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ABSTRACT

Ensembles, where multiple neural networks are trained individually and their
predictions are averaged, have been shown to be widely successful for improving
both the accuracy and predictive uncertainty of single neural networks. However,
an ensemble’s cost for both training and testing increases linearly with the number
of networks.

In this paper, we propose BatchEnsemble, an ensemble method whose com-
putational and memory costs are significantly lower than typical ensembles.
BatchEnsemble achieves this by defining each weight matrix to be the Hadamard
product of a shared weight among all ensemble members and a rank-one matrix
per member. Unlike ensembles, BatchEnsemble is not only parallelizable across
devices, where one device trains one member, but also parallelizable within a
device, where multiple ensemble members are updated simultaneously for a given
mini-batch. Across CIFAR-10, CIFAR-100, WMT14 EN-DE/EN-FR translation,
and contextual bandits tasks, BatchEnsemble yields competitive accuracy and
uncertainties as typical ensembles; the speedup at test time is 3X and memory
reduction is 3X at an ensemble of size 4. We also apply BatchEnsemble to lifelong
learning, where on Split-CIFAR-100, BatchEnsemble yields comparable perfor-
mance to progressive neural networks while having a much lower computational
and memory costs. We further show that BatchEnsemble can easily scale up to
lifelong learning on Split-ImageNet which involves 100 sequential learning tasks.

1 INTRODUCTION

Ensembling is one of the oldest tricks in machine learning literature (Hansen & Salamon, 1990).
By combining the outputs of several models, an ensemble can achieve better performance than any
of its members. Many researchers demonstrate that a good ensemble is one where the ensemble’s
members are both accurate and make independent errors (Perrone & Cooper, 1992; Maclin & Opitz,
1999). In neural networks, SGD (Bottou, 2003) and its variants (Kingma & Ba, 2014) are the most
common optimization algorithm. The random noise from sampling mini-batches of data in SGD-like
algorithms and random initialization of the deep neural networks, combined with the fact that there is
a wide variety of local minima solutions in high dimensional optimization problem (Kawaguchi, 2016;
Ge et al., 2015), results in the following observation: deep neural networks trained with different
random seeds can converge to very different local minima although they share similar error rates.
One of the consequence is that neural networks trained with different random seeds will usually not
make all the same errors on the test set, i.e. they may disagree on a prediction given the same input
even if the model has converged.

Ensembles of neural networks benefit from the above observation to achieve better performance
by averaging or majority voting on the output of each ensemble member (Xie et al., 2013; Huang
et al., 2017). It is shown that ensembles of models perform at least as well as its individual mem-
bers and diverse ensemble members lead to better performance (Krogh & Vedelsby, 1995). More
recently, Lakshminarayanan et al. (2017) showed that deep ensembles give reliable predictive un-
certainty estimates while remaining simple and scalable. A further study confirms that deep ensem-
bles generally achieves the best performance on out-of-distribution uncertainty benchmarks (Ova-
dia et al., 2019) compared to other methods such as MC-dropout (Gal & Ghahramani, 2015).
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Figure 1: The test time cost (blue) and memory
cost of BatchEnsemble (orange) w.r.t the ensem-
ble size. The result is relative to single model
cost. Testing time cost and memory cost of naive
ensmeble are plotted in green.

Despite their success on benchmarks, ensembles
in practice are limited due to their expensive com-
putational and memory costs, which increase lin-
early with the ensemble size in both training and
testing. Computation-wise, each ensemble mem-
ber requires a separate neural network forward
pass of its inputs. Memory-wise, each ensemble
member requires an independent copy of neural
network weights, each up to millions (sometimes
billions) of parameters. This memory requirement
also makes many tasks beyond supervised learning
prohibitive. For example, in lifelong learning, a
natural idea is to use a separate ensemble member
for each task, adaptively growing the total number of parameters by creating a new independent set of
weights for each new task. No previous work achieves competitive performance on lifelong learning
via ensemble methods, as memory is a major bottleneck.

Our contribution: In this paper, we aim to address the computational and memory bottleneck by
building a more parameter efficient ensemble model: BatchEnsemble. We achieve this goal by
exploiting a novel ensemble weight generation mechanism: the weight of each ensemble member is
generated by the Hadamard product between: a. one shared weight among all ensemble members. b.
one rank-one matrix that varies among all members, which we refer to as fast weight in the following
sections. Figure 1 compares testing and memory cost between BatchEnsemble and naive ensemble.
Unlike typical ensembles, BatchEnsemble is mini-batch friendly, where it is not only parallelizable
across devices like typical ensembles but also parallelizable within a device. Moreover, it incurs only
minor memory overhead because a large number of weights are shared across ensemble members.

Empirically, we show that BatchEnsemble has the best trade-off among accuracy, running time,
and memory on several deep learning architectures and learning tasks: CIFAR-10/100 classifi-
cation with ResNet32 (He et al., 2016) and WMT14 EN-DE/EN-FR machine translation with
Transformer (Vaswani et al., 2017). Additionally, we show that BatchEnsemble is also effective in
uncertainty evaluation on contextual bandits. Finally, we show that BatchEnsemble can be success-
fully applied in lifelong learning and scale up to 100 sequential learning tasks without catastrophic
forgetting and the need of memory buffer.

2 BACKGROUND

In this section, we describe relevant background about ensembles, uncertainty evaluation, and lifelong
learning for our proposed method, BatchEnsemble.

2.1 ENSEMBLES FOR IMPROVED PERFORMANCE

Bagging, also called boostrap aggregating, is an algorithm to improve the total generalization
performance by combining several different models (Breiman, 1996). The strategy to combine those
models such as averaging and majority voting are known as ensemble methods. It is shown that
ensembles of models perform at least as well as each of its ensemble member (Krogh & Vedelsby,
1995). Moreover, ensembles achieve the best performance when each of their members makes
independent errors (Goodfellow et al., 2015; Hansen & Salamon, 1990).

Related work on ensembles: Ensembles have been studied extensively for improving model per-
formance (Hansen & Salamon, 1990; Perrone & Cooper, 1992; Dietterich, 2000; Maclin & Opitz,
1999). One major direction in ensemble research is how to reduce their cost at test time. Bucila
et al. (2006) developed a method to compress large, complex ensembles into smaller and faster
models which achieve faster test time prediction. Hinton et al. (2015) developed the above approach
further by distilling the knowledge in an ensemble of models into one single neural network. Another
major direction in ensemble research is how to reduce their cost at training time. Xie et al. (2013)
forms ensembles by combining the output of networks within a number of training checkpoints,
named Horizontal Voting Vertical Voting and Horizontal Stacked Ensemble. Additionally, models
trained with different regularization and augmentation can be used as ensemble to achieve better
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performance in semi-supervised learning (Laine & Aila, 2017). More recently, Huang et al. (2017)
proposed Snapshot ensemble, in which a single model is trained by cyclic learning rates (Loshchilov
& Hutter, 2016; Smith, 2015) so that it is encouraged to visit multiple local minima. Those local
minima solutions are then used as ensemble members. Garipov et al. (2018) proposed fast geometric
ensemble where it finds modes that can be connected by simple curves. Each mode can taken as one
ensemble member. Explicit ensembles are expensive so another line of work lies on what so-called
“implicit” ensembles. For example, Dropout (Srivastava et al., 2014) can be interpreted as creating
an exponential number of weight-sharing sub-networks, which are implicitly ensembled in test time
prediction (Warde-Farley et al., 2014). MC-dropout can be used for uncertainty estimates (Gal &
Ghahramani, 2015).

2.2 ENSEMBLES FOR IMPROVED UNCERTAINTY

Although deep neural networks achieve state-of-the-art performance on a variety of benchmarks, their
predictions are often poorly calibrated. Bayesian neural networks (Hinton & Neal, 1995), which fit a
distribution to the weights rather than a point estimate, are often used to model uncertainty. However,
they requires modifications to the traditional neural network training scheme. Deep ensembles have
been proposed as a simple and scalable alternative, and have been shown to make well-calibrated
uncertainty estimates (Lakshminarayanan et al., 2017). Several metrics had been proposed to measure
the quality of uncertainty estimates. In Section 4.4, we use the contextual bandits benchmark
(Riquelme et al., 2018), where maximizing reward is of direct interest; this requires good uncertainty
estimates in order to balance exploration and exploitation. Appendix D also uses Expected Calibrated
Error (ECE) (Guo et al., 2017; Naeini et al., 2015) as an uncertainty metric.

2.3 LIFELONG LEARNING

In lifelong learning, the model trains on a number of tasks in a sequential (online) order, without
access to entire previous tasks’ data (Thrun, 1998; Zhao & Schmidhuber, 1996). One core difficulty
of lifelong learning is “catastrophic forgetting”: neural networks tend to forget what it has learnt after
training on the subsequent tasks (McCloskey, 1989; French, 1999). Previous work on alleviating
catastrophic forgetting can be divided into two categories.

In the first category, updates on the current task are regularized so that the neural network does
not forget previous tasks. Elastic weight consolidation (EWC) applies a penalty on the parameter
update based on the distance between the parameters for the new and the old task evaluated by Fisher
information metric (Kirkpatrick et al., 2016). Other methods maintain a memory buffer that stores
a number of data points from previous tasks. For example, gradient episodic memory approach
penalizes the gradient on the current task so that it does not increase the loss of examples in the
memory buffer (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018). Another approach focuses on
combining existing experience replay algorithms with lifelong learning (Rolnick et al., 2018; Riemer
et al., 2018).

In the second category, one increases model capacity as new tasks are added. For example, progressive
neural networks (PNN) copy the entire network for the previous task and add new hidden units
when adopting to a new task (Rusu et al., 2016). This prevents forgetting on previous tasks by
construction (the network on previous tasks remains the same). However, it leads to significant
memory consumption when faced with a large number of lifelong learning tasks. Some following
methods expand the model in a more parameter efficient way at the cost of introducing an extra
learning task and not entirely preventing forgetting. Yoon et al. (2017) applies group sparsity
regularization to efficiently expand model capacity; Xu & Zhu (2018) learns to search for the best
architectural changes by carefully designed reinforcement learning strategies; and Li et al. (2019)
leverages differential architecture search methods to alter the architecture upon the arrival of a new
task.

3 METHODS

3.1 BATCHENSEMBLE
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Figure 2: An illustration on how to generate the
ensemble weights for two ensemble members.

In this section, we introduce how to ensemble
neural networks in an efficient way. Let W be
the weights in a neural network layer. Denote
the input dimension as m and the output dimen-
sion as n, i.e. W ∈ Rn×m. For ensemble,
assuming the ensemble size is M and each en-
semble member has weight matrix W i. Each
ensemble member owns a tuple of trainable vec-
tors ri and si which share the same dimension as
output and input (n and m) respectively, where
i ranges from 1 to M . Our algorithm gener-
ates a family of ensemble weights W i by the
following:

W i =W ◦ Fi, where Fi = ris
>
i , (1)

For each training example in the mini-batch, it receives an ensemble weight W i by element-wise
multiplying W , which we refer to as “slow weights”, with a rank-one matrix Fi, which we refer to
as “fast weights.” The subscript i represents the selection of ensemble member. Since W is shared
across ensemble members, we term it as "shared weight" in the following paper. Figure 2 visualizes
BatchEnsemble.

Vectorization: We show how to make the above ensemble weight generation mechanism paralleliz-
able within a device, i.e., where one computes a forward pass with respect to multiple ensemble
members in parallel. This is achieved by the fact that manipulating the matrix computations for a
mini-batch. Let x denote the activations of the incoming neurons in a neural network layer. The next
layer’s activations are given by:

yn = φ
(
W
>
i xn

)
(2)

= φ
((
W ◦ ris>i

)>
xn

)
(3)

= φ
((
W>(xn ◦ si)

)
◦ ri
)
, (4)

where φ denotes the activation function and the subscript n represents the index in the mini-batch.
The output represents next layer’s activations from the ith ensemble member. To vectorize these
computations, we define matricesR and S whose rows consist of the vectors ri and si for all examples
in the mini-batch. The above equation is vectorized as:

Y = φ (((X ◦ S)W ) ◦R) . (5)

where X is the mini-batch input. By computing Eqn. 5, we can obtain the next layer’s activations for
each ensemble member in a mini-batch friendly way. This allows us to take the full advantage of
GPU parallelism to implement ensemble efficiently. To match the input and the ensemble weight, we
can divide the input mini-batch into M sub-batches and each sub-batch receives ensemble weight
W i, i = {1, . . . ,M}.
Ensembling During Testing: In our experiments, we take the average of predictions of each en-
semble member. Suppose the test batch size is B and there are M ensemble members. To achieve
an efficient implementation, one repeats the input mini-batch M times, which leads to an effective
batch size B ·M . This enables all ensemble members to compute the output of the same B input
data points in a single forward pass. It eliminates the need to calculate the output of each ensemble
member sequentially and therefore reduces the ensemble’s computational cost.

3.2 COMPUTATIONAL COST

The only extra computation in BatchEnsemble over a single neural network is the Hadamard product,
which is cheap compared to matrix multiplication. Thus, BatchEnsemble incurs almost no additional
computational overhead (Figure 1).1 One limitation of BatchEnsemble is that if we keep the mini-
batch size the same as single model training, each ensemble member gets only a portion of input

1In Figure 1, note the computational overhead of BatchEnsemble at the ensemble size 1 indicates the
additional cost of Hadamard products.
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data. In practice, the above issue can be remedied by increasing the batch size so that each ensemble
member receives the same amount of data as ordinary single model training. Since BatchEnsemble is
parallelizable within a device, increasing the batch size incurs almost no computational overhead
in both training and testing stages on the hardware that can fully utilize large batch size. Moreover,
when increasing the batch size reaches its diminishing return regime, BatchEnsemble can still take
advantage from even larger batch size by increasing the ensemble size.

The only memory overhead in BatchEnsemble is the set of vectors, {r1, . . . , rm} and {s1, . . . , sm},
which are cheap to store compared to the weight matrices. By eliminating the need to store full weight
matrices of each ensemble member, BatchEnsemble has almost no additional memory cost. For
example, BatchEnsemble of ResNet-32 of size 4 incurs 10% more parameters while naive ensemble
incurs 4X more.

3.3 BATCHENSEMBLE AS AN APPROACH TO LIFELONG LEARNING

The significant memory cost of ensemble methods limits its application to many real world learning
scenarios such as multi-task learning and lifelong learning, where one might apply an independent
copy of the model for each task. This is not the case with BatchEnsemble. Specifically, consider a
total of T tasks arriving in sequential order. Denote Dt = (xi, yi, t) as the training data in task t
where t ∈ {1, 2, . . . , T} and i is the index of the data point. Similarly, denote the test data set as
Tt = (xi, yi, t). At test time, we compute the average performance on Tt across all tasks seen so
far as the evaluation metric. To extend BatchEnsemble to lifelong learning, we compute the neural
network prediction in task t with weight W t =W ◦ (rts>t ) in task t. In other words, each ensemble
member is in charge of one lifelong learning task. For the training protocol, we train the shared
weight W and two fast weights r1, s1 on the first task,

min
W,s1,r1

L1(W, s1, r1;D1), (6)

where L1 is the objective function in the first task such as cross-entropy in image classification. On a
subsequent task t, we only train the relevant fast weights rt, st.

min
st,rt

Lt(st, rt;Dt). (7)

BatchEnsemble shares similar advantages as progressive neural networks (PNN): it entirely prevents
catastrophic forgetting as the model for previously seen tasks remains the same. This removes
the need of storing any data from previous task. In addition, BatchEnsemble has significantly less
memory consumption than PNN as only fast weights are trained to adapt to a new task. Therefore,
BatchEnsemble can easily scale to up to 100 tasks as we showed in Section 4.1 on split ImageNet.
Another benefit of BatchEnsemble is that if future tasks arrive in parallel rather than sequential order,
one can train on all the tasks at once (see Section 3.1). We are not aware of any other lifelong learning
methods can achieve this.

Limitations: BatchEnsemble is one step toward toward a full lifelong learning agent that is both
immune to catastrophic forgetting and parameter-efficient. On existing benchmarks like split-CIFAR
and split-ImageNet, Section 4.1 shows that BatchEnsemble’s rank-1 perturbation per layer pro-
vides enough expressiveness for competitive state-of-the-art accuracies. However, one limitation of
BatchEnsemble is that only rank-1 perturbations are fit to each lifelong learning task and thus the
model’s expressiveness is a valid concern when each task is significantly varied. Another limitation
is that the shared weight is only trained on the first task. This implies that only information learnt
for the first task can transfer to subsequent tasks. There is no explicit transfer, for example, between
the second and third tasks. One solution is to enable lateral connections to features extracted by the
weights of previously learned tasks, as done in PNN. However, we found that no lateral connections
were needed for Split-CIFAR100 and Split-ImageNet. Therefore we leave the above solution to
future work to further improve BatchEnsemble for lifelong learning.

4 EXPERIMENTS

Section 4.1 firsts demonstrate the BatchEnsemble’s effectiveness as an alternative approach to lifelong
learning on Split-CIFAR and Split-ImageNet. We next evaluate BatchEnsemble on several benchmark
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Figure 3: Performance for lifelong learning. (a): Validation accuracy for each Split-ImageNet task.
Standard deviation is computed over 5 random seeds. (b): BatchEnsemble and several other methods
on Split-CIFAR100. BatchEnsemble achieves the best trade-off among accuracy, forgetting, and
costs. VAN: Vanilla neural network. EWC: Elastic weight consolidation (Kirkpatrick et al., 2016).
PNN: Progressive neural network(Rusu et al., 2016). BN-Tuned: Fine tuning Batch Norm layer per
subsequent tasks. BatchE: BatchEnsemble. Upperbound: Individual ResNet-50 per task.

datasets with common deep learning architectures in Section 4.2 and Section 4.3, including classi-
fication task with ResNet (He et al., 2016), neural machine translation with Transformer (Vaswani
et al., 2017). Then, we demonstrate that BatchEnsemble can be used for uncertainty modelling in
Section 4.4. Detailed description of datasets we used is in Appendix A.

4.1 LIFELONG LEARNING

We showcase BatchEnsemble for lifelong learning on Split-CIFAR100 and Split-ImageNet. Split-
CIFAR100 proposed in Rebuffi et al. (2016) is a harder lifelong learning task than MNIST permu-
tations and MNIST rotations (Kirkpatrick et al., 2016), where one introduces a new set of classes
upon the arrival of a new task. Each task consists of examples from a disjoint set of 100/T classes
assuming T tasks in total. To show that BatchEnsemble is able to scale to 100 sequential tasks, we
also build our own Split-ImageNet dataset which shares the same property as Split-CIFAR100 except
more classes (and thus more tasks) and higher image resolutions are involved. More details about
these two lifelong learning datasets are provided in Appendix A.

We consider T = 20 tasks on Split-CIFAR100, following the setup of Lopez-Paz & Ranzato (2017).
We used ResNet-18 with slightly fewer number of filters across all convolutional layers. Noted that
for the purpose of making use of the task descriptor, we build a different final dense layer per task.
We compare BatchEnsemle to progressive neural networks (PNN) (Rusu et al., 2016), vanilla neural
networks, and elastic weight consolidation (EWC) on Split-CIFAR100. Xu & Zhu (2018) reported
similar accuracies among DEN (Yoon et al., 2017), RCL (Xu & Zhu, 2018) and PNN. Therefore we
compare accuracy only to PNN which has an official implementation and only compare computational
and memory costs to DEN and RCL in Appendix C.

Figure 3b displays results on Split-CIFAR100 over three metrics including accuracy, forgetting, and
cost. The accuracy measures the average validation accuracy over total 20 tasks after lifelong learning
ends. Average forgetting over all tasks is also presented in Figure 3b. Forgetting on task t is measured
by the difference between accuracy of task t right after training on it and at the end of lifelong
learning. It measures the degree of catastrophic forgetting. As showed in Figure 3b, BatchEnsemble
achieves comparable accuracy as PNN while has 4X speed-up and 50X less memory consumption. It
also preserves the no-forgetting property of PNN. Therefore BatchEnsemble has the best trade-off
among all compared methods.

For Split-ImageNet, we consider T = 100 tasks and apply ResNet-50 followed by a final linear
classifier per task. The parameter overhead of BatchEnsemble on Split-ImageNet over 100 sequential
tasks is 20%: the total number of parameters is 30M v.s. 25M (vanilla ResNet-50). PNN is not
capable of learning 100 sequential tasks due to the significant memory consumption; other methods
noted above have also not shown results at ImageNet scale. Therefore we adopt two of our baselines.
The first baseline is “BN-Tuned”, which fine-tunes batch normalization parameters per task and
which has previously shown strong performance for multi-task learning (Mudrakarta et al., 2018). To
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Figure 4: Comparison between BatchEnsemble and single model on WMT English-German and
English-French. Training stops after the model reaches targeted validation perplexity. BatchEnsemble
gives a faster convergence by taking the advantage of multiple models. (a): Validation loss of
WMT16 English-German task. (b): Validation loss of WMT14 English-French task. (c): Bleu score
on newstest2014 w.r.t big Transformer on WMT16 English-German. Big: Tranformer big model.
Base: Transformer base model. BE: BatchEnsemble. Single: Single model.

make a fair comparison, we augment the number of filters in BN-Tuned so that both methods have
the same number of parameters. The second baseline is a naive ensemble which trains an individual
ResNet-50 per task. This provides a rough upper bound on the BatchEnsemble’s expressiveness
per task. Note BatchEnsemble and both baselines are immune to catastrophic forgetting. So we
consider validation accuracy on each subsequent task as evaluation metric. Figure 3a shows that
BatchEnsemble outperforms BN-Tuned consistently. This demonstrates that BatchEnsemble is a
practical method for lifelong learning that scales to a large number of sequential tasks.

4.2 MACHINE TRANSLATION

Table 1: Perplexity on Newstest2013
with big Transformer. BatchEnsemble
with ensemble size 4.

Single BatchE

Eng-German 4.30 4.26
Eng-French 2.76 2.74

In this section, we evaluate BatchEnsemble on the Trans-
former (Vaswani et al., 2017) and the large-scale ma-
chine translation tasks WMT14 EN-DE/EN-FR. We apply
BatchEnsemble to all self-attention layers with an ensem-
ble size of 4. The ensemble in a self-attention layer can
be interpreted as each ensemble member keeps their own
attention mechanism and makes independent decisions.
We conduct our experiments on WMT16 English-German
dataset and WMT14 English-French dataset with Trans-
former base (65M parameters) and Transformer big (213M parameters). We maintain exactly the
same training scheme and hyper-parameters between single Transformer model and BatchEnsemble
Transformer model.

As the result shown in Figure 4, BatchEnsemble achieves a much faster convergence than a single
model. The reason is Transformer uses a batch size of roughly 30K tokens while BatchEnsemble can
benefit from a very large batch size as discussed in Section 3.1. The improvement is more obvious with
the larger model. Big BatchEnsemble Transformer is roughly 1.5X faster than single big Transformer
on WMT16 English-German. In addition, the BatchEnsemble Transformer also gives a lower
validation perplexity than big Transformer (Table 1). This suggests that BatchEnsemble is promising
for even larger Transformers. However, note Appendix B shows that while BatchEnemble’s test
BLEU score increases faster over the course of training, BatchEnsemble which gives lower validation
loss does not necessarily improve BLEU score over a single model which is trained for long enough
timesteps.

4.3 CLASSIFICATION

We evaluate BatchEnsemble on classification tasks with CIFAR-10/100 dataset (Krizhevsky, 2009).
We run our evaluation on ResNet32 (He et al., 2016). To achieve 100% training accuracy on
CIFAR100, we use 4X more filters than the standard ResNet-32. In this section, we compare
to MC-dropout (Gal & Ghahramani, 2015) which is also a memory efficient ensemble method.
We add one more dense layer followed by dropout before the final linear classifier so that the
number of parameters of MC-dropout are the same as BatchEnsemble. Most hyper-parameters
are shared across the single model, BatchEnsemble, and MC-dropout. More details about hyper-
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Table 3: Contextual bandits regret. Results are relative to the cumulative regret of the Uniform
algorithm. We report the mean and standard error of the mean over 30 trials. Ensemble size with 4, 8.
We remove the methods with mean rank greater than 10.

M.RANK M.VALUE MUSHROOM STATLOG FINANCIAL JESTER WHEEL

NaiveEnsemble4 5.30 34.64 13.44 ± 3.83 7.10 ± 1.15 11.31 ± 1.48 72.73 ± 6.32 68.63 ± 21.97
NaiveEnsemble8 6.50 34.91 13.59 ± 3.13 7.15 ± 0.98 11.64 ± 1.57 73.54 ± 6.14 68.65 ± 19.32
BatchEnsemble4 6.30 34.52 15.22 ± 5.21 11.53 ± 5.06 10.24 ± 2.66 72.65 ± 6.27 62.94 ± 26.12
BatchEnsemble8 5.70 33.95 13.48 ± 3.36 9.85 ± 3.67 13.17 ± 2.87 71.84 ± 6.47 61.41 ± 26.18

Dropout 8.20 36.73 15.05 ± 8.23 9.31 ± 3.19 13.53 ± 2.98 71.90 ± 6.31 73.86 ± 22.48
LinFullPost 9.40 49.60 97.42 ± 4.52 19.00 ± 1.03 10.24 ± 0.92 78.40 ± 4.85 42.94 ± 12.68
MultitaskGP 5.90 34.59 12.87 ± 4.70 8.04 ± 3.77 8.50 ± 0.80 74.03 ± 5.96 69.52 ± 18.55

RMS 9.40 39.18 16.31 ± 6.13 10.44 ± 5.02 11.75 ± 2.64 73.38 ± 4.70 84.02 ± 24.67
Uniform 16.00 100.00 100.00 100.00 100.00 100.00 100.00

parameters are in Appendix B. Note we increase the training iterations for BatchEnsemble to
reach its best performance because each ensemble member gets only a portion of input data.

Table 2: Validation accuracy on ResNet32. En-
semble with size 4. MC-drop stands for Dropout
ensemble (Gal & Ghahramani, 2015).

Single MC-drop BatchE NaiveE

C10 95.31 95.72 95.94 96.30
C100 78.32 78.89 80.32 81.02

We train both BatchEnsemble model and MC-
dropout with 375 epochs on CIFAR-10/100,
which is 50% more iterations than single
model. Although the training duration is longer,
BatchEnsemble is still significantly faster than
training individual model sequentially. Another
implementation that leads to the same perfor-
mance is to increase the mini-batch size. For
example, if we use 4X large mini-batch size
then there is no need to increase the training iter-
ations. Table 2 shows that BatchEnsemble reaches better accuracy than single model and MC-dropout.
We also calculate the accuracy of naive ensemble, whose members consist of individually trained
single models. Its accuracy can be viewed as the upper bound of Ensemble methods.

4.4 UNCERTAINTY AND DIVERSITY

In this section, we conduct analysis beyond accuracy, where we show that BatchEnsemble can be
used for uncertainty modelling in contextual bandits. Appendix D evaluates the predictive uncertainty
of BatchEnsemble on out-of-distribution tasks and ECE loss. We also show that BatchEnsemble
preserves diversity among ensemble members in predictive distribution just like naive ensemble in
Appendix E.

For unceratinty modelling, we evaluate our BatchEnsemble method on the recently proposed bandits
benchmark (Riquelme et al., 2018). Bandit data comes from different empirical problems that
highlight several aspects of decision making. No single algorithm can outperform every other
algorithm on every bandit problem. Thus, average performance of the algorithm over different
problems is used to evaluate the quality of uncertainty estimation. The key factor to achieve good
performance in contextual bandits is to learn a reliable uncertainty model. In our experiment,
Thompson sampling samples from the policy given by one of the ensemble members. The fact
that Dropout which is an implicit ensemble method achieves competitive performance on bandits
problem suggests that ensemble can be used as uncertainty modelling. Indeed, Table 3 shows that
BatchEnsemble with an ensemble size 8 achieves the best mean value on the bandits task. Both
BatchEnsemble with ensemble size 4 and 8 outperform Dropout in terms of average performance.

5 CONCLUSION

We introduced BatchEnsemble, an efficient method for ensembling and lifelong learning.
BatchEnsemble can be used to improve the accuracy and uncertainty of any neural network like
typical ensemble methods. More importantly, BatchEnsemble removes the computation and memory
bottleneck of typical ensemble methods, enabling its successful application to not only faster ensem-
bles but also lifelong learning on up to 100 tasks. We believe BatchEnsemble has great potential to
improve in lifelong learning. Our work may serve as a starting point for a new research area.
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A DATASET DETAILS

CIFAR: We consider two CIFAR datasets, CIFAR-10 and CIFAR-100 (Krizhevsky, 2009). Each
consists of a training set of size 50K and a test set of size 10K. They are natural images with
32x32 pixels. In our experiments, we follow the standard data pre-processing schemes including
zero-padding with 4 pixels on each sise, random crop and horizon flip (Romero et al., 2015; Huang
et al., 2016; Srivastava et al., 2015).

WMT: In machine translation tasks, we consider the standard training datasets WMT16 English-
German and WMT14 English-French. WMT16 English-German dataset consists of roughly 4.5M
sentence pairs. We follow the same pre-processing schemes in (Vaswani et al., 2017).Source and
target tokens are processed into 37K shared sub-word units based on byte-pair encoding (BPE) (Britz
et al., 2017). Newstest2013 and Newstest2014 are used as validation set and test set respectively.
WMT14 English-French consists of a much larger dataset sized at 36M sentences pairs. We split the
tokens into a 32K word-piece vocabulary (Wu et al., 2016).

Split-CIFAR100: The dataset has the same set of images as CIFAR-100 dataset (Krizhevsky, 2009).
It randomly splits the entire dataset into T tasks so each task consists of 100/T classes of images.
To leverage the task descriptor in the data, different final linear classifier is trained on top of feature
extractor per task. This simplifies the task to be a 100/T class classification problem in each task.
i.e. random prediction has accuracy T/100. Notice that since we are not under the setting of single
epoch training, standard data pre-processing including padding, random crop and random horizontal
flip are applied to the training set.

Split-ImageNet: The dataset has the same set of images as ImageNet dataset (Deng et al., 2009).
It randomly splits the entire dataset into T tasks so each task consists of 1000/T classes of images.
Same as Split-CIFAR100, each task has its own final linear classifier. Data preprocessing (He et al.,
2016) is applied to the training data.

B IMPLEMENTATION DETAILS
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Figure 5: BLEU on English-German task.

In this section, we discuss some implementation
details of BatchEnsemble.

Weight Decay: In the BatchEnsemble, the weight
of each ensemble member is never explicitly cal-
culated because we obtain the activations directly
by computing Eqn. 5. To maintain the goal of
no additional computational cost, we can instead
regularize the mean weight W over ensemble
members, which can be efficiently calculated as
W = 1

BW ◦ S
>R, where W is the shared weight

among ensemble members, S and R are the matri-
ces in Eqn. 5. We can also only regularize the shared weight and leave the fast weights unregularized
because it only accounts for a small portion of model parameters. In practice, we find the above two
schemes work equally.

Diversity Encouragement: Additional loss term such as KL divergence among ensemble members
can be added to encourage diversity. However, we find it sufficient for BatchEnsemble to have desired
diversity by initializing the fast weight (si and ri in Eqn. 1) to be random sign vectors. Also note that
the scheme that each ensemble member is trained with different sub-batch of input can encourage
diversity as well. The diversity analysis is provided in Appendix E.

Machine Translation: The Transformer base is trained for 100K steps and the Transformer big is
trained for 180K steps. The training steps of big model are shorter than Vaswani et al. (2017) because
we terminate the training when it reaches the targeted perplexity on validation set. Experiments are
run on 4 NVIDIA P100 GPUs. The BLEU score of Big Transformer on English-German task is in
Figure 5. Although BatchEnsemble has lower perplexity as we showed in Section 4.2, we didn’t
observe a better BLEU score. Noted that the BLEU score in Figure 5 is lower than what Vaswani et al.
(2017) reported. It is because in order to correctly evaluate model performance at a given timestep,
we didn’t use the averaging checkpoint trick.
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Table 4: computational and memory costs on Split-CIFAR100 on LeNet. Numbers are relative to
vanilla neural network.

Vanilla BatchE DEN PNN RCL

Computational 1 1.11 9.58 1.12 26.41
Memory 1 1.10 5.31 4.16 2.52

Classification: We train the model with mini-batch size 128. We also keep the standard learning rate
schedule for ResNet. The learning rate decreases from 0.1 to 0.01, from 0.01 to 0.001 at halfway of
training and 75% of training. The weight decay coefficient is set to be 10−4. We use an ensemble
size of 4, which means each ensemble member receives 32 training examples if we maintain the
mini-batch size of 128. It is because Batch Normalization (Ioffe & Szegedy, 2015) requires at least
32 examples to be effective on CIFAR dataset. As for the training budget, we train the single model
for 250 epochs.

C COMPUTATIONAL AND MEMORY COSTS COMPARED TO DEN AND RCL

Dynamically expandable networks (Yoon et al., 2017) and Reinforced continual learning (Xu & Zhu,
2018) are two recently proposed lifelong learning methods that achieve competitive performance. As
discussed in Section 4.1, these two methods can be seen as an improved version progressive neural
network (PNN) (Rusu et al., 2016) in terms of memory efficiency. As shown in Xu & Zhu (2018), all
three methods result to similar accuracy measure in Split-CIFAR100 task. Therefore, among three
evaluation metrics (accuracy, forgetting and cost), we only compare the accuracy of BatchEnsemble
to PNN in Section 4.1 and compare the cost in this section. We first compute the cost relative to PNN
on Split-CIFAR100 on LeNet and then compute the rest of the numbers base on what were reported
in Xu & Zhu (2018). Notice that PNN has no much computational overhead on Split-CIFAR100
because the number of total tasks is limited to 10. Even on the simple setup above, BatchEnsemble
gives the best computational and memory efficiency. The advantage on large lifelong learning task
such as Split-ImageNet would be even obvious.

D PREDICTION UNCERTAINTY

(a) Histogram of the predictive entropy on test exam-
ples from known classes, CIFAR-10 (left) and unknown
classes, CIFAR-100 (right).
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(b) Expected Calibration Error. Ensemble of size 4.
Lower ECE reflects better calibration.

MC-drop BatchE NaiveE Single

C10 2.89% 2.37% 2.32% 3.27%
C100 8.99% 8.89% 6.82% 9.28%

Similar to Lakshminarayanan et al. (2017), we first
evaluate BatchEnsemble on out-of-distribution exam-
ples from unseen classes. It is known that deep neu-
ral network tends to make over-confident predictions
even if the prediction is wrong or the input comes
from unseen classes. Ensembles of models can give
better uncertainty prediction when the test data is
out of the distribution of training data. To measure
the uncertainty on the prediction, we calculate the
predictive entropy of Single neural network, naive en-
semble and BatchEnsemble. The result is presented
in Figure 6a. As we expected, single model pro-
duces over-confident predictions on unseen examples,
whereas ensemble methods exhibit higher uncertainty
on unseen classes, including both BatchEnsemble
and naive ensemble. It suggests our ensemble weight
generation mechanism doesn’t degrade uncertainty
modelling.

Additionally, we calculate the Expected Calibration
Error (Naeini et al., 2015) (ECE) of single model,
naive ensemble and BatchEnsemble on both CIFAR-
10 and CIFAR-100 in Table 6b. To calculate ECE, we group model predictions into M interval
bins based on the predictive confidence (each bin has size 1

M ). Let Bm denote the set of samples
whose predictive probability falls into the interval (m−1M , m

M ] for m ∈ {1, . . .M}. Let acc(Bm) and
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Figure 7: Visualizing prediction diversity among BatchEnsemble (top row) and naive ensemble
(bottom row) members on selected test examples on CIFAR-10. The y-axis label denotes mean
prediction of ensemble (Mean), individual ensemble member prediction (from E1 to E4) and single
model prediction (Single). Correct class is labelled as red. BatchEnsemble preserves the model
diversity as naive ensemble.

conf(Bm) be the averaged accuracy and averaged confidence of the examples in the bin Bm. The
ECE can de defined as the following,

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (8)

where n is the number of samples. ECE as a criteria of model calibration, measures the difference in
expectation between confidence and accuracy (Guo et al., 2017). It shows that BatchEnsemble makes
more calibrated prediction compared to single neural networks.

E PREDICTION DIVERSITY

As we discussed in Section 2, ensemble benefits from the diversity among its members. We focus on
the set of test examples on CIFAR-10 where single model makes confident incorrect predictions while
ensemble model predicts correctly. We used the final models we reported in Section 4.3. In Figure 7,
we randomly select examples from the above set and plot the prediction map of single model, each
ensemble member and mean ensemble. As we can see, although some of the ensemble members make
mistakes on thoes examples, the mean prediction takes the advantage of the model averaging and
achieves better accuracy on CIFAR-10 classification task. We notice that BatchEnsemble preserves
the diversity among ensemble members as naive ensemble.
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