimizing 95% confident estimation mean (µ − 2σµ) and statistical significance
mode, referred to as -sig, where hyperparameters are selected by optimizing 95% confident MI
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Algorithm 2 Meta-DEMINE

Input Data: {(x, z)train, (x, z)val}
Parameters: batch B, Meta Learning Iterations NM , Task Augmentation Iterations NT , Opti-
mization Iterations NO, Ratio r, Learning rate η, Meta Learning Rate ηmeta
Output: MI, Tθinit(X,Z), Tθ(X,Z)

1: for i = 1 : NM do
2: for j = 1 : NT do
3: A = r × train, B = train−A
4: Split (x, z)train into (x, z)A and (x, z)B
5: Transformation Rx for x, Rx(·) = m(P(O(G(·))))
6: Transformation Rz for z, Rz(·) = m(P(O(G(·))))
7: θ

(0)
meta ← θinit

8: for k = 1 : NO do
9: Sample a batch of (x, z)B ∼ (x, z)A

10: Compute L
(
(Rx(x), Rz(z))B, θ

(k)
meta
)

11: Compute∇
θ
(k)
meta
L – gradient for θmeta

12: Update θmeta using Adam Kingma & Ba (2014) with η
13: end for
14: Compute Lmeta

(
(Rx(x), Rz(z))B, θ

(NO)
meta

)
15: Compute∇θ0Lmeta – gradient to θinit using BPTT
16: end for
17: Update θinit using Adam Kingma & Ba (2014) with ηmeta
18: end for
19: θ(0) ← θinit
20: for i = 1 : NO do
21: Sample a batch of (x, z)B ∼ (x, z)train

22: Compute L
(
(x, z)B, θ

(i)
)

23: Compute gradient∇θL
24: Update θ using Adam with η
25: end for
26: Compute MI = L

(
(x, z)val, θ

(NO)
)

27: return MI, θinit, θ(NO)

lower bound (µ − ε). Samples (x, z) are split 50%-50% into (x, z)train and (x, z)val. We use a
separable network architecture Tθ(x, z) =M

(
tanh(w cos

〈
f(x), g(z)

〉
+ b)− t

)
. f and g are MLP

encoders that embed signals x and z into vector embeddings. Hyperparameters t ∈ [−1, 1] and
M control upper and lower bounds Tθ(x, z) ∈ [−M(1 + t),M(1 − t)]. Parameters w and b are
learnable parameters. MLP design and optimization hyperparameters are selected using Bayesian
hyperparameter optimization (Bergstra et al., 2013) described below.

Hyperparameter search on DEMINE-vr and DEMINE-sig was conducted using the hyperopt pack-
age 4. Seven hyperparameters were involved in hyperparameter search: 1) number of encoder layers
[1, 5], 2) encoder hidden size [8, 256], 3) learning rate η [10−4, 3× 10−1] in log scale, 4) number of
optimization iterations NO [5, 200] (sine wave [5, 5000]) in log scale, 5) batch size B [256, 1024],
6) M , [10−3, 5] in log scale, 7) t, [−1, 1]. Mean µ and sample standard deviation σ of MI estiamte
computed over 3-fold cross-validation on (x, z)train. DEMINE-vr maximizes two sigma low µ−2σµ
where σµ = 1√

3
σ due to 3-fold cross-validation. DEMINE-sig maximizes statistical significance

µ− ε where ε is two-sided 95% confidence interval of MI. Meta-DEMINE-vr and Meta-DEMINE-
sig subsequently reuse these hyperparameters as DEMINE-vr and DEMINE-sig.

Meta-learning hyperparameters are chosen as outer loop NM = 3, 000 iterations, task augmentation
NT = 1 iterations, r = 0.8, ηmeta =

η
3 , with task augmentation mode m(P (O(·))). NO was capped

at 30 iterations for 1D and 20D Gaussian datasets due to memory limit. For the sine wave datasets
with large NO, we used PEPG (Sehnke et al., 2010) rather than BPTT.

4Hyperopt package: https://github.com/hyperopt/hyperopt.
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For MI-KSG, we use off-the-shelf implementation by Gao et al. (2017) with default number of
nearest neighbors k = 3. MI-KSG does not provide any confidence interval. For MINE-f, we use the
same network architecture same as DEMINE-vr. we implement both the original formulation which
optimizes Tθ on (x, z) till convergence (10k iters), as well as our own implementation MINE-f-ES
with early stopping, where optimization is stopped after the same number of iterations as DEMINE-
vr to control overfitting.

Results. Figure 1(a) shows MI estimation performance on 20D Gaussian datasets with varying
ρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} using N = 300 samples. Results are averaged over 5 runs to compare
estimator bias, variance and confidence. Note that Meta-DEMINE-sig detects the highest p < 0.05
confidence MI, outperforming DEMINE-sig which is a close second. Both detect p < 0.05 statisti-
cally significant dependency starting ρ = 0.3, whereas estimations of all other approaches are low
confidence. It shows that in contrary to common belief, estimating the variational lower bounds with
high confidence can be challenging under limited data. MINE-f estimates MI > 3.0 and MINE-f-ES
estimates positive MI when ρ = 0, both due to overfitting, despite MINE-f-ES having the lowest
empirical bias. DEMINE variants have relatively high empirical bias but low variance due to tight
upper and lower bound control, which provides a different angle to understand bias-variance trade
off in MI estimation (Poole et al., 2018).

Figure 1(b,c,d) shows MI estimation performance on 1D, 20D Gaussian and sine wave datasets with
fixed ρ = 0.8, 0.3 and a = 8π respectively, with varyingN ∈ {30, 100, 300, 1000, 3000} number of
samples. More samples asymptotically improves empirical bias across all estimators. As opposed to
1D Gaussian datasets which are well solved byN = 300 samples, higher-dimensional 20D Gaussian
and higher-complexity sine wave datasets are much more challenging and are not solved using N =
3000 samples with a signal-agnostic MLP architecture. DEMINE-sig and Meta-DEMINE-sig detect
p < 0.05 statistically significant dependency on not only 1D and 20D Gaussian datasets where x
and z have non-zero correlation, but also on the sine wave datasets where correlation between x and
z is 0. This means that DEMINE-sig and Meta-DEMINE-sig can be used for nonlinear dependency
testing to complement linear correlation testing.

We study the effect of cross-validation meta-learning and task augmentation on 20D Gaussian with
ρ = 0.3 and N = 300. Figure 2 plots performance of Meta-DEMINE-vr over NM = 3000
meta iterations under combinations of task augmentations modes and number of adaptation iter-
ations NO ∈ {0, 20}. Overall, task augmentation modes which involve axis flipping m(·) and
permutation P (·) are the most successful. With NO = 20 steps of adaptation, task augmentation
modes P (·), m(P (·)) and m(P (O(·))) prevent overfitting and improves performance. The perfor-
mance improvements of task augmentation is not simply from change in batch size, learning rate
or number of optimization iterations, because meta-learning without task augmentation for both
NO = 0 and 20 could not outperform baseline. Meta-learning without task augmentation and with
task augmentation but using only O(·) or G(·) result in overfitting. Task augmentation with m(·) or
m(P (O(G(·)))) prevent overfitting, but do not provide performance benefits, possibly because their
complexity is insufficient or excessive for 20 adaptation steps. Further more, task augmentation with
no adaptation (NO = 0) falls back to data augmentation, where samples from transformed distribu-
tions are directly used to learn Tθ(x, z). Data augmentation withO(·) outperforms no augmentation,
but is unable to outperform baseline and suffers from overfitting. It shows that task augmentation
provides improvements orthogonal to data augmentation.

6 APPLICATION: FMRI INTER-SUBJECT CORRELATION (ISC) ANALYSIS

Humans use language to effectively transmit brain representations among conspecifics. For exam-
ple, after witnessing an event in the world, a speaker may use verbal communication to evoke neural
representations reflecting that event in a listener’s brain (Hasson et al., 2012). The efficacy of this
transmission, in terms of listener comprehension, is predicted by speaker-listener neural synchrony
and synchrony among listeners (Stephens et al., 2010). To date, most work has measured brain-
to-brain synchrony by locating statistically significant inter-subject correlation (ISC); quantified as
the Pearson product-moment correlation coefficient between response time series for corresponding
voxels or regions of interest (ROIs) across individuals (Hasson et al., 2004; Schippers et al., 2010;
Silbert et al., 2014; Nastase et al., 2019). Using DEMINE and Meta-DEMINE for statistical de-
pendency testing, we can extend ISC analysis to capture nonlinear and higher-order interactions in
continuous fMRI responses. Specifically, given synchronized fMRI response frames in two brain
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(a) 20D Gaussian dataset, N = 300 samples (b) 1D Gaussian dataset, ρ = 0.8

(c) 20D Gaussian dataset, ρ = 0.3 (d) Sine wave dataset, a = 8π

Figure 1: Comparing MI Estimation performance of DEMINE and Meta-DEMINE with the KSG
estimator Kraskov et al. (2004) and MINE-f Belghazi et al. (2018) on different datasets using varying
number of samples. The bars show estimator mean and standard deviation averaged over 5 runs
with different seeds. The error bars show 95% confidence interval (not available for MI-KSG). The
statistical significance focused variants DEMINE-sig and Meta-DEMINE-sig achieves the highest
95% confident MI estimation. Meta-DEMINE improves over DEMINE most of the time.

(a) Meta-DEMINE-vr NO = 0. (b) Meta-DEMINE-vr NO = 10. (c) Meta-DEMINE-vr NO = 20.

Figure 2: To study the effect of task augmentation and number of adaptation steps, we run Meta-
DEMINE-vr with different task augmentation modes and vary number of adaptation iterations
NO ∈ {0, 10, 20} on Gaussian 20D, ρ = 0.3 dataset. Combinations of permutation and mirror-
ing operations are effective in reducing overfitting and improving performance.
Table 1: Number of HCP-MMP1
regions with significant correla-
tion (r) and MI (DEMINE, Meta-
DEMINE) during listening.

No. shared r DEMINE Meta
-sig -DEMINE

-sig

r 37 24 23
DEMINE-sig 24 28 26
Meta-DEMINE-sig 23 26 29

Table 2: Segment classification accuracy for NeuralMI versus
Pearson’s correlation in 1-vs-rest*.

Classification ISC Mask dDMN Mask
Accuracy (%) P F Br Bk MI P F Br Bk MI

Chance 3.7 1.8 2.6 1.9 N/A 3.7 1.8 2.6 1.9 N/A
Pearson’s r 1vR 35.0 20.4 25.8 31.5 N/A 14.8 6.4 11.8 9.9 N/A
DEMINE-vr 1vR 42.8 28.0 32.8 35.9 0.637 16.5 7.9 11.6 12.0 0.035
Meta-DEMINE-vr 1vR 47.2 32.5 39.9 41.0 0.752 13.7 7.9 8.2 8.9 0.031

Abbreviations: P: Pieman; F: Forgot; Br: Bronx; Bk: Black, MI: Mutual Information.
*Note that all the results are averaging over the subjects.
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regions X and Z across K subjects Xi, Zi, i = 1, . . . ,K as random variables. We model the condi-
tional mutual information I(Xi;Zj |i 6= j) as the MI form of pair-wise ISC analysis. By definition,
I(Xi;Zj |i 6= j) first computes MI between activationsXi and Zj from subjects i and j respectively,
and then average across pairs of subjects i 6= j. It can be lower bounded using Eq. 7 by learning a
Tθ(x, z) shared across all subject pairs.

Dataset. We study MI-based and correlation-based ISC on a fMRI story comprehension dataset
by Nastase et al. (2019) with 40 participants listening to four spoken stories. Average story duration
is 11 minutes. An fMRI frame with full brain coverage is captured at repetition time 1 TR =1.5 sec-
onds with 2.5mm isotropic spatial resolution. We restricted our analysis to subsets of voxels defined
using independent data from previous studies: functionally-defined masks of high ISC voxels (ISC;
3,800 voxels) and dorsal Default-Mode Network voxels (dDMN; 3,940 voxels) from Simony et al.
(2016) as well as 180 HCP-MMP1 multimodal cortex parcels from Glasser et al. (2016). All masks
were defined in MNI space.

Implementation. We compare MI-based ISC using DEMINE and Meta-DEMINE with correlation-
based ISC using Pearson’s correlation. DEMINE and Meta-DEMINE setup follows Section Sec-
tion 5. The fMRI data were partitioned by subject into a train set of 20 subjects and a validation
set of 20 different subjects. Residual 1D CNN is used instead of MLP as the encoder for studying
temporal dependency. For Pearson’s correlation, high-dimensional signals are reshaped to 1D for
correlation analysis.

Results. We first examine, for the fine grained HCM-MMP1 brain regions, which have p < 0.05
statistically significant MI and Pearson’s correlation. Table 1 shows the result. Overall, more re-
gions have statistically significant correlation than dependency. This is expected because correlation
requires less data to detect. But Meta-DEMINE is able to find 6 brain regions that have statistically
significant dependency but lacks significant correlation. This shows that MI analysis can be used to
complement correlation-based ISC analysis.

By considering temporal ISC over time, fMRI signals can be modeled with improved accuracy. In
Table 2 we apply DEMINE and Meta-DEMINE with L = 10TRs (15s) sliding windows as random
variables to study amount of information that can be extracted from ISC and dDMN masks. We use
between-subject time-segment classification (BSC) for evaluation (Haxby et al., 2011; Guntupalli
et al., 2016). Each fMRI scan is divided into K non-overlapping L = 10 TRs time segments. The
BSC task is one versus rest retrieval: retrieve the corresponding time segment z of an individual
given a group of time segments x excluding that individual, measured by top-1 accuracy. For re-
trieval score, Tθ(X,Z) is used for DEMINE and Meta-DEMINE and ρ(X,Z) is used for Pearson’s
correlation as a simple baseline. With CNN as encoder, DEMINE and Meta-DEMINE model the
signal better and achieve higher accuracy. Also. Meta-DEMINE is able to extract 0.75 nats of MI
from the ISC mask over 10 TRs or 15s, which could potentially be improved by more samples.

7 CONCLUSION

We illustrated that a predictive view of the MI lower bounds coupled with meta-learning results in
data-efficient variational MI estimators, DEMINE and Meta-DEMINE, that are capable of perform-
ing statistical test of dependency. We also showed that our proposed task augmentation reduces over-
fitting and improves generalization in meta-learning. We successfully applied MI estimation to real
world, data-scarce, fMRI datasets. Our results suggest a greater avenue of using neural networks and
meta-learning to improve MI analysis and applying neural network-based information theory tools
to enhance the analysis of information processing in the brain. Model-agnostic, high-confidence, MI
lower bound estimation approaches – including MINE, DEMINE and Meta-DEMINE– are limited
to estimating small MI lower bounds up to O(logN) as pointed out in (McAllester & Statos, 2018),
where N is the number of samples. In real fMRI datasets, however, strong dependency is rare and
existing MI estimation tools are limited more by their ability to accurately characterize the depen-
dency. Nevertheless, when quantitatively measuring strong dependency, cross-entropy (McAllester
& Statos, 2018) or model-based quantities, alternatives to MI, such as correlation or CCA, may be
measured with high confidence.
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A APPENDIX

Additional Details of the fMRI Dataset The dataset we used contains 40 participants (mean age
= 23.3 years, standard deviation = 8.9, range: 1853; 27 female) recruited to listen to four spoken
stories56. The stories were renditions of “Pie Man” and “Running from the Bronx” by Jim OGrady
(O’Grady, 2018b;a), “The Man Who Forgot Ray Bradbury” by Neil Gaiman (Gaiman, 2018), and
“I Knew You Were Black” by Carol Daniel (Daniel, 2018); story durations were 7, 9, 14, and
13 minutes, respectively. After scanning, participants completed a questionnaire comprising 25-
30 questions per story intended to measure narrative comprehension. The questionnaires included
multiple choice, True/False, and fill-in-the-blank questions, as well as four additional subjective
ratings per story. Functional and structural images were acquired using a 3T Siemens Prisma with
a 64-channel head coil. Briefly, functional images were acquired in an interleaved fashion using
gradient-echo echo-planar imaging with a multiband acceleration factor of 3 (TR/TE = 1500/31 ms
where TE stands for “echo time”, resolution = 2.5 mm isotropic voxels, full brain coverage).

All fMRI data were formatted according to the Brain Imaging Data Structure (BIDS) standard (Gor-
golewski et al., 2016) and preprocessed using the fMRIPrep library (Esteban et al., 2018). Functional
data were corrected for slice timing, head motion, and susceptibility distortion, and normalized to
MNI space using nonlinear registration. Nuisance variables comprising head motion parameters,
framewise displacement, linear and quadratic trends, sine/cosine bases for high-pass filtering (0.007
Hz), and six principal component time series from cerebrospinal fluid (CSF) and white matter (WM)
were regressed out of the signal using the Analysis of Functional NeuroImages (AFNI) software
suite (Cox, 1996).

The fMRI data compriseX ∈ RVi×T for each subject, where Vi represents the flattened and masked
voxel space and T represents the number of samples (in TRs) during auditory stimulus presentation.

Additional Details on Dataset Collection Functional and structural images were acquired using
a 3T Siemens Magnetom Prisma with a 64-channel head coil. Functional, blood-oxygenation-level-
dependent (BOLD) images were acquired in an interleaved fashion using gradient-echo echo-planar
imaging with pre-scan normalization, fat suppression, a multiband acceleration factor of 3, and
no in-plane acceleration: TR/TE = 1500/31 ms, flip angle = 67◦, bandwidth = 2480 hz per pixel,
resolution = 2.5 mm3 isotropic voxels, matrix size = 96 x 96, Field of view (FoV) = 240 x 240
mm, 48 axial slices with roughly full brain coverage and no gap, anteriorposterior phase encoding.
At the beginning of each scanning session, a T1-weighted structural scan (where T1 stands for
“longitudinal relaxation time”), was acquired using a high-resolution single-shot Magnetization-
Prepared 180 degrees radio-frequency pulses and RApid Gradient-Echo (MPRAGE) sequence with
an in-plane acceleration factor of 2 using GeneRalized Autocalibrating Partial Parallel Acquisition
(GRAPPA): TR/TE/TI = 2530/3.3/1100 ms where TI stands for inversion time, flip angle = 7◦,
resolution = 1.0 x 1.0 x 1.0 mm voxels, matrix size = 256 x 256, FoV = 256 x 256 x 176 mm, 176
sagittal slices, ascending acquisition, anteriorposterior phase encoding, no fat suppression, 5 min
53 s total acquisition time. At the end of each scanning session a T2-weighted (where T2 stands
for “transverse relaxation time”) structural scan was acquired using the same acquisition parameters
and geometry as the T1-weighted structural image: TR/TE = 3200/428 ms, 4 minutes 40 seconds
total acquisition time. A field map was acquired at the beginning of each scanning session, but was
not used in subsequent analyses.

Additional Details on Dataset Preprocessing Preprocessing was performed using the fMRIPrep
library7 Esteban et al. (2018), a Nipype library8 (Gorgolewski et al., 2011) based tool. T1-weighted
images were corrected for intensity non-uniformity using the N4 bias field correction algorithm
(Tustison et al., 2010) and skull-stripped using Advanced Normalization Tools (ANTs) (Avants
et al., 2008). Nonlinear spatial normalization to the International Consortium for Brain Mapping
(ICBM) 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) was performed
using ANTs. Brain tissue segmentation cerebrospinal fluid, white matter, and gray matter was

5Two of the stories were told by a professional storyteller undergoing an fMRI scan; however, fMRI data
for the speaker were not analyzed for the present work due to the head motion induced by speech production.

6The study was conducted in compliance with the Institutional Review Board of the University
7https://github.com/poldracklab/fmriprep
8https://github.com/nipy/nipype
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was performed using FSL library’s9 FAST tool Zhang et al. (2001). Functional images were slice
timing corrected using AFNI software’s 3dTshift (Cox, 1996) and corrected for head motion us-
ing FSL library’s MCFLIRT tool (Jenkinson et al., 2002). “Fieldmap-less” distortion correction
was performed by co-registering each subject’s functional image to that subject’s intensity-inverted
T1-weighted image (Wang et al., 2017) constrained with an average field map template (Treiber
et al., 2016). This was followed by co-registration to the corresponding T1-weighted image using
FreeSurfer software’s10 boundary-based registration (Greve & Fischl, 2009) with 9 degrees of free-
dom. Motion correcting transformations, field distortion correcting warp, BOLD-to-T1 transforma-
tion and T1-to-template (MNI) warp were concatenated and applied in a single step with Lanczos
interpolation using ANTs. Physiological noise regressors were extracted applying “a Component
Based Noise Correction Method” aCompCor (Behzadi et al., 2007). Six principal component time
series were calculated within the intersection of the subcortical mask and the union of CSF and
WM masks calculated in T1w (T1 weighted) space, after their projection to the native space of each
functional run. Framewise displacement (Power et al., 2014) was calculated for each functional
run. Functional images were downsampled to 3 mm resolution. Nuisance variables comprising six
head motion parameters (and their derivatives), framewise displacement, linear and quadratic trends,
sine/cosine bases for high-pass filtering (0.007 Hz cutoff), and six principal component time series
from an anatomically-defined mask of cerebrospinal fluid and white matter were regressed out of
the signal using AFNI’s 3dTproject (Cox, 1996). Functional response time series were z-scored for
each voxel.

9https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
10https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
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