
Under review as a conference paper at ICLR 2020

NEURAL NON-ADDITIVE UTILITY AGGREGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural architectures for set regression problems aim at learning representations
such that good predictions can be made based on the learned representations. This
strategy, however, ignores the fact that meaningful intermediate results might be
helpful to perform well. We study two new architectures that explicitly model la-
tent intermediate utilities and use non-additive utility aggregation to estimate the
set utility based on the latent utilities. We evaluate the new architectures with vi-
sual and textual datasets, which have non-additive set utilities due to redundancy
and synergy effects. We find that the new architectures perform substantially bet-
ter in this setup.

1 INTRODUCTION

In this paper, we study the problem of learning to predict utilities for sets of objects, which we denote
set regression. Let O = {o1, . . . , o } be a set of objects. Let C = {C1, . . . , C } be a set of sets that
consist of objects from set O, i.e., Ck = {oi, . . . , oj} with oi, . . . , oj ∈ O. During training, models
only observe sets from C and their corresponding utilities and have to learn a function v : C → R
that maps from sets to set utilities. At test time, utilities of unseen sets with potentially unseen
objects have to be estimated.

The standard idea to approach this problem in representation learning is to learn representations
for sets in C such that the utilities can be predicted based on the generated representations. More
formally, for sets Ck ∈ C an aggregation function ©o∈Ck

ϕ(o) is learned that produces an aggre-
gation of the individual object representations ϕ(o). A function v(©o∈Cϕ(o)) is trained (usually
jointly with the aggregation function) to predict the utility of the set. One often used aggregation
strategy is to simply add the individual object representations ϕ(o) Zaheer et al. (2017). Another
strategy is to use recurrent neural networks (RNNs) that learn to aggregate object representations.
On a conceptual level, the idea of both approaches is to encode everything that is relevant to predict
the utility of a set in its aggregated representation. This approach, however, ignores the fact that
meaningful intermediate utilities for the objects contained in the sets can be predicted in many prob-
lems. For example, intermediate utilities of sentences in automatic summarization can be predicted
and aggregated to obtain the summary utility.

A crucial limitation of this idea is the fact that objects in sets do not necessarily have an intrin-
sic value that is independent from the other objects in the same set. For example, repeating the
same information multiple times in automatic summarization does not improve the summary utility
even though the individual sentences might contain crucial information. Furthermore, a sentence A
might depend on another sentence B (e.g., to resolve pronouns) such that sentence A can only be
understood if sentenceB is also present in the summary. Even if sentenceA contains valuable infor-
mation, it does not have an intrinsic value. Its value becomes only effective when B is also included
in the summary. Since such redundancy and synergy effects occur in many problems, additive utility
aggregation is not appropriate.

To resolve this problem, we propose neural non-additive utility aggregation. Contrary to previous
approaches, we propose to learn intermediate latent utilities u for objects in O and a non-additive
aggregation function for the intermediate utilities. To this end, we make use of the discrete Choquet
integral, which is a non-additive generalization of the well-known Lebesgue integral. Instead of
using additive measures, the Choquet integral makes use of non-additive capacities. Hence, it is
well-suited to deal with phenomena such as redundancy and synergies.

1

Under review as a conference paper at ICLR 2020

ϕ1 ⊕ ϕ2 ⊕ . . . ⊕ ϕn v

(a) DeepSets (DS) h0 h1 h2 . . . hn v

ϕ1 ϕ2 ϕn

(b) Recurrent Neural Network (RNN)

h0 h1 h2 . . . hn

ϕ1 ϕ2 ϕn

u1 + u2 + . . . + un = v

(c) Recurrent Choquet Network (RCN)

h0 h1 h2 . . . hn

ϕ1 ϕ2 ϕn

g1 ·u1 + g2 ·u2 + . . . + gn·un = v

(d) Deep Choquet Regression (DCR)

Figure 1: Illustration of prior architectures (1a and 1b) and the newly proposed architectures (1c and
1d). ϕi denote feature representations of the input data and hi indicate hidden states. gi are gates
that are responsible for handling redundancy and synergy effects in the DCR architecture. Each
arrow models a (potentially non-linear) function. The + sign indicates addition of latent utilities and
the ⊕ sign indicates addition of vectors. v and ui indicate the predicted set utility and predicted
latent utilities, respectively.

Main Contributions. In this paper, (i) we propose two novel network architectures for set utility
prediction that explicitly exploit the fact that many problems can be modeled as non-linear aggre-
gation of latent element scores, (ii) demonstrate the superiority of the newly proposed architectures
compared to traditional representation learning in computer vision and natural language understand-
ing datasets, and (iii) make all datasets and code publicly available for further research.

2 NEURAL NON-ADDITIVE UTILITY AGGREGATION

In this section, we present two neural non-additive utility aggregation architectures based on the
Choquet integral. The key idea implemented in both architectures is to train models that predict
a latent intermediate utility for observed objects in a given set in each step. The latent utilities
are aggregated with a learned non-additive aggregation function. This idea is inspired by the dis-
crete Choquet integral Choquet (1954); Grabisch et al. (2009). The non-additivity of the Choquet
integral is crucial for our work, because we focus on non-additive problems such as automatic sum-
marization. Both architectures are described below. We illustrate both architectures along with prior
approaches in Figure 1. Due to space restrictions, we refer to Tehrani et al. (2012a) for a solid dis-
cussion of the Choquet integral for machine learning and focus in this work on the newly proposed
architectures and their evaluation.

2.1 RECURRENT CHOQUET NETWORKS

The first architecture, Recurrent Choquet Neural Networks (RCNs), uses an RNN-like approach to
construct a hidden state in each step. The hidden state is used to predict a latent intermediate utility
that already takes non-additive effects into account. The predicted utilities are directly related to the
aggregation of capacities in the Choquet integral, which also take non-additive aggregation effects
into account. Consequently, the predicted utilities can simply be summed to obtain a non-additive
set utility. The architecture is illustrated in Figure 1c.

In this work, we model hidden states hi according to hi = tanh(W
(1)
|ϕ|·|h|,|h| · (ht−1 ‖ ϕt)), where

‖ denotes feature vector concatenation, |h| denotes the size of the hidden states and |ϕ| the size
of the input representation. The latent utility at step t is computed according to a simple linear
layer ut = W

(2)
|h|,1 · ht. The set utility is then computed by v =

∑n
i=1 ui. Needless to say, other,

more sophisticated functions can also be implemented. In this work, we decided to focus on rather
simple functions to focus on the essential novel part of the new architectures and to achieve a better
comparability to the reference models.

2

Under review as a conference paper at ICLR 2020

2.2 DEEP CHOQUET REGRESSION

The second architecture, Deep Choquet Regression (DCR), predicts a utility for each object in the
set individually. To model non-additive effects, hidden states are learned, which are used to predict
gates gt. Note that the gating in DCRs is different to the attention mechanism, since the attention
mechanism aggregates representations and not latent intermediate utilities.

Again, the products of gates and predicted intermediate utilities can be viewed as capacities of the
Choquet integral. The architecture is illustrated in Figure 1d. The computation of the hidden states
equals to the RCN. The individual utilities are computed directly based on the object representations
and not based on the hidden states. Hence, we obtain ut = W

(1)
|ϕ|,1 · ϕt. The gates are computed

according to gt = σ(W
(2)
|h|,1 · ht). The set utility is computed according to v =

∑n
i=1 gi · ui.

3 EXPERIMENTAL SETUP

In the following experiments, we want to evaluate whether the proposed approach based on the
Choquet integral performs better than the standard representation learning approach in situations in
which an aggregated score of multiple elements has to be estimated. Specifically, we are interested
in situations in which the aggregated score cannot simply be estimated by adding individual scores
but tasks in which the aggregation depends on previously observed elements. Next, we describe the
datasets and the experimental setup that we designed to gain insights on this setup.

3.1 REFERENCE ARCHITECTURES

The goal of the experiments is to investigate whether aggregating intermediate results works better
than predicting the utility based on a single representation. Hence, we compare the newly proposed
architectures to two standard approaches in representation learning that both generate representa-
tions for sets.

3.1.1 SUM BASELINE

The Sum Baseline (SB) is inspired by prior works in group rating, in which set utilities are usually
modeled as the sum of individual instance utilities. This baseline simply learns to predict instance
utilities independently and sums all predicted utilities. Similar to the new architectures, we use a
simple linear model in a first version of the model, namely SB-s (s for small), to predict element
utilities: ut = W|ϕ|,1 · ϕt. In a second version, SB-l, we use a slightly more complex function:
ut =W

(1)
8,1 · σ(W

(2)
|ϕ|,8 · ϕt).

This baseline is also a way to determine the strength of the non-additive effects. If the set utility is
based on less non-additive effects, e.g. only small redundancy effects, the Sum Baseline should be
able to yield a good performance.

3.1.2 DEEPSETS

The first architecture computes an non-weighted linear average of intermediate representations. This
strategy is also known as DeepSets (DS) Zaheer et al. (2017). We visualize the strategy in Figure 1a.

Formally, a set representation is computed according to ϕset =
∑n

i=1 ϕi. The newly gained repre-
sentation is used to predict the set utility. Again, we experiment with 2 different versions, DS-s and
DS-l which compute v =W|ϕ|,1 · ϕset and v =W

(1)
8,1 · σ(W

(2)
|ϕ|,8 · ϕset), respectively.

3.1.3 RECURRENT NEURAL NETWORKS

The third reference architecture are recurrent neural networks, which consume object representations
iteratively and generate a new representation that is supposed to represent all consumed object in
each step. Contrary to DeepSets, recurrent neural networks have a more sophisticated representation
aggregation function. Formally, models based on RNNs compute in each step a hidden state based
on a previously computed hidden state. To increase comparability of the difference architectures,

3

Under review as a conference paper at ICLR 2020

we use the same method to compute hidden states: hi = tanh(W|ϕ|·|h|,|h|(ht−1 ‖ ϕt)). The final
hidden state is used as set representation to predict the utility of the set according to v =W|h|,1 ·hn.
RNNs are visualized in Figure 1b.

3.2 DATASETS

To evaluate the different architectures, we conduct experiments based on visual and textual data.
The datasets are described below.

3.2.1 MNIST REDUNDANCY AND MNIST SYNERGY

Task Description. The first datasets that we use are based on the MNIST dataset LeCun et al.
(1998). Similar to Zaheer et al. (2017); Ilse et al. (2018), we use the images in the MNIST dataset
to generate sets of number images. We assign each set a utility according to different aggregation
functions. The aggregation functions are unknown to the machine learning models, whose task it is
to learn to estimate the correct utility from training data.

Set Utility. We generate two datasets based on MNIST. The first dataset, MNIST-R, models re-
dundancy effects. In MNIST-R, the set utility equals to the sum of all uniquely appearing dig-
its. Hence, each element utility is only considered once and each further appearance of an al-
ready counted element utility is ignored. For example, the set {o1, o2, o3} with element utilities
o1 = 3, o2 = 5, o3 = 3 has a utility of 8 in this dataset. The second dataset, MNIST-S, models
synergy effects. In MNIST-S, the utility of the set equals to the sum of all elements that appear
at least twice. Elements that appear only once are ignored. The previously discussed example set
{o1, o2, o3} has a utility of 3 in MNIST-S.

Image Representation. To represent the images, we implement and train a simple neural network
model according to a publicly available digit classification model.1 The model compresses the 784-
dimensional input images in several layers to 128-dimensional and 64-dimensional representations
before a softmax is applied to a 10-dimensional layer. We feed MNIST images into the trained
model and extract the activations of the 64-dimensional layer, which yields 64-dimensional image
representations.

3.2.2 SUMMARY UTILITY PREDICTION

Task Description. The second task used in the experiments is estimating summary utilities in au-
tomatic summarization Mani (2001); Nenkova & McKeown (2011). In automatic summarization, a
set of source documents is given and the task is to generate a summary which contains the most im-
portant information from the source documents. The more important information the automatically
generated summary contains, the higher the utility of the summary. Automatic summarization is
often modeled as sentence selection problem in which the order of the selected sentence is not irrel-
evant for the evaluation. In this case, the summary is simply a set of sentences, which makes the task
appropriate for the scope of this paper. Non-additive aggregation effects occur in automatic summa-
rization naturally. Repeating the same information multiple times, for example, does not increase
the information content of the summary and, hence, does not increase the summary quality. Simi-
larly to the previous dataset, we make use of the well-known TAC2009 dataset Dang & Owczarzak
(2009) for automatic summarization. The TAC2009 contains several topics, each of which contains
multiple source documents. The dataset contains automatically generated summaries from over 55
systems.

Set Utility. Each automatically generated summary in TAC2009 is annotated with so called Pyra-
mid SCUs (Summary Content Units) Nenkova et al. (2007). Each Pyramid SCU refers to one in-
formation nugget that is contained in the text. The SCUs have been weighted with the Pyramid
method. More important SCUs have a higher weight than less important SCUs. The weight of each
SCU is an integer between 1 and 4. The utility of a summary is calculated by adding the weights
of all contained SCUs. However, including a SCU multiple times in a summary does not improve

1https://github.com/amitrajitbose/handwritten-digit-recognition

4

https://github.com/amitrajitbose/handwritten-digit-recognition

Under review as a conference paper at ICLR 2020

Table 1: Experiment results for visual and textual data

MNIST-R MNIST-S Sum-64 Sum-768
Model MAE MSE MAE MSE MAE MSE MAE MSE
SB-s 5.19 40.60 7.60 88.71 1.78 5.03 0.65 1.02
SB-l 5.07 39.50 6.99 75.08 0.75 1.23 - -
DS-s 5.20 40.73 7.62 89.26 1.78 5.04 0.49 0.55
DS-l 4.19 25.77 7.69 88.72 1.53 4.24 - -
RNN 3.88 22.09 7.36 82.50 0.88 1.42 0.18 0.34
RCN 3.43 17.91 7.00 75.01 0.91 1.49 0.12 0.16
DCR 3.23 15.57 6.91 74.60 0.90 1.02 0.55 1.00

the utility of the summary, because repeating an SCU means that the same information is contained
multiple times in the summary, which is not desired. Synergy effects are not modeled by SCUs.

Sentence Representation. For this task, we need a feature representation for sentences. We use
two different representations in the experiments. The first representation are derived from the BERT
language model Devlin et al. (2019). We use the publicly available Sentence Transformers library2 to
convert the original sentences into 768-dimensional sentence embeddings. Since the representation
is high-dimensional, we also train a simple auto-encoder to generate a smaller sentence embeddings
of size 64.

3.3 IMPLEMENTATION AND TRAINING DETAILS

We implemented all reference and newly proposed architectures in PyTorch 1.2. The source code
and the used datasets will be publicly available and can be used to reproduce our experiments.
All experiments have been performed on NVIDIA Tesla K80 GPUs. All datasets contain 10,000
sets. We use random splits of size 8,000, 1,000, and 1,000 for training, validation, and testing,
respectively. Experiment-specific details can be found in the corresponding experiment description
below. For each experiment, we limit the maximum number of epochs to 1,000 and perform early
stopping based on the validation set with a patience of 50 epochs. For all experiments, we use
the Adam optimizer and start with a learning rate of 0.001. We use a batch size of 100. We use the
mean squared error (MSE) as well as the mean absolute error (MAE) as loss functions and evaluation
metrics. Initial hidden states are initialized with zero-vectors. We use default initialization for all
model weights.

4 EXPERIMENTS

In this section, we describe experiment-specific details, report the outcomes of the experiments, and
discuss the results.

4.1 EXPERIMENTS WITH VISUAL AND TEXTUAL DATA

Description. In the first experiment, we evaluate the reference architectures and the newly pro-
posed architectures on both visual and textual data to figure out how well the resulting models can
deal with redundancy and synergy effects in both modalities. Based on the MNIST data, we gener-
ate sets with a length of 10 images and compute the set utility according to the previously described
redundancy and synergy functions. For summarization, we create sets of size 4 because the average
length of the summaries contained in the TAC2009 is very close to 4. Hence, set sizes of 4 are rea-
sonable and realistic. We perform experiments with the compressed 64-dimensional and the original
768-dimensional BERT embeddings.

Results. To improve the quality of the experiment, we performed each experiment 5 times with
different random seeds. Table 1 contains the mean of the 5 runs. We optimize for mean average

2https://github.com/UKPLab/sentence-transformers

5

https://github.com/UKPLab/sentence-transformers

Under review as a conference paper at ICLR 2020

0 5 10
0

50

100

150

200

absolut error

fr
eq

ue
nc

y

SB-s
SB-l
DS-s
DS-l
RNN
RCN
DCR

Figure 2: Distribution of absolute errors for
MNIST-R experiments.

0 5 10 15
0

10

20

squared error

sq
ua

re
ro

ot
of

fr
eq

ue
nc

y

SB-s
SB-l
DS-s
DS-l
RNN
RCN
DCR

Figure 3: Distribution of squared errors for
MNIST-R experiments.

error and mean squared error as described before and report results for both experiments. Overall,
the newly proposed Deep Choquet Regression (DCR) architecture performs best. It achieves the
lowest error in 5 out of 8 experiments. The only weakness of the architecture occurs in the sum-
marization experiment with 768-dimensional BERT embeddings. The Recurrent Choquet Network
(RCN) achieves best results in the last experiments and is placed second in all MNIST experiments.
In Sum-64, it is close to the best results. With some distance, the Recurrent Neural Network (RNN)
performs mediocre in the MNIST experiments. In summarization, it works better. This result might
stem from the smaller set size in the summarization experiments compared to the MNIST exper-
iments (set size of 4 vs. 10). The DeepSets (DS) and the Sum Baseline (SB) perform poorly in
MNIST. SB achieves good results in Sum-64. This might be explained by the smaller impact of
the redundancy effects compared to the MNIST data. In general, optimizing according to MAE and
MSE correlates well. The best architecture according to MAE and MSE only differs in Sum-64. In
general, we conclude that recurrent models perform better than the non-recurrent models although
the input data is permutation invariant. For SB-l and DS-l, no experiments have been conducted
with the large 768-dimensional BERT embeddings.

Error Distribution. In addition to the averages reported in Table 1, we plot the distribution of the
errors in Figure 2 and Figure 3 for the MNIST redundancy experiment for the absolute error and the
mean squared error, respectively. For both mean average errors and mean squared errors, it can be
seen that the new models (black) make much more small mistakes and fewer large mistakes com-
pared to the reference models (orange/blue/red). The mean squared error curves are much steeper,
which results from the fact that larger errors are penalized much more than small errors.

4.2 VARYING SET LENGTH

Description. In the second experiment, we are interested in how well the architectures can deal
with varying set sizes. To shed light on this question, we generate sets based on the MNIST data
with redundancy and synergy aggregation functions. In contrast to the previous MNIST experiments,
which have a fixed set length of 10, we randomly generate sets with lengths of 6, 8, 10, 12, and 14
MNIST images. The results of the experiments can be found in Table 2. This time, we only averaged
2 runs for each experiment due to computational limitations.

Results. In general, the errors tend to increase, which is reasonable due to the more difficult setup.
However, the increase is rather moderate. Similar to the previous experiment, DCR and RCN per-
form best. This time, no clear winner can be distinguished between DCR and RCN. RNN is again
placed third and the other architectures perform poorly.

6

Under review as a conference paper at ICLR 2020

Table 2: Results for varying set lengths

MNIST-R MNIST-S
Model MAE MSE MAE MSE
SB-s 4.93 38.56 7.77 91.13
SB-l 4.87 37.37 7.12 74.70
DS-s 4.93 38.08 7.76 91.07
DS-l 4.06 24.00 7.83 86.73
RNN 3.85 21.35 7.46 80.90
RCN 3.24 17.34 7.16 76.87
DCR 3.68 20.20 7.02 76.28

Table 3: Extrapolation results

MNIST-R MNIST-S
Model MAE MSE MAE MSE
SB-s 4.92 57.17 25.57 1292.23
SB-l 7.25 80.18 32.95 1350.70
DS-s 6.55 66.38 16.22 406.44
DS-l 6.58 53.21 37.51 1702.10
RNN 9.37 128.19 35.84 1687.71
RCN 4.23 29.75 21.74 866.62
DCR 4.25 37.79 16.69 450.81

4.3 EXTRAPOLATION TO LONGER/SHORTER SEQUENCES

Description. In the third experiment, we are interested in the extrapolation abilities of the different
architectures, i.e. how well they are able to extrapolate beyond the observed training instances. This
provides a good insight in whether the models were able to identify and learn the underlying nature
of the problem or if they fit to tightly to the observed distribution. To this end, we train the models on
sets with length 10. Furthermore, the validation set, according to which the best model is selected,
also contains only sets with length 10. The test set, however, only contains sets of size 5 and 20.
Hence, the model has to extrapolate from set sizes of 10 to set sizes of 5 and 20.

Results. The results can be found in Table 3. Again, we report the average of 2 runs for each
experiment. For MNIST-R, the RCN architecture performs best and DCR is second. The RNN
architecture performs worst in the extrapolation experiment in MNIST-R. In MNIST-S, DS-s is
best. This can be explained by the nature of the synergy effect. The larger the set, the more likely it
becomes that images representing the same numbers appear multiple times in the set. Hence, it is not
so important anymore to count the appearing digits and simply identifying the appearance of a digit
can lead to reasonable results. The same effect can be observed when DS-s and RNN are compared.
In prior experiments, RNN performed much better than DS-s. In this experiment, however, DS-s
performs better. DCR is close to DS-s and performs second best while RCN placed third. The other
architectures, namely SB-s, SB-l, and DS-l perform poorly on MNIST-S.

5 RELATED WORK

Set Representation Learning. Most relevant to our work are works that learn representations
for set regression problems. We have already discussed recurrent neural networks and DeepSets
Zaheer et al. (2017). Zhang et al. (2019) learn how to order the elements of a set to feed it into an
LSTM such that the resulting representation can be used to predict the desired output. Hence, it
is a smart representation aggregation function. In this work, we focus on simple RNN-like hidden
state aggregations in the RNN, DCN, and DCR architectures because we want to focus on whether
modeling intermediate utilities can be beneficial. We leave learning of better hidden states for future
work. Improving the learning hidden stated and maybe also reorder objects Zhang et al. (2019) could
be interesting for future work and might improve the performance of the newly proposed DCN and
DCR architectures further.

Multiple Instance Learning. The problem considered in this work is related to multiple instance
learning Dietterich et al. (1997); Maron & Lozano-Perez (1998), and in particular multiple instance
regression Ray & Page (2001). In multiple instance learning, only labels for sets of instances are
observed. Usually, the problem is framed as binary classification problem in which all instances
have binary labels and the set is labeled positive if at least one instance is positive. This is known as
the standard multiple instance learning assumption Carbonneau et al. (2018). Similarly, Ray & Page
(2001) assume that sets contain primary instances, which are solely responsible for the set utility.
In both settings, it is sufficient to learn labels/values of the underlying instances. Furthermore, our
main contributions are two new neural architectures, i.e. a contribution to representation learning,
which is not considered by most prior works. Only very recently, deep learning has been applied
to multiple instance classification under the standard assumption Ilse et al. (2018). In this work,

7

Under review as a conference paper at ICLR 2020

however, we focus consider problems in which a more difficult non-additive aggregation function
has to be learned. Hence, learning instance utilities is not sufficient and the problem at hand is
substantially different to multiple instance learning.

Group Rating Problems. Group rating problems relax the standard multiple instance learning
assumption and do not assume the presence of a primary instance. Instead, all individuals in a group
contribute to its utility. However, as already mentioned previously, most prior works in group rating
assume that the set utility can be modeled as sum of the individual utilities. Most notably are the
Bradely-Terry model Bradley & Terry (1952) and TrueSkill Herbrich et al. (2006). Recently, Li et al.
(2017) proposed a model which learns parameters of different parametrized aggregation functions.
However, their model is provided with supervision for element and group ratings. Compared to our
work, we do not provide the model element scores. Furthermore, we do not provide group features.
In our setting, groups are just sets of elements without any additional features.

Sequence-to-Sequence Learning The proposed architectures look similar to sequence-to-
sequence problems such as architectures for machine translation Neubig (2017). There are, however,
notable differences. First and most importantly, the predicted values in the proposed architectures
are latent intermediate utilities, which are not part of the output of the prediction. Instead, the output
is an aggregation of the latent utilities. In sequence-to-sequence problems, the outputs of each time
step such as individual words are visible in the output such as a translated sentence. Furthermore,
like in multiple instance learning, no feedback is available for intermediate predictions. Further-
more, our models predict intermediate utilities, which are numbers. Sequence-to-sequence models
usually predict tokens.

Choquet Integral for Machine Learning The Choquet integral Choquet (1954); Grabisch et al.
(2009) has been used for non-neural works before. Beliakov (2008) fit values of the discrete Choquet
integral with linear programming techniques. Tehrani et al. (2012a) use the Choquet integral to
model monotone nonlinear aggregations for binary classification. Tehrani et al. (2012b) use the
Choquet in a pairwise preference learning scenario. To the best of our knowledge, this is the first
work which combines the Choquet integral with deep learning.

6 CONCLUSIONS & FUTURE WORK

We found that standard methods for set regression such as architectures that belong to the DeepSets
family and recurrent neural networks do not explicitly make use of the fact that meaningful inter-
mediate utilities can be predicted in many problems. Instead, they aim at learning a representation
for sets such that the set utility can be predicted solely on the learned representation. We proposed
two new architectures, which have been inspired by the non-additive Choquet integral. The resulting
models learn to predict and aggregate intermediate utilities. Non-additivity is essential to deal with
redundancy and synergy effects.

We validated the superiority of neural non-additive utility aggregation on computer vision and sum-
marization datasets. Besides the superior performance, the new models also enjoys a better inter-
pretability than prior models because each prediction step is meaningful and can be inspected by
laypeople that do not have any machine learning knowledge. Misconceptions of the model can be
identified easily.

We focused in this paper on comparing neural non-linear utility aggregation with standard repre-
sentation learning approaches for set regression problems and did not focus on achieving very high
overall results. Multiple improvements of the proposed architectures can be investigated in future
work. For example, more sophisticated representation aggregation functions such as LSTM and
GRU cells can be used, attention mechanisms can be used to learn better hidden state representa-
tions, and different object utility functions and gate functions can be investigated. Furthermore, the
proposed architectures are not limited to set regression problems, but can also be applied to sequence
regression problems.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Gleb Beliakov. Fitting fuzzy measures by linear programming. Programming library fmtools. IEEE
International Conference on Fuzzy Systems, pp. 862–867, 2008. ISSN 10987584. doi: 10.1109/
FUZZY.2008.4630471.

Ralph Allan Bradley and Milton E. Terry. Rank Analysis of Incomplete Block Designs. Biometrika,
39(3):324–345, 1952.

Marc André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain Gagnon. Multiple
instance learning: A survey of problem characteristics and applications. Pattern Recognition, 77:
329–353, 2018. ISSN 00313203. doi: 10.1016/j.patcog.2017.10.009.

Gustave Choquet. Theory of capacities. Annales de l’Institut Fourier, 5:131–295, 1954. doi:
10.5802/aif.53.

Hoa Trang Dang and Karolina Owczarzak. Overview of the TAC 2009 Summarization Track. In
Proceedings of the Second Text Analysis Conference, Gaithersburg, Maryland, USA, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Annual
Conference of the North American Chapter of the Association for Computational Linguistics, pp.
4171–4186, 2019.

Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solving the multiple in-
stance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–71, 1997. ISSN
00043702.

Michel Grabisch, Jean-Luc Marichal, Radko Mesiar, and Endre Pap. Aggregation functions. En-
cyclopedia of Mathematics and its Applications. Cambridge University Press, 2009. ISBN
9780521519267.

Ralf Herbrich, Tom Minka, and Thore Graepel. TrueSkill: A Bayesian Skill Rating System. In
Advances in Neural Information Processing Systems 20, pp. 569–576, 2006. URL http://
research.microsoft.com/apps/pubs/default.aspx?id=67956.

Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Attention-based deep multiple instance
learning. 35th International Conference on Machine Learning, ICML 2018, 5:3376–3391, 2018.

Yan LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Liangyue Li, Hanghang Tong, Yong Wang, Conglei Shi, Nan Cao, and Norbou Buchler. Is the Whole
Greater Than the Sum of Its Parts? In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 295–304, 2017. ISBN 9781450348874.
doi: 10.3899/jrheum.100701.

Inderjeet Mani. Automatic Summarization. John Benjamins Publishing Co., 2001.

Oded Maron and Tomas Lozano-Perez. A framework for multiple-instance learning. Advances in
Neural Information Processing Systems, pp. 570–576, 1998. ISSN 10495258.

Ani Nenkova and Kathleen McKeown. Automatic Summarization. Foundations and Trends in
Information Retrieval, 5(3):103–233, 2011.

Ani Nenkova, Rebecca Passonneau, and Kathleen McKeown. The Pyramid Method. ACM
Transactions on Speech and Language Processing, 4(2):1–23, 2007. ISSN 15504875. doi:
10.1145/1233912.1233913.

Graham Neubig. Neural Machine Translation and Sequence-to-sequence Models: A Tutorial. In
arXiv preprint, pp. 1–65, 2017. URL http://arxiv.org/abs/1703.01619.

Soumya Ray and David Page. Multiple Instance Regression. In International Conference on Ma-
chine Learning, pp. 425 – 432, 2001. doi: 10.1088/1674-1056/22/9/098702.

9

http://research.microsoft.com/apps/pubs/default.aspx?id=67956
http://research.microsoft.com/apps/pubs/default.aspx?id=67956
http://arxiv.org/abs/1703.01619

Under review as a conference paper at ICLR 2020

Ali Fallah Tehrani, Weiwei Cheng, Krzysztof Dembczyński, and Eyke Hüllermeier. Learning mono-
tone nonlinear models using the Choquet integral. Machine Learning, 89(1-2):183–211, 2012a.
ISSN 15730565. doi: 10.1007/s10994-012-5318-3.

Ali Fallah Tehrani, Weiwei Cheng, and Eyke Hullermeier. Preference learning using the choquet
integral: The case of multipartite ranking. IEEE Transactions on Fuzzy Systems, 20(6):1102–
1113, 2012b. ISSN 10636706. doi: 10.1109/TFUZZ.2012.2196050.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
and Alexander Smola. Deep Sets. In Proceeding of the 31st Conference on Neural Infor-
mation Processing Systems, pp. 1–11, 2017. URL https://papers.nips.cc/paper/
6931-deep-sets.

Yan Zhang, Adam Prügel-Bennett, and Jonathon Hare. Learning Representations of Sets through
Optimized Permutations. In Proceeding of the 7th International Conference on Learning Repre-
sentations, pp. 1–15, 2019.

10

https://papers.nips.cc/paper/6931-deep-sets
https://papers.nips.cc/paper/6931-deep-sets

	Introduction
	Neural Non-additive Utility Aggregation
	Recurrent Choquet Networks
	Deep Choquet Regression

	Experimental Setup
	Reference Architectures
	Sum Baseline
	DeepSets
	Recurrent Neural Networks

	Datasets
	MNIST Redundancy and MNIST Synergy
	Summary Utility Prediction

	Implementation and Training Details

	Experiments
	Experiments with Visual and Textual Data
	Varying Set Length
	Extrapolation to longer/shorter sequences

	Related Work
	Conclusions & Future Work

