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ABSTRACT

Neural networks have been shown vulnerable to adversarial samples. Slightly
perturbed input images are able to change the classification of accurate models,
showing that the representation learned is not as good as previously thought. To
aid the development of better neural networks, it would be important to evaluate
to what extent are current neural networks’ representations capturing the existing
features. Here we propose a way to evaluate the representation quality of neural
networks using a novel type of zero-shot test, entitled Raw Zero-Shot. The main
idea lies in the fact that some features are present on unknown classes and that
unknown classes can be defined as a combination of previous learned features
without representation bias (a bias towards representation that maps only current
set of input-outputs and their boundary). To evaluate the soft-labels of unknown
classes, two metrics are proposed. One is based on clustering validation techniques
(Davies-Bouldin Index) and the other is based on soft-label distance of a given
correct soft-label. Experiments show that such metrics are in accordance with
the robustness to adversarial attacks and might serve as a guidance to build better
models as well as be used in loss functions to create new types of neural networks.
Interestingly, the results suggests that dynamic routing networks such as CapsNet
have better representation while current deeper DNNs are trading off representation
quality for accuracy.

1 INTRODUCTION

Adversarial samples are slightly perturbed inputs that can make neural networks misclassify. They
are carefully crafted by searching for variations in the input that, for example, could decrease the soft-
labels of the correct class. Since they were discovered some years ago (28), the number of adversarial
samples have grown in both number and types. Random noise were shown to be recognized with high
confidence by neural networks (20), universal perturbations, that can be added to almost any image
to generate an adversarial sample, were shown to exist (18) and the addition of crafted patches were
shown to cause networks to misclassify (4). Actually, only one pixel is enough to make networks
misclassify (27). Such attacks can also be easily transferred to real world scenarios (12),(3) which
confers a big issue as well as security risk for current deep neural networks’ applications.

Albeit the existence of many defenses, there is not any known learning algorithm or procedure that
can defend against adversarial attacks consistently. Many works have tried to defend by hiding or
modifying the gradients to make neural networks harder to attack. However, a recent paper show that
most of these defenses falls into the class of obfuscated gradients which have their own shortcomings
(e.g., they can be easily bypassed by transferable attacks) (2). Additionally, the use of an augmented
dataset with adversarial samples (named adversarial training) is perhaps one of the most successful
approaches to construct robust neural networks (8),(11), (17). However, it is still vulnerable to attacks
and has a strong bias to the type of adversarial samples used in training (31).

This shows that a deeper understanding of the issues are needed to enable more consistent defenses
to be created. Few works focused on understanding the reason behind such lack of robustness. In
(8) it is argued that Deep Neural Networks’s (DNN) linearity are one of the main reasons. Recent
investigations reveal that attacks are actually changing where the algorithm is paying attention (34),
other experiments show that deep learning neural networks learn false structures that are easier to
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learn rather than the ones expected (30) and an accuracy and robustness trade-off for models was
shown to exist (32).

In this paper, we propose a methodology of how to evaluate the representation of machine learning
methods. Based on these metrics, we reveal a link between deep representations’ quality and attack
susceptibility. Specifically, we propose a test called Raw Zero-Shot and two metrics to evaluate
DNN’s representations. The idea is that unknown classes provides hints over the representation of
common features and attributes learned without representation bias (defined in Section 2).

1.1 RECENT ADVANCES IN ATTACKS AND DEFENSES

DNNs were shown vulnerable to many types of attacks. For example, they output high confidency
results to noise images(20), universal perturbations in which a single perturbation can be added to
almost any input to create an adversarial sample are possible (18), the addition of image patches can
also make them misclassify (4). Moreover, the vulnerability can be exploited even with a single pixel,
i.e., changing a single pixel is often enough to make a DNNs misclassify (27). Most of these attacks
can be transformed into real world attacks by simply printing the adversarial samples (12). Moreover,
crafted glasses (24) or even general 3d adversarial objects (3) can be used as attacks.

Although many defensive systems were proposed to tackle the current problems, there is still no
consistent solution available. Defensive distillation in which a smaller neural network squeezes the
content learned by the original DNN was proposed (22). However, it was shown to not be robust
enough (6). Adversarial training was also proposed as a defense, in which adversarial samples
are used to augment the training dataset (8),(11), (17). With adversarial training, DNNs increase
slightly in robustness but not without a bias towards the adversarial samples used and while still
being vulnerable to attacks in general (31). There are many recent variations of defenses in which the
objective is to hide the gradients (obfuscated gradients) (16), (9) (25). However, they can be bypassed
by various types of attacks (such as attacks not using gradients, transfer of adversarial samples, etc)
(2),(33).

There are a couple of works which are trying to understand the reason behind such lack of robustness.
To cite some, in (8), it is argued that the main reason may lie in DNNs’ lack of non-linearity. Another
work argues that the perturbations causes a change in the saliency of images which makes the model
switch the attention to another part of it (34). False structures that are easier to learn were also shown
related to the problem (30). Moreover, in (32), the accuracy and robustness trade-off was shown to
exist.

1.2 ZERO-SHOT LEARNING

Zero-Shot learning is a method used to estimate unknown classes which do not appear in the training
data. The motivation of Zero-Shot learning is to transfer knowledge from training classes to unknown
classes. Existing methods basically approach the problem by estimating unknown classes from an
attribute vector defined manually. Attribute vectors are annotated to both known and unknown classes,
and for each class, whether an attribute, such as “color” and “shape”, belongs to the class or not is
represented by 1 or 0. For example, in (13) the authors proposed Direct Attribute Prediction (DAP)
model which learns each parameter for estimating the attributes from the target data. It estimates an
unknown class of the source data which is estimated from the target data by using these parameters.
Based on this research, other zero-shot learning methods have been proposed which uses an embedded
representation generated using a natural language processing algorithm instead of a manually created
attribute vector (37; 7; 21; 1; 5).

In (36) a different approach to estimate unknown classes is proposed. This method constructs the
histogram of known classes distribution for an unknown class. In this approach, it is assumed that
the unknown classes are the same if these histograms generated in the target domain and in the
source domain are similar. This perspective is similar to our approach, because our method approach
to represent an unknown class as the distribution of known classes. However, our objective is not
estimating the unknown class and we do not use the source domain. Our objective here is to analyze
DNNs’ representation by using this distribution.
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2 REPRESENTATION BIAS: DEFINITION

The objective of a supervised learning algorithm is perhaps to map the input to output in such a way
that the decision boundary reflect the real decision boundary. To achieve this it is know that when
dealing with complex problems, learning algorithms need to first learn a set of invariant features that
are present throughout classes such that their recognition becomes robust against variations in the
dataset.

Human beings, however, learn a set of invariant features that is not only able to solve current tasks or
recognize current classes. We learn a set of features that is able to describe most if not all of unseen
classes and unknown tasks. Thus, we define representation bias as the bias towards invariant features
that describe current seen classes or tasks but fail to describe unknown classes and tasks.

3 RAW ZERO-SHOT

Feature(x) Class(y)

bear
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[1,0,0]

[0,1,0]

[0,0,1]
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[0.98,0.01,0.01]

[0.2,0.8,0]

[0.1,0.03,0.87]

? [0.6, 0.39, 0.01] bear  60%
zebra 39%❌

Figure 1: Raw Zero-Shot Illustration. Classifiers are trained on the dataset with one excluded class. In the test
stage, images from the unknown class are presented and the soft-labels are recorded, which are used to infer the
representation quality of the classifier. This is based on the principle that if the classifier learned general features,
it should be able to use them to judge a sample from unknown class.

In this paper, we propose to evaluate the representation learned while avoiding the representation bias
by conducting experiments over the soft-labels of the image in unknown classes. This is based on the
hypothesis that if a model is capable of learning useful features, an unknown class would also trigger
some of these features inside the model. We call this type of test over unknown classes and without
any other information, Raw Zero-Shot (Figure 1).

The Raw Zero-Shot is a supervised learning test in which only n− 1 of the n classes are shown to
the classifier during training. The classifier also has only n− 1 possible outputs. During testing, only
unknown classes are presented to the classifier. The soft-labels outputted for the given unknown class
is recorded and the process is repeated for all possible n classes, removing a different class each time.

To evaluate the representation quality, metrics computed over the soft-labels are used. These metrics
are based on different hypothesis of what defines a feature or a class. In the same way that there
are different types of robustness, there are also different types of representation quality. Therefore,
metrics are rather complementary, each highlighting a different aspect of the whole. The following
subsections define two of them.

3.1 DAVIES-BOULDIN METRIC - CLUSTERING HYPOTHESIS

Soft labels of a classifier composes a space in which a given image would be classified as a weighted
vector in relation to the previous classes learned. Considering that a cluster in this space would
constitute a class, we can use clustering validation techniques to evaluate the representation (Figure 2).
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Figure 2: Illustration of both DBI and Amalgam metrics.

Here we choose for simplicity one of the most used metric in internal cluster validation, Davies-
Bouldin Index (DBI). DBI is defined as follows:

DBI =

 1

ne

ne∑
j=1

|ej − cn|2
1/2

, (1)

in which cn is the centroid of the cluster, e is one soft-label and ne is the number of samples.

3.2 AMALGAM METRIC - AMALGAM HYPOTHESIS

If DNNs are able to learn the features present in the classes, it would be reasonable to consider that
the soft-labels also describe a given image as a combination of the previous learned classes. This
is also true when an image contains an unknown class. Similar to a vector space in linear algebra,
the soft-labels can be combined to describe unknown objects in this space. This is analogous to how
children describe previously unseen objects as a combination of previously seen objects. Differently
from the previous metric, here we are interested in the exact values of the soft-labels. However, what
would constitute the correct soft-labels for a given unknown class needs to be determined.

To calculate the correct soft-label of a given unknown class (amalgam proportion) automatically,
we use here the assumption that accurate classifiers should output a good approximation of the
amalgam proportion already. Therefore, if a classifier is trained in the n classes, the soft-labels of the
remaining n− 1 classes is the amalgam proportion (Figure 2 illustrates the concept). Consequently,
the Amalgam Metric (AM) is defined as:

h’i =
ne∑
j=1

e’j

hi =

ne∑
j=1

ej

AM =

(
1

n

n∑
i=1

‖h’i − hi‖1
n− 1

)
,

(2)

in which, e’ is the normalized (such that they sum to one) soft-label from the classifier trained over n
classes and e is the soft-labels from the classifier trained over n− 1 classes.
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Table 1: Attack Accuracy

Attack ε WideResNet DenseNet ResNet NIN AllConv CapsNet LeNet

Carlini L2 93% 73% 96% 85% 90% 57% 78%

FGM L∞

0.1 65% 68% 66% 78% 74% 86% 78%
0.3 76% 77% 80% 82% 81% 87% 86%
0.5 81% 80% 86% 84% 83% 86% 86%

BIM L∞ 0.3 98% 97% 97% 97% 97% 96% 94%

PGDM L∞

0.1 65% 67% 71% 63% 58% 39% 70%
0.3 94% 93% 93% 92% 90% 79% 88%
0.5 96% 95% 94% 94% 93% 91% 90%

DeepFool 1E-06 44% 49% 50% 44% 62% 68% 63%

JSMA 1.00 99% 99% 99% 99% 98% 97% 97%

Table 2: Average Amount Of Pertubations (L2) Required by each Attack

Attack ε WideResNet DenseNet ResNet NIN AllConv CapsNet LeNet

Carlini L2 2421 2505 2420 2412 2400 2345 2347

FGM L∞

0.1 2409 2457 2485 2424 2469 2455 2424
0.3 2498 2511 2505 2508 2509 2506 2490
0.5 2639 2650 2624 2627 2625 2653 2622

BIM L∞ 0.3 3317 3285 3283 3314 3394 3312 3553

PGDM L∞

0.1 331 330 331 333 334 342 335
0.3 935 934 935 942 946 962 952
0.5 1468 1465 1466 1474 1482 1498 1502

Deep Fool 1E-06 2566 2619 2579 2584 2591 2490 2521

JSMA 1.00 162 157 146 222 261 569 235

4 RAW ZERO-SHOT EXPERIMENTS

Here, we conduct Raw Zero-Shot experiments to evaluate the representation of DNNs. To obtain
results over a wide range of architectures, we chose to evaluate CapsNet (a recently proposed
completely different architecture based on dynamic routing and capsules) (23), ResNet (a state-of-the-
art architecture based on skip connections)(10), Network in Network (NIN) (an architecture which
uses micro neural networks instead of linear filters) (15), All Convolutional Network (AllConv) (an
architecture without max pooling and fully connected layers)(26) and LeNet (a simpler architecture
which is also a historical mark) (14). All the experiments are run over the CIFAR dataset by using a
training dataset with all the samples of one specific class removed. This process is repeated for all
classes, removing the samples of a different class each time.

To analyze the correlation between representation metrics and robustness against adversarial attacks,
we conducted adversarial attacks on all the architectures tested using the most well known algorithms
such as Carlini (6), Fast Gradient Method (FGM) (8), Basic Iterative Method (BIM )(12), DeepFool
(19), Jacobian-based Saliency Map Attack (JSMA) (35), Projected Gradient Descent Method (PGDM)
(17) (Table 1 and 2).

For all tests, ε is fixed to the corresponding value given in the table. However, different methods have
different meanings for ε: (a) for pixel attacks, ε is the maximum mumber of pixels to be changed, (b)
for threshold attacks, ε is the maximum amount of change allowed per pixel, (c) for FGM, BIM and
PGDM, ε is the attack step size (input variation), (d) for DeepFool, ε is the overshoot parameter and
(e) for JSMA, ε corresponds to the maximum percentage of perturbed features.

Table 3 shows the ranking based on the attack accuracy and their required perturbation (Tables 1 and
2). In general, CapsNet is shown to be the most robust, AllConv and DenseNet follow with a good
placement while the remaining networks vary depending on the perspective used to analyze (i.e.,
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Model Rank (Acc) Rank (L2) Diff

WideResNet 3 7 4
DenseNet 2 4 2
ResNet 7 6 1
NIN 4 5 1
AllConv 5 2 3
CapsNet 1 1 0
LeNet 6 3 3

Table 3: Overall ranking for both accuracy (Acc) and L2 attacks. The rankings are obtained by ordering the
average accuracy and L2 for all attacks.

higher accuracy or lower L2). These robustness rankings will be used in the next sections to verify
the relationship of robustness against adversarial samples and metrics to evaluate the representation
quality.

4.1 EXPERIMENTS ON DBI METRIC

Table 4 shows the results with the DBI metric (the smallest the better) and the respective ranking
of each neural network. According to this metric, CapsNet possesses the best representation of
all networks tested. LeNet is considered the second best neural network regarding representation,
followed by AllConv, NIN and then deeper neural networks. DBI metric matches extremely well
with both accuracy and L2 ranking based on robustness against adversarial samples. Most differences
in Hamming distance lies in the exact places in which both accuracy and L2 rankings differ. Notice
that DBI metric does not use anything related to attacks and still arrives at similar rankings.

The fact that LeNet and other relatively simpler networks achieve a high representation quality which
is at odds with accuracy may seem extremely unlikely but as discussed in (32), it is possible for
accurate models to trade off robustness for accuracy. DBI suggests that this trade off happens because
the representation quality has worsen. Interestingly, LeNet and other simple networks are also easier
to attack (low rank accuracy) but need more perturbation to achieve the same accuracy (high rank
L2). Therefore, LeNet and other simple networks might be easier to attack because the search space
is less complicated (less obfuscation (2)), however this does not mean they are less robust. Or, as
DBI suggests, LeNet and other simple networks might have achieved relatively good representations
but without high accuracy.

To enable a visualization of this metric, we plotted in Figure 3 a projection into two dimensions
of all the points in decision space of unknown classes. All this is done while preserving the high-
dimensional distance between the points. Here we use the Isomap (29) to achieve this effect. It can
be easily observed that CapsNet’s results for unknown classes are more clustered and thus form a
better defined cluster than other architectures.

Model DBI Ranking Diff (Acc) Diff (L2)

WideResNet 0.58±0.14 7 4 0
DenseNet 0.60±0.14 6 4 2
ResNet 0.63±0.13 5 2 1
NIN 0.62±0.09 3 1 2
AllConv 0.64±0.10 4 1 2
CapsNet 0.23±0.01 1 0 0
LeNet 0.51±0.02 2 4 1

Table 4: Mean DBI, the rank regarding this representation metric and the Hamming distance to the robustness
rankings against adversarial samples for each neural network.
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Figure 3: Visualization of the results in Table 4 using a topology preserving two-dimensional projection with
Isomap. Each row shows the Isomap of one architecture. From top to bottom: WideResNet, DenseNet, ResNet,
NIN, AllConv, CapsNet, LeNet.

Model AM Ranking Diff (Acc) Diff (L2)

WideResNet 249.48±135.60 7 4 0
DenseNet 296.76±100.63 5 3 1
ResNet 281.29±107.82 6 1 0
NIN 203.15±93.08 4 0 1
AllConv 101.12±54.98 1 4 1
CapsNet 124.48±62.23 2 1 1
LeNet 144.10±75.18 3 3 0

Table 5: AM value for five different architectures and their respective ranking. The Hamming distance of the
AM’s ranking and both the accuracy and L2 robustness ranking against adversarial samples are also shown.

4.2 EXPERIMENTS ON AMALGAM METRIC

In this section, the AM for all the networks is evaluated which is based on the similarity of soft-labels
for networks that were trained in all classes. The results shown in Table 5 reveal almost the same
representation ranking as the robustness rankings related to L2. Interestingly, although both DBI and
AM differ widely in concept and calculation procedure, the rankings are both similar and close to the
L2. This further suggests that both metrics agree on what would be a good representation quality and
can be used to evaluate representation in newer methods.

To enable a visualisation of the metric, the computed histograms (h’i and hi from Equation 2) are
plotted in Figure 6. It is interesting to note that in Figure 6 the histograms from CapsNet are clearly
different from the other ones, in accordance with the complete different architecture employed by
CapsNet. This reveals that this metric is able to capture such representation differences.
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Figure 4: Histograms from which the AM is calculated. Each row shows the histograms of one architecture.
From top to bottom: WideResNet, DenseNet, ResNet, NIN, AllConv, CapsNet, LeNet.

5 PARTS OF A WHOLE

In this work, beyond proposing a quality assessment for learning systems and showing their rela-
tionship to adversarial attacks, we aim to fill a gap between current articles trying to understand
adversarial attacks. The false structures that are easier to learn (30) can be understood as structures
learned with representation bias. Therefore, they are only invariant to the dataset and not unseen
classes. At the same time, we further support the existence of a trade-off between accuracy and
robustness for deeper DNNs first point out in (32). Having said that, other types of networks such
as CapsNet seem to avoid it to some extent. Therefore, the trade-off is shown to vary with the
architecture and computing dynamics of a model.

6 CONCLUSIONS

Here we proposed the Raw Zero-Shot method to evaluate the representation of classifiers. In
order to score the soft-labels, two metrics were formally defined based on different hypothesis of
representation quality. Results suggest that the evaluation of representation of both metrics (DBI
and AM) are linked with the robustness of neural networks. In other words, easily attacked neural
networks have a lower representation score.

Interestingly, LeNet scores well in both metrics albeit being the least accurate. LeNet is followed
up by AllConv and NIN which are less complex/deep than other models which suggests that deeper
architectures might be trading-off representation quality for accuracy. These results shown here
further support the claim that there is a trade-off between accuracy and robustness in current deep
learning (32).

Thus, the proposed Raw Zero-Shot was able to evaluate the representation quality of state-of-the-art
DNNs and show their shortcomings in relation to adversarial attacks, explaining many of the current
problems. It also opens up new possibilities for both the evaluation (i.e. as a quality assessment) and
the development (e.g., as a loss function) of neural networks.
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SUPPLEMENTARY WORK

A EXTENDED ANALYSIS OF DBI METRIC

Figure 5 shows a visualization of DBI’s results using the multidimensional scaling method entitled
t-Distributed Stochastic Neighbour Embedding (t-SNE). t-SNE provides an alternative vizualization
for the Isomap plot from the main text. Similarly to the Isomap plot, t-SNE also verifies the closer
distribution of points in high-dimensional space for CapsNet.

Figure 5: Visualization of the DBI Metric with t-Distributed Stochastic Neighbour Embedding (t-SNE) which
focuses on the neighbour distances. Each row shows the t-SNE projections in two dimensional space for one
architecture. From top to bottom: WideResNet, DenseNet, ResNet, NIN, AllConv, CapsNet, LeNet.

B EXTENDED ANALYSIS OF AMALGAM METRIC

Figure 6 shows a visualization of equation 3 which is part of the main equation of Amalgam Metric.
This equation shows the difference of the histograms. It can be noted from the figure that for most
labels of CapsNet and AllConv the difference is relatively small. In Figure 7, the absolute difference
between histograms for each class is plotted. Albeit some variance in the mean, there is no strong
influence of classes in the AM result, with top and low scorers keeping most of their difference
throughout.

D = | h’i − hi |, where

h’i =
ne∑
j=1

e’j and hi =

ne∑
j=1

ej
(3)
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Figure 6: Histograms of D for each soft label. From top to bottom: WideResNet, DenseNet, ResNet, NIN,
AllConv, CapsNet, LeNet.

Figure 7: Absolute difference between histograms for each class.
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