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ABSTRACT

Contract bridge is a multi-player imperfect-information game where one partner-
ship collaborate with each other to compete against the other partnership. The
game consists of two phases: bidding and playing. While playing is relatively
easy for modern software, bidding is challenging and requires agents to learn
a communication protocol to reach the optimal contract jointly, with their own
private information. The agents need to exchange information to their partners, and
interfere opponents, through a sequence of actions. In this work, we train a strong
agent to bid competitive bridge purely through selfplay, outperforming WBridge5,
a championship-winning software. Furthermore, we show that explicitly modeling
belief is not necessary in boosting the performance. To our knowledge, this is the
first competitive bridge agent that is trained with no domain knowledge. It outper-
forms previous state-of-the-art that use human replays with 70x fewer number of
parameters.

1 INTRODUCTION

Games have long been recognized as a testbed for reinforcement learning. Recent technology
advancements have outperformed top level experts in perfect information games like Chess (Campbell
et al., 2002) and Go (Silver et al., 2016; 2017), through human supervision and selfplay. During recent
years researchers have also steered towards imperfection information games, such as Poker (Brown
& Sandholm, 2018; Moravčík et al., 2017), Dota 2 1, and real-time strategy games (Arulkumaran
et al., 2019; Tian et al., 2017). There are multiple programs which focus specifically in card games.
Libratus (Brown & Sandholm, 2018) and DeepStack (Moravčík et al., 2017) outperforms human
experts in two-player Texas Holdem. Bayesian Action Decoder (Foerster et al., 2018b) is able to
achieve near optimal performance in multi-player collaborative games like Hanabi.

Contract Bridge, or simply Bridge, is a trick-taking card game with 2 teams, each with 2 players.
There are 52 cards (4 suits, each with 13 cards). Each player is dealt with 13 cards. The game has
two phases: bidding and playing. In the bidding phase, each player can only see their own card and
negotiate in turns via proposing contract, which sets an explicit goal to aim at during the playing stage.
High contracts override low ones. Players with stronger cards aim at high contracts for high reward;
while failing to reach the contract, the opponent team receives rewards. Therefore, players utilize the
bidding phase to reason about their teammate and opponents’ cards for a better final contract. In the
playing phase, one player reveals their cards publicly. In each round, each player plays one card in
turn and the player with best card wins the round. The score is simply how many rounds each team
can win. We introduce the game in more detail in Appendix A.

Historically AI programs can handle the playing phase well. Back in 1999, the GIB program (Gins-
berg, 1999) placed 12th among 34 human experts partnership, in a competition without the bidding
phase. In more recent years, Jack 2 and Wbridge5 3, champions of computer bridge tournament, has
demonstrated strong performances against top level professional humans.

1https://openai.com/blog/openai-five/
2http://www.jackbridge.com/eindex.htm
3http://www.wbridge5.com/
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On the other hand, the bidding phase is very challenging for computer programs. During the bidding
phase a player can only access his own 13 cards (private information) and the bidding history (public
information). They need to exchange information with their partners and try to interfere opponents
from doing so through a sequences of non-decreasing bids. Moreover these bids also carry the
meaning of suggesting a contract. If the bid surpasses the highest contract they can make, they
will get negative score and risk of being doubled. Thus, the amount of information exchange is
constrained and dependent on the actual hands. Nevertheless the state space is very large. A player
can hold6:35 � 1011 unique hands and there are1047 possible bidding sequences. Human has
designed a lot of hand-crafted rules and heuristics to cover these cases, called bidding system, and
designated a meaning to many common bidding sequences. However, due to large state space, the
meaning of these sequences are sometimes ambiguous or con�icting. The bidding system itself also
has room for improvement. The award winning programs often implement a subset of some speci�ed
human bidding system. Recently, there are also attempts to learn such a bidding system automatically
through reinforcement learning. These methods either focus on bidding in the collaborative only
setting, where both opponents will bid PASS throughout (Tian et al., 2018; Yeh & Lin, 2016), or
heavily used human expert data for extra supervision (Rong et al., 2019).

In this work, we propose a system that is the state-of-the-art in competitive bridge bidding. It allows
end-to-end training without any human knowledge through selfplay. We propose a novel bidding
history representation, and remove any explicit modeling of belief in other agent's state, which are
shown to be critical in previous works (Rong et al., 2019; Tian et al., 2018). We show that selfplay
schedule and details are critical in learning imperfect information games. We use a much smaller
model (about 1/70 in total parameters compared with previous state-of-the-art (Rong et al., 2019)),
and reach better performance than the baselines (Rong et al., 2019; Yeh & Lin, 2016). Furthermore,
we outperform world computer bridge championship Wbridge5 by 0.41 IMPs per board over a
tournament of 64 boards. Finally, we show an interpretation of the trained system, and will open
source the code, model, and experimental data we use.

2 RELATED WORK

Imperfect information games, especially card games, have drawn multiple researchers' attention. Prior
works on two-player Texas Holdem mainly focus on �nding the Nash Equilibrium through variations
of counterfactual regret minimization (Zinkevich et al., 2008). Libratus (Brown & Sandholm, 2018)
utilizes nested safe subgame solving and handles off-tree actions by real time computing. It also has
a built-in self improver to enhance the background blueprint strategy. DeepStack (Morav�cík et al.,
2017) proposed to use a value network to approximate the value function of the state. They both
outperform top human experts in the �eld. Bayesian Action Decoder (BAD)(Foerster et al., 2018b)
proposes to model public belief and private belief separately, and sample policy based on an evolving
deterministic communication protocol. This protocol is then improved through Bayesian updates.
BAD is able to reach near optimal results in two-player Hanabi, outperforming previous methods by
a signi�cant margin.

In recent years there are also multiple works speci�cally focusing on contract bridge. Yeh and Lin
(Yeh & Lin, 2016) uses deep reinforcement learning to train a bidding model in the collaborative
setting. It proposes Penetrative Bellman's Equation (PBE) to make the Q-function updates more
ef�cient. The limitation is that PBE can only handle �xed number of bids, which are not realistic
in a normal bridge game setting. We refer to this approach asbaseline16 . Tian et al (Tian et al.,
2018) proposes Policy Belief Learning (PBL) to alternate training between policy learning and belief
learning over the whole selfplay process. PBL also only works on the collaborative setting. Rong et
al (Rong et al., 2019) proposes two networks, Estimation Neural Network (ENN) and Policy Neural
Network (PNN) to train a competitive bridge model. ENN is �rst trained supervisedly from human
expert data, and PNN is then learned based on ENN. After learning PNN and ENN from human
expert data, the two network are further trained jointly through reinforcement learning and selfplay.
PBE claims to be better than Wbridge5 in the collaborative setting, while PNN and ENN outperforms
Wbridge5 in the competitive setting. We refer to this approach asbaseline19 .

Selfplay methods have been proposed for a long time. Back in 1951, Brown et al (Brown, 1951)
proposes �ctitious play in imperfect information games to �nd the Nash Equilibrium. This is a
classic selfplay algorithm in game theory and inspires many extensions and applications (Brown
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& Sandholm, 2018; Heinrich et al., 2015; Heinrich & Silver, 2016; Morav�cík et al., 2017). Large
scale selfplay algorithms do not emerge until recent years, partially due to computation constraint.
AlphaGo (Silver et al., 2016) uses selfplay to train a value network to defeat the human Go champion
Lee Sedol 4:1. AlphaGoZero (Silver et al., 2017) and AlphaZero (Silver et al., 2018) completely
discard human knowledge and train superhuman models from scratch. In Dota 2 and StarCraft,
selfplay is also used extensively to train models to outperform professional players.

Belief modeling is also very critical in previous works about imperfect information games. Besides
the previous mentioned card game agents (Foerster et al., 2018b; Rong et al., 2019; Tian et al., 2018),
LOLA agents (Foerster et al., 2018a) are trained with anticipated learning of other agents. StarCraft
Defogger (Synnaeve et al., 2018) also tries to reason about states of unknown territory in real time
strategy games.

3 METHOD

3.1 PROBLEM SETUP

We focus on the bidding part of the bridge game. Double Dummy Solver (DDS)4 computes the
maximum tricks each side can get during the playing phase if all the plays are optimal. Previous
works show that DDS is a good approximate to human expert real plays (Rong et al., 2019), so we
directly use the results of DDS at the end of bidding phase to assign reward to each side. The training
dataset contains randomly generated 2.5 million hands along with their precomputed DDS results.
The evaluation dataset contains 100k such hands. We will open source this data for the community
and future work.

Inspired by the format of duplicate bridge tournament, during training and evaluation, each hand is
played twice, where a speci�c partnership sits North-South in one game, and East-West in another.
The difference in the results of the two tables is the �nal reward. In this way, the impact of randomness
in the hands is reduced to minimum and model's true strength can be better evaluated. The difference
in scores is then converted to IMPs scale, and then normalized to [-1, 1].

3.2 INPUT REPRESENTATION

We encode the state of a bridge game to a 267 bit vector. The �rst 52 bits indicate that if the current
player holds a speci�c card. The next 175 bits encodes the bidding history, which consists of 5
segments of 35 bits each. These 35 bit segments correspond to 35 contract bids. The �rst segment
indicates if the current player has made a corresponding bid in the bidding history. Similarly, the
next 3 segments encodes the contract bid history of the current player's partner, left opponent and
right opponent. The last segment indicates that if a corresponding contract bid has been doubled
or redoubled. Since the bidding sequence can only be non-decreasing, the order of these bids are
implicitly conveyed. The next 2 bits encode the current vulnerability of the game, corresponding
to the vulnerability of North-South and East-West respectively. Finally, the last 38 bits indicates
whether an action is legal, given the current bidding history.

We emphasize that this encoding is quite general and there is not much domain-speci�c information.
baseline19 presents a novel bidding history representation using positions in the maximal possible
bidding sequence, which is highly speci�c to the contract bridge game.

Figure 1: Input representation. With the decision point shown in the example, South will mark
the following bits in the bidding history encoding: 1~ in "Own" segment, 1| and 2| in "Partner"
segment,1• in "Left Opp" segment, and1| in "Double Indicator" segment.

4https://github.com/dds-bridge/dds
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Figure 2: Network Architecture. Supervision from partner's hand is unused in the main results, and
used in the ablation studies. BCELoss stands for Binary Cross Entropy Loss.

3.3 NETWORK

We use a similar network structure that is used inbaseline19 . As show in Figure 2, the network
consists of an initial fully connected layer, then 4 fully connected layer with skip connections added
every 2 layers to get a latent representation. We use 200 neurons at each hidden layer, so it is much
smaller (about 1/70 in parameter size compared withbaseline19 ). The full network architecture
is shown In Figure 2. However, during our training we do not use partner's information to further
supervise the belief training. We investigate the impact of training belief separately, and �nd that our
model cannot bene�t from extra supervision from partner's information.

From the latent representation, one branch is to a policy head. It is a fully connected layer to 38
output neurons, masking out illegal actions provided in the input, and then normalizes to a log policy.
The other branch is a value head, which is just a fully connected layer to 1 neuron.

3.4 TRAINING DETAILS

RL Method and Platform Implementation . We use selfplay on random data to train our models.
The model is trained with A3C (Mnih et al., 2016) using improved ELF framework (Tian et al., 2017).
ELF supports off-policy training with importance factor correction, and has inherent parallelization
implementations to make training fast. We implement contract bridge game logic and feature
extraction logic in C++. Each game thread has 2 agent groups, namely training agent and opponent
agent. Each agent group has a corresponding batcher. Once an agent needs an action, the current state
and feature is sent to the batcher in ELF. ELF uses pybind to communicate between C++ and python.
If batcher gathers enough data from different game threads for a speci�c actor group, the batch is
forwarded to python for a pytorch model to evaluate. The results are then returned to the C++ game
thread through pybind. ELF supports zero-copy during this process. During the selfplay training,
the model of training agent actor group keeps updating, while the model of opponent agent actor
group updates only whenopponent update frequency condition is met. We implement an
additional interface to track the full game trajectory. Once the game �nishes, the interface receives a
terminal �ag with a reward signal. It �lls all the history state / action pairs with the correct discounted
rewards. This whole episode is then sent to the ELF train batcher to perform the actor critic update.
The whole training process takes roughly 4-5 hours to converge on a single GPU.

Training Parameters. During training we run 500 games in parallel and use batch size of 100.
We use an entropy ratio of 0.01 in A3C training. The discount factor is set to 1 to encourage
longer sequences of information exchange, and since the bidding is non-decreasing, it will not cause
convergence issue. We train the model using RMSProp with a learning rate of 1e-3. We �ne tune our
model by dropping learning rate to 1e-4 at 50k training minibatches and further dropping it to 1e-5 at
70k minibatches. During training we use multinominal exploration to get the action from a policy
distribution, and during evaluation we pick the greedy action from the model.
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Table 1: Performance Comparison. The left table compares performance when giving different
weights to the belief loss and the performance when using the same history encoding as (Rong et al.,
2019). The right table shows performance under different level of diversity of opponent models, by
updating the opponent model at different frequency or sample opponent model randomly or using
Nash Equilibrium.

A

Ratio r imps� std

0 2.31� 0.15
0.01 1.90� 0.29
0.1 1.63� 0.27
1 1.22� 0.22

Hist encoding

baseline19 hist 1.27� 0.22

B

Update frequency imps� std

1 2.26� 0.10
50 2.14� 0.20
100 2.08� 0.07
200 2.31� 0.15

Opponent Diversity

Randomly sample 2.09� 0.04
Nash averaging 2.18� 0.20

Figure 3: Training curves for different update frequency. From left to right, the opponent model is
updated every 1, 50, 100, 200 minibatches. Epoch is de�ned as 200 minibatches.

Baselines. As suggested by the authors ofbaseline16 , we modify their pretrained model to bid
competitively, by bidding PASS if the cost of all bids are greater than 0.2. We implement this and
further �x its weakness that the model sometimes behaves randomly in a competitive setting if the
scenario can never occur in a collaborative setting. We benchmark against them at each episode. We
could not fully reproduce the results inbaseline19 so we cannot directly compare against them.

4 EXPERIMENTS

4.1 MAIN RESULTS

We train a competitive bridge bidding model through selfplay. We perform a grid search on hyper-
parameters such as discount factor, exploring rate, learning schedules and �nd the best combination.
The training curve againstbaseline16 is shown in Figure 3. As can be seen, we signi�cantly beat
baseline16 2.31 IMPs per board. We manually run a 64 board tournament against Wbridge5, and
outperforms it by 0.41 IMPs per board. The standard error over these 64 boards are 0.27 IMPs per
board, which translate to 93.6% win probability in a standard match. This also surpasses the previous
state-of-the-artbaseline19 , which outperforms Wbridge5 by 0.25 IMPs per board. It is shown in
previous work that a margin of 0.1 IMPs per board is signi�cant (Rong et al., 2019).

We outperformbaseline16 with a large margin partially due tobaseline16 cannot adapt
well to competitive bidding setting. It can also only handle a �xed length of bids. We outperform
baseline19 mainly due to a better history encoding and not to model belief explicitly. These
results are shown in the ablation studies.

4.2 ABLATION STUDIES

Prior works focus on explicitly modeling belief, either by adding an auxiliary loss to train jointly (Rong
et al., 2019), or alternating stages between training policy and belief (Tian et al., 2018). However,
training belief using supervision from partner's hand does not help in our model. We set the �nal
loss asL = rL belief + L A 3C . wherer is a hyper-parameter to control the weight on the auxiliary
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Figure 4: Statistical visualization. (a) Bidding length histogram. (b) Heatmap for all actions during
the bidding. (c) Heatmap for final contracts reached.

task, As shown in Table 1, when r = 0, the model reaches the best performance and the performance
decreases as r increase. This demonstrates that focusing on the main task can achieve better results.

Bidding history encoding plays a critical role in model architecture. baseline19 proposed a novel
representation of sequenced bidding history, which listed all possible actions in a sequence and then
labeled what has been used. We compared our representation to theirs. As shown in Table 1 our
encoding can reach a better performance. The potential reason why our encoding performs better is
that the intrinsic order of bridge bidding is already kept by the action itself, so there is no need to
specify the sequence, and our encoding captures the owner of each action.

In imperfect information games, one common strategy is to use a pool of opponents to add diversity
to the experiences. We also investigate this strategy in bridge. To increase the diversity, we set two
ways: First, we maintain a model-zoo with 20 most recent models and then randomly sample the
opponent model from this zoo; Second, we save the 20 models with best performance and sample
using the Nash Averaging strategy (Balduzzi et al., 2018). We find self-play with opponent using the
most recent model works best in terms of performance comparing to baseline models as shown in
Table 1. One possible explanation is that bridge is a game with both competition and collaborations.
Mixed strategy can mislead both opponents and partners, so a Nash Averaging strategy will not work
well enough. Hence, using the most recent model is more suitable for such training.

Besides the strategy to choose opponent model, we also study the impact of opponent model update
frequency. As can be seen from Table 1, the final performances are similar. However, the training
curve Figure 3 shows different patterns. Using the exact the same model for selfplay opponent during
the training shows the most stable results, especially at the early stage of the training. It is possibly
due to the fast model progression during the early stage of the training. If selfplay opponent does not
update frequent enough it cannot learn new knowledge.

5 INTERPRETATION

5.1 VISUALIZATION

It is interesting to visualize what the model has learned, and understand some rational behind the
learned conventions. In Figure 4, we show the bidding length distribution and frequency of each bid
used, as well as the distribution of final contracts. The results are averaged from our best 3 models.
We can see that typically agents exchanges 6-10 rounds of information to reach the final contract.
The agent uses low level bids more frequently and puts an emphasis on ~ and � contracts. The final
contract is mostly part scores and game contracts, particularly often 3NT, 4~, 4�, and we observe
very few slam contracts. This is because part scores and game contracts are optimal based on DDS
for 87% of hands5. The model does not optimize to bid slam contracts, because it needs to hold a
firm belief after longer rounds of information exchange to bid a slam contract, and the risk of not
making the contract is very high.

5https://lajollabridge.com/Articles/PartialGameSlamGrand.htm
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Figure 5: Action heatmaps for checkpoint models. (a) Early model. (b) Intermediate model. (c) Final
model.

Table 2: Opening table comparisons. “bal” is abbreviation for a balanced distribution for each suit.
opening bids ours SAYC

1| 8-20 HCP 12+ HCP, 3+|
1} 8-18 HCP, 4+} 12+ HCP, 3+}
1~ 8-18 HCP, 4-6~ 12+ HCP, 5+~
1� 7-16 HCP, 4-6� 12+ HCP, 5+�

1NT 14-18 HCP, bal 15-17 HCP, bal
2| 8-13 HCP, 5+| 22+ HCP
2} 7-11 HCP, 5+} 5-11 HCP, 6+}
2~ 7-11 HCP, 5+~ 5-11 HCP, 6+~
2� 7-11 HCP, 5+� 5-11 HCP, 6+�

2NT 14+ HCP, 4+|, 4+} 20-21 HCP, bal

5.2 BIDDING PATTERN EVOLUTION

It is important to be understand how the model evolves during the selfplay training. We pick three
different checkpoint models along a single training trajectory, and check the frequency of each bid
used. The result is shown in Figure 5. (a) is an early model. Since it behaves mostly randomly,
and bids are non-decreasing, most contracts end at 6 or 7-level. This is clearly a very naive model.
(b) is an intermediate model after about 10k minibatches training. The model learns that high level
contracts are unlikely to make, and gradually starts to explore low level contracts that can make with
the right hands. (c) is the final model which learns to prioritize NT and major contracts through
information exchange and optimized categorization of various hands.

5.3 OPENING TABLE

There are two mainstream bidding system human experts use. One is called natural, where opening
and subsequent bids usually shows length in the nominated suit, e.g. the opening bid 1~ usually
shows 5 or more ~ with a decent strength. The other is called precision, which heavily relies on
relays of bids to partition the state space, either in suit lengths or hand strengths. e.g. an opening bid
of 1| usually shows 16 or more High Card Points (HCP)6, and a subsequent 1~ can show 5 or more
�. To further understand the bidding system the model learns, it is interesting to establish an opening
table of the model, defined by the meaning of each opening bid. We select one of the best models,
and check the length of each suit and HCP associated with each opening bid. From the opening table,
it appears that the model learns a semi-natural bidding system with very aggressive openings.

5.4 BIDDING EXAMPLES

We check a few interesting hands from the tournament between our model and Wbridge5. We present
the following 5 examples in Figure 6.

6High Card Points is a heuristic to evaluate hand strength, which counts A=4, K=3, Q=2, J=1

7




	Introduction
	Related work
	Method
	Problem Setup
	Input Representation
	Network
	Training Details

	Experiments
	Main Results
	Ablation Studies

	Interpretation
	Visualization
	Bidding Pattern Evolution
	Opening Table
	Bidding Examples

	Conclusion and Future Work
	The Bridge Game

