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ABSTRACT

We investigate whether it’s possible to tighten PAC-Bayes bounds for deep neural
networks by utilizing the Hessian of the training loss at the minimum. For the case
of Gaussian priors and posteriors we introduce a Hessian-based method to obtain
tighter PAC-Bayes bounds that relies on closed form solutions of layerwise sub-
problems. We thus avoid commonly used variational inference techniques which
can be difficult to implement and time consuming for modern deep architectures.
We conduct a theoretical analysis that links the random initialization, minimum,
and curvature at the minimum of a deep neural network to limits on what is prov-
able about generalization through PAC-Bayes. Through careful experiments we
validate our theoretical predictions and analyze the influence of the prior mean,
prior covariance, posterior mean and posterior covariance on obtaining tighter
bounds.

1 INTRODUCTION

Deep neural networks are by now the established method for tackling a number of machine learning
tasks. Despite this their performance on out of sample data is very difficult to be proven formally and
is usually validated empirically by using a set of validation samples. Classic measures of capacity
such as the VC dimension which are uniform across all functions representable by the classification
architecture are doomed to fail; DNNs are typically overparameterized and correspondingly the set
of representable functions is large enough to make the the bounds vacuous. For example in the
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Figure 1: The importance of retaining the original minimum: Conventional wisdom links tight
generalization error bounds to correctly estimating flat and curved directions in the loss landscape
around the original minimum µ0. Existing optimization based non-vacuous bounds compute im-
plicitly or explicitly a different minimum µ̃0 and then implicitly evaluate the curvature and posterior
distribution around that minimum. By contrast we aim to estimate the curvature and a related opti-
mal posterior distribution around the original solution µ0.
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highly cited work Zhang et al. (2016) the authors show that the set of representable functions of
typical DNNs contains elements that can memorize the labels over the training set.

A lesson drawn from this experiment is that defining the hypothesis class a priori results in bounds
that are too loose. Clearly from empirical observation optimization algorithms reach solutions that
are not trivially memorizing the labels. As such recently researchers turned to measures of complex-
ity that are data dependent and are defined a posteriory; that is taking into account the specific solu-
tion achieved after optimization. One way of achieving this is by defining bounds that incorporate
norms of the learned layer weights. Examples include Bartlett et al. (2017) Neyshabur et al. (2017)
Golowich et al. (2017) and have been reached through a number of proof techniques. However these
analytical bounds when evaluated explicitly are still vacuous by several orders of magnitude. They
have been motivated simply by empirical correlations with generalization error; an argument which
has been criticized in a number of works Kawaguchi et al. (2017) Nagarajan & Kolter (2019b) Pitas
et al. (2019).

On a more fundamental level simple correlation with generalization error is unsatisfying for more
critical applications such as healthcare, autonomous driving, and finance where DNNs are increas-
ingly being deployed, potentially making life-altering decisions. Consequently some works have
achieved success in proving generalization in specific settings by optimizing PAC-Bayesian bounds
McAllester (1999). PAC-Bayes theorems typically assume a randomized classifier defined by a pos-
terior distribution Q, they then bound the generalization error of this randomized classifier by using
as a measure of complexity the KL-Divergence between the posterior distribution Q and a proper
prior distribution P . The prior P is meant to model a ”very simple function” and is usually chosen to
be a scaled standard Gaussian distribution. In Dziugaite & Roy (2017) the authors optimize the pos-
terior distribution while enforcing non-trivial training accuracy so as to obtain a non-vacuous bound
on significantly simplified MNIST datasets. In Zhou et al. (2018) the authors compress an original
neural network therefore minimizing it’s effective capacity while constraining it to have high accu-
racy over the training set. The obtained network can be proven to have non-vacuous generalization
even for large scale Imagenet experiments. Both results remain significantly loose.

It is worthwhile to note the subtle but important ways in which the above two works diverge from
PAC-Bayesian intuition. PAC Bayes defines an a posteriori hypothesis class roughly as a ball around
the obtained classifier solution, this ball is defined implicitly by assuming a posterior that is usually
a Gaussian with a given variance. The larger the variance of the posterior, the larger the ball that
can be placed on the obtained solution and the simpler the hypothesis class, or in the case of deran-
domized PAC-Bayes the simpler the individual hypothesis. By optimizing the mean of the posterior
in Dziugaite & Roy (2017) and by applying compression in Zhou et al. (2018) the authors arrive to
posteriors whose weights are not similar even in expectation to the original classifier. Furthermore
intuition regarding the role of the magnitude of the variance, is largely destroyed. At the same time
neither the non-convex optimization problem solved in Dziugaite & Roy (2017) nor the compres-
sion schemes employed in Zhou et al. (2018) are guaranteed to converge to a global minimum. The
Variational Inference objective employed in Dziugaite & Roy (2017) is especially difficult to opti-
mize and has hindered the widespread adoption of Bayesian neural networks Wu et al. (2018). It is
therefore an open problem to test the limits of PAC-Bayes for proving generalization in the original
classifiers obtained by optimization, while ideally avoiding Variational Inference.

In Dziugaite & Roy (2018) the authors take a step in this direction by optimizing the prior of the
PAC-Bayes bound. PAC-Bayesian theory allows the prior to be distribution dependent but not depen-
dent on the training set, the authors enforce this constraint through the differential privacy approach
Dwork (2011). Both objectives in Dziugaite & Roy (2017), Dziugaite & Roy (2018) are however
difficult to optimize for anything but small scale experiments.

Our work has close connections with Achille & Soatto (2018)Achille et al. (2019). These works
aim to link on a fundamental level the Kolmogorov, Shannon and Fisher Information in deep neural
networks to the sufficiency,minimality, and invariance of their representations. Our work by con-
trast focuses on tightening PAC-Bayesian bounds and determining how much progress can be made
towards non-vacuous bounds simply by leveraging local properties of a given minimum.

We adopt the PAC-Bayesian approach and seek to find optimal solutions that circumvent the above
mentioned Variational Inference problems. At the same time we want to clarify the contribution of
the prior mean and covariance choices in obtaining non vacuous bounds. We focus on the popular
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choice of multivariate Gaussians with diagonal covariance and fixed means to model priors and
posteriors.

2 CONTRIBUTIONS

• We use a second order Taylor expansion of the randomized empirical loss in an IB-
Lagrangian objective. Using this approximation we derive lower bounds in the IB-
Lagrangian objective that correspond to an invalid but optimal PAC-Bayes bound (the prior
is training set dependent).

• We propose a theoretically motivated layerwise method to obtain optimal PAC-Bayes
bounds with respect to the posterior variance, that are also valid (the prior is non-
informative).

• We conduct experiments where the valid bounds using our method approach the invalid
optimal ones. In other cases we can rule out being able to prove generalization using our
modeling assumptions. We also conduct a detailed analysis of the contribution of the prior
mean and covariance in obtaining non-vacuous bounds.

3 PAC-BAYESIAN FRAMEWORK

We consider the hypothesis class HL realized by the feedforward neural network architecture of
depth L with coordinate-wise activation functions σ defined as the set of functions fθ : X →
Y (X ⊆ Rp,Y ⊆ RK) with fθ(x) = σ(σ(...σ(xTW0)W1)W2)..)WL) where θ ∈ ΘL ⊆ Rd is
a vectorization of the weights and ΘL = Rp×k1 × Rk1×k2 × ...× RkL×K . Given the loss function
`(·, ·) we can define the population loss: L(θ) := E(x,y)∼P`(fθ(x),y) and given a training set of
N instances S = {(xj ,yj)}Nj=1 the empirical loss L̂(θ) := 1

N

∑N
i=1 `(fθ(xi),yi).

The PAC-Bayesian framework McAllester (1999) provides generalization error guarantees for ran-
domized classifiers drawn from a posterior distribution Q. We will use the following form of the
PAC-Bayes bound.

Theorem 3.1. (PAC-Bayesian theorem McAllester (1999)) For any data distribution over X ∈
{−1,+1}, we have that the following bound holds with probability at least 1− δ over random i.i.d.
samples S = {(xj ,yj)}Nj=1 of size N drawn form the data distribution:

E
θ∼Q

[L(θ)] ≤ E
θ∼Q

[L̂(θ)] +

√
KL(Q||P ) + ln 2(N−1)

δ

2N
. (1)

Here Q is an arbitrary ”posterior” distribution over parameter vectors, which may depend on the
sample S and on the prior P .

The framework models the complexity of the randomized classifier as the KL-Divergence between
the posterior Q and a prior P . The prior P must be valid in that it cannot depend in any way on the
training data. On the contrary the posterior Q can be chosen to be any arbitrary distribution. This
flexibility allows one to model deterministic neural networks as the mean of an arbitrary posterior
distribution, thus deriving results for a stochastic but closely related classifier.

3.1 PREVIOUS WORK

As the analytical solution for the KL term in 1 obviously underestimates the noise robustness of
the deep neural network around the minimum one might be tempted to obtain a tighter PAC-Bayes
bound by directly optimizing

L(Q(w|D)) = E
θ∼Q

[L̂(θ)] +

√
KL(Q||P ) + ln 2(N−1)

δ

2N
(2)

so as to obtain a posterior that is both close to the PAC-Bayesian prior and has a non-vacuous
accuracy. Optimizing the above objective cannot be done directly as computing E

θ∼Q
[L̂(θ)] or it’s
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gradients is intractable for general distributions Q. A typical workaround is to parameterize θ as
having a Gaussian distribution θ = µ + ξ � σ where ξ ∼ N (0, I) and compute gradients of the
resulting unbiased estimate Eξ∼N (0,I)[L̂(µ + ξ � σ)]. In Dziugaite & Roy (2017) the authors use
this technique and then present a non-vacuous bound for fully connected deep neural networks.

Remarkably the above formulation bears striking resemblance to the objective

Cβ(D;P,Q) = E
θ∼Q

[L̂(θ)] + βKL((Q||P )), (3)

which is known as the Information Bottleneck (IB) Lagrangian† under the Information Bottleneck
Framework Achille & Soatto (2018)Tishby et al. (2000), the Evidence Lower Bound (ELBO) in the
variational inference literature Kingma et al. (2015)Bishop (2006) when β = 1, or more recently as
the task complexity Achille et al. (2019). In the above β has the role of regulating the amount of
information in the randomized neural network Achille & Soatto (2018), smaller values correspond
to more information and potential to overfit.

4 LOWER BOUND ON THE IB-LAGRANGIAN

The stochastic and non-convex objective 3 is difficult to analyze theoretically. As such we first
propose to expand the randomized loss using a Taylor expansion which will make the subsequent
analysis tractable. We get

Cβ(D;P,Q) = E
θ∼Q

[L̂(θ)] + βKL((Q||P ))

≤ E
η∼Q′

[

(
∂L̂(θ)

∂θ

)T
η +

1

2
ηTHη +O(||η||3)] + βKL((Q||P ))

≈ E
η∼Q′

[
1

2
ηTHη] + βKL((Q||P )),

(4)

where Q′ is a centered version of Q. We’ve made a number of assumptions. In the second line we
assumed that the loss L̂(θ) at the minimum is 0. In line 3 we assumed that the gradient ∂L̂(θ)/∂θ
at the minimum is also 0 and the term O(||η||3) is negligible. All assumptions are reasonable for
modern deep neural networks. Our subsequent analysis crucially rests on an accurate estimation of
the Hessian, which remains an open problem for modern deep learning architectures. Furthermore
while we will be minimizing an upper bound on our objective we will be referring with a slight
abuse of terminology to our results as a lower bound. Empirically our theoretical predictions are
meaningful and should only improve with better estimates of the Hessian.

4.1 OPTIMAL POSTERIOR

We make the following modeling assumptions Q = N (µ0,Σ0) and P = N (µ1, λΣ1) which are
popular in VI and PAC-Bayes literature. We can then show that the optimal posterior covariance of
the above objective for fixed prior and posterior means has a closed form solution.

Lemma 4.1. The convex optimization problem minΣ0
E

η∼Q′
[ 1
2η

THlη] + βKL((Q||P )) where Q =

N (µ0,Σ0) and P = N (µ1, λΣ1) has the global minimum:

Σ∗0 = β(Hl +
β

λ
Σ−1

1 )−1, (5)

where Hl captures the curvature in the directions of the parameters, while Σ1 is a chosen prior
covariance.

In practice we perform a grid search over the parameters β and λ and try to find Pareto optimal pairs
balancing the accuracy of the randomized classifier and the KL complexity term.
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(a) (b)

Figure 2: Feasible solutions vs Non-Vacuous solutions: We merge the 10 classes in Mnist and Cifar
to create simpler 2 class problems. For different values of β we compute the optimal complexity

terms
√

KL(Q||P )+ln
2(N−1)

δ

2N using 6, 7. We compute the accuracy of the stochastic classifier with
MCMC for 5 samples. We plot this lower bound with the solid black line. All points above it are
feasible. We see that for the Mnist problem the two regions intersect suggesting that we might be
able to prove generalization using Gaussians with diagonal covariance. By contrast in the Cifar case
the two regions do not intersect suggesting that the prior and posterior means have a prohibitive
distance between them, and we cannot prove generalization with diagonal covariances.

4.2 OPTIMAL PRIOR

The above solution is not optimal with respect to the prior covariance in that we have up to now
chosen it arbitrarily. Furthermore given that the choice of the random initialization as the prior mean
has been independently shown to result in much tighter bounds in a variety of settings Dziugaite &
Roy (2017) Nagarajan & Kolter (2019a) one would wish to isolate the effects of the prior mean on
the bound tightness from the prior covariance.

PAC-Bayesian theory allows one to choose an informative prior, however the prior can only depend
on the data generating distribution and not the training set. A number of previous works Parrado-
Hernández et al. (2012)Catoni (2003)Ambroladze et al. (2007) have used this insight mainly on
simpler linear settings and usually by training a classifier on a separate training set and using the
result as a prior. The concept of a valid prior has been formalized under the differential privacy
setting Dziugaite & Roy (2018) where the authors also propose algorithms for the case of deep
neural networks.

We ignore these concerns for the moment and optimize the prior covariance directly. The objective
is non-convex however for the case of diagonal prior and posterior covariances we manage to find
the global minimum.

Theorem 4.2. The optimal prior and posterior for Cβ(D;P,Q) = E
η∼Q′

[ 1
2η

THlη]+βKL((Q||P ))

with Q = N (µ0,Σ0) and P = N (µ1, λΣ1) and assuming that Σ−1
1 = Λ1 =

diag(Λ11,Λ21, ...,Λk1) and Hl = diag(h1l, h2l, ..., hkl) have:

Λ∗i1 =
λ

2β
[

√
h2
il +

4βhil
(µi0 − µi1)2

− hil], (6)

Λ∗i0 =
1

2β
[hil +

√
h2
il +

4βhil
(µi0 − µi1)2

]. (7)

†Actually this is an upper bound on the IB Lagrangian, but we will use this term for simplicity.
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where Hl encodes the local curvature at the the minimum, µ1 corresponds to the random initializa-
tion (by design) of the DNN, and µ0 corresponds to the minimum obtained after optimization.

For our choice of Gaussian prior and posterior, the following is a lower bound on the IB-Lagrangian
under any Gaussian prior covariance:

min
Σ0,Σ1

Cβ(D;P,Q) &
1

2
(
∑
i

ail(µi0 − µi1)2 + β
∑
i

ln(
hil + ail
ail

)), (8)

where ail , ail(β, µi0, µi1, hil) = 1
2 [
√
h2
il + 4βhil

(µi0−µi1)2 − hil].

The above result is intuitively pleasing setting a lower bound to what we can achieve which de-
pends only on the initialization (by design), obtained minimum, curvature at the minimum and the
regularization parameter β. In particular the scaling factor λ has disappeared.

We now make some important notes about what one can and cannot prove using these results, by
stressing that the above result is a necessary but not a sufficient condition for generalization under
our prior and posterior modeling.

• Given a deterministic deep neural network and it’s initialization (or other prior mean) one
can rule out being able to prove generalization using any choice of diagonal covariances
when modeling the priors and posteriors as multivariate Gaussians with fixed means. Mod-
eling with other distributions may give different results†.
• One cannot prove generalization using this result, even in the case when the prior mean

is valid (only distribution dependent) and the feasible and non-vacuous sets intersect. One
still has to compute the prior and posterior covariances in a valid manner. As such a com-
putationally feasible region given finite data and computational resources as well as privacy
constraints, might be much smaller than the one we derive here.

We plot our lower bound for simplified 2 class Mnist and Cifar problems in Figure 2. We see that
while for the Mnist problem the feasible and non-vacuous regions intersect the same is not true for
the Cifar problem. What remains is to see if our results apply for the case of valid priors. First we
detail a number of computational issues in section 5.

5 COMPUTATIONAL ASPECTS

We now present a number of computational and memory issues associated with the Hessian of a
modern deep neural network. There is ambiguity about the size of the Hessians that can be computed
exactly Kunstner et al. (2019). There have been few results in this area and the main problem
seems to be that the relevant computations are not well supported from common auto-differentiation
libraries, such as Tensorflow and Keras. However storing and manipulating the full Hessian of a
number of modern deep neural network architectures would be infeasible as the matrix is of size
H ∈ Rd×d where d is the number of parameters. As a point of reference a dense uncompressed
Numpy matrix for d = 50000 takes up 20GB of memory. As such we detail in the next section a
number of approximations that make both computing and storing the Hessian feasible.

5.1 APPROXIMATING THE FULL HESSIAN

As noted in Kunstner et al. (2019) the generalized Gauss-Newton approximation of the Hessian
H(θ) coincides with the Fisher matrix F(θ) =

∑
n Epθ(y|xn)[∇θ log pθ(y|xn)∇θ log pθ(y|xn)T]

in modern deep learning architectures. While the Fisher matrix is difficult to compute exactly one
can compute an unbiased but noisy estimate as Martens & Grosse (2015)

F(θ) ≈
∑
n

[∇θ log pθ(ỹn|xn)∇θ log pθ(ỹn|xn)T], (9)

†While our result is a formal lower bound on what is achievable by 5, it’s applicability on direct minimiza-
tion of the IB-Lagrangian depends on the tightness of the second order approximation.
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where care must be taken to sample ỹn from the model predictive distribution ỹn ∼ pθ(y|xn).
Additionally we note that the interpretation of the outputs after the softmax as probabilities is not
well grounded theoretically Gal & Ghahramani (2016). Determining the true predictive distribu-
tion requires MCMC sampling for example by taking multiple dropout samples Gal & Ghahramani
(2016).

We now make two additional notes regarding computational aspects of the above. The approxi-
mation of the Hessian can be computed efficiently as the outer product of large but manageable
gradient vectors. The main computational burden after we approximate the Hessian, and given that
we choose a standard normal prior, is inverting a matrix of the form H̃ + αI . This problem can be
tackled in a few different ways. The simplest would be to consider only the diagonal elements of H̃
and the resulting diagonal matrix can be efficiently inverted. However inversion of the full matrix
H̃ + αI is also possible recursively using the Sherman-Morrison formula.

Further issues exist with computing the KL-Divergence of large multivariate Gaussians with non-
diagonal covariances in closed form which includes a determinant term that has to be computed with
the matrix determinant lemma, as well as sampling efficiently from these distributions. As such we
have used the diagonal variant of approximation 9 for our lower bound, but perform a layerwise
approximation of the Hessian for all other experiments. We detail this layerwise approximation in
the next section, and motivate it theoretically.

5.2 LAYERWISE APPROXIMATION

We will now derive an upper bound on 3 which is more suitable for optimization.

Theorem 5.1. Assuming the following empirical loss L̂(θ) = ||fθ(X) − Y||F with X =
[x0, ...,xN ] and Y = [y0, ...,yN ] the following is an upper bound on the IB Lagrangian given
that we are at a local minimum:

Cβ(D;P,Q) .
∑
l

√∑
j

clj E
η∼Q′lj

[
1

2
ηTHljη] + β

∑
l,j

KL((Qlj ||Plj)), (10)

where l denotes different layers, j denotes the different neurons at each layer (we assume the same
number for simplicity), Hlj denotes the local Hessian, and Q′lj is a centered version of Qlj . The

local Hessian can be computed efficiently as Hlj = 1
N

∑N
i=1 z

i
l−1z

i
l−1

T and zil−1 is the latent
representation input to layer l for signal i.

We see that we have managed to upper bound the empirical randomized loss by a scaled sum of
quadratic terms involving layerwise Hessian matrices and centered random noise vectors. Intu-
itively we have reduced the complexity of our optimization problem simply by turning it into a
number of separate subproblems. The local Hessians can be computed efficiently from outer prod-
ucts of a forward pass of the dataset. Apart from avoiding using backpropagation, breaking the
Hessian into subproblems in this manner allows us to move beyond the simplistic diagonal approxi-
mation. Implicitly the Hessian now has a block diagonal structure and the blocks are small enough
to be inverted directly for the architectures used in this paper. For architectures with larger latent
representations the Sherman-Morrison formula can be used instead.

6 EXPERIMENTS

We now make a number of experiments on the simplified 2 class Mnist and Cifar datasets. Specifi-
cally we test the architecture

input→ 300FC→ 300FC→ #classesFC→ output

on Mnist ∗ and
input→ 200FC→ 200FC→ #classesFC→ output

on Cifar. We train each configuration to 100% accuracy and derive the layerwise Hessians. We
model the prior and posteriors as multivariate Gaussians centered at the initialization and deter-
ministic solution respectively. For the prior we choose the uninformative unit diagonal covariance,
∗Corresponds to T-3002 p.7 in Dziugaite & Roy (2017).
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(a) (b)

Figure 3: Accuracy vs Complexity for different bounds: We plot
√

KL(Q||P )+ln
2(N−1)

δ

2N and train-
ing accuracy (of the randomized classifier) for different architectures and datasets. Points to the right
of the dashed line correspond to non-vacuous pairs. All Mnist bounds are non-vacuous. All Cifar
bounds are vacuous. We are able to progressively get tighter bounds by using the diagonal Hessian
and then the full layerwise Hessian. The improvement is larger over the more difficult Cifar dataset.

scaled by the free parameter λ. The baseline posterior that we use has the same diagonal covari-
ance as the prior. For the baseline we perform a grid search over λ which increases the complexity
negligibly. For the optimized posterior we initially test a diagonal approximation of the Hessian
”Diag Hessian” which results in an optimal diagonal covariance. We perform a grid search for the
parameters λ and β using formula 5 to derive candidates for the optimal posterior covariance. For
each point on the grid we calculate the empirical accuracy over the training set using Monte Carlo

sampling and 5 samples, as well as the complexity term
√

KL(Q||P )+ln
2(N−1)

δ

2N . We then choose the
Pareto optimal points from all candidates. We plot the results in Figure 3.

Interestingly we see that for the case of Mnist the baseline is tight with respect to our lower bound
and provides non-vacuous bounds. Therefore not much improvement can be achieved using the
Hessian approach. This implies a more careful interpretation of the results in Dziugaite & Roy
(2017). We see that non-vacuity can also be achieved as a result of the problem being very simple,
and the choice of the prior mean being the random initialization. The optimization techniques em-
ployed in Dziugaite & Roy (2017) should simply tighten the bound further, mainly by moving the
posterior mean closer to the prior mean (the random initialization). For the case of Cifar we see
that we can significantly tighten the bound. However we cannot manage to turn a vacuous bound
to a non-vacuous one in line with our lower bound. We also test a block-diagonal approximation
to the Hessian ”Full L Hessian” where each neuron of the network has it’s own block. Our non-
diagonal layerwise approximation however crude seems to improve significantly over the diagonal
case and slightly crosses our diagonal lower bound. This suggests that better approximations of the
Hessian as well as better prior means apart from the random initialization might be needed to prove
generalization in complex datasets and architectures.

7 CONCLUSION

We have presented a lower bound on an approximation of the IB-Lagrangian for the case of multi-
variate Gaussian priors and posteriors with diagonal covariance. This coincides with a lower bound
on a PAC-Bayesian generalization bound for an invalid (training set dependent) prior. For cases
where the feasible and non-vacuous regions intersect we have seen that it is possible to reach the
lower bound and achieve non-vacuous bounds by using valid non-informative priors. We have also
presented closed form solutions for the optimal posteriors given fixed means under our modeling
assumptions, and motivated theoretically breaking the estimation into layerwise subproblems. Cru-
cially all results depend on high quality estimates of the Hessian which remains an open topic of
research for large scale modern deep neural networks.
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APPENDIX

A. ADDITIONAL EXPERIMENTS

We test the architectures

input→ 300FC→ 300FC→ #classesFC→ output

on Mnist and
input→ 200FC→ 200FC→ #classesFC→ output

on Cifar. We conduct additional experiments on the original Cifar10 and Mnist10 datasets, as well as
Cifar5 and Mnist5 where we merge the 10 classes into 5. The results are consistent across datasets,
with more improvement when incorporating the Hessian for more difficult datasets.

(a) (b) (c)

(d) (e) (f)

Figure 4: Accuracy vs Complexity for different bounds: We plot
√

KL(Q||P )+ln
2(N−1)

δ

2N and train-
ing accuracy (of the randomized classifier) for different architectures and datasets. Points to the right
of the dashed line correspond to non-vacuous pairs. All Mnist bounds are non-vacuous. All Cifar
bounds are vacuous. We are able to progressively get tighter bounds by using the diagonal Hessian
and then the full layerwise Hessian. The improvement is larger over the more difficult Cifar dataset.
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B. PROOFS

Lemma 4.1. The convex optimization problem minΣ0
E

η∼Q′
[ 1
2η

THlη]+βKL((Q||P )) whereQ =

N (µ0,Σ0) and P = N (µ1, λΣ1) has the global minimum:

Σ∗0 = β(Hl +
β

λ
Σ−1

1 )−1, (11)

where Hl captures the curvature in the directions of the parameters, while Σ1 is a chosen prior
covariance.

Proof.

Cβ(D;P,Q) = E
η∼Q′

[
1

2
ηTHlη] + βKL((Q||P )) =

E
η∼Q′

[
1

2
tr(Hlηη

T )] + βKL((Q||P )) =

1

2
tr(Hl E

η∼Q′
[ηηT ]) + βKL((Q||P )) =

1

2
tr(HlΣ0) +

β

2
(tr(

1

λ
Σ−1

1 Σ0)− k +
1

λ
(µ0 − µ1)TΣ−1

1 (µ0 − µ1)

+ ln

(
detλΣ1

det Σ0

)
)

(12)

The gradient with respect to Σ0 is

∂Cβ(D;P,Q)

∂Σ0
= [

1

2
Hl +

β

2λ
Σ−1

1 −
β

2
Σ−1

0 ]. (13)

Setting it to zero, we obtain the minimizer Σ∗0 = β(Hl + β
λΣ−1

1 )−1.

Theorem 4.2. The optimal prior and posterior for Cβ(D;P,Q) = E
η∼Q′

[ 1
2η

THlη] +βKL((Q||P ))

with Q = N (µ0,Σ0) and P = N (µ1, λΣ1) and assuming that Σ−1
1 = Λ1 =

diag(Λ11,Λ21, ...,Λk1) and Hl = diag(h1l, h2l, ..., hkl) have:

Λ∗i1 =
λ

2β
[

√
h2
il +

4βhil
(µi0 − µi1)2

− hil], (14)

Λ∗i0 =
1

2β
[hil +

√
h2
il +

4βhil
(µi0 − µi1)2

]. (15)

where Hl encodes the local curvature at the the minimum, µ1 corresponds to the random initializa-
tion (by design) of the DNN, and µ0 corresponds to the minimum obtained after optimization.

For our choice of Gaussian prior and posterior, the following is a lower bound on the IB-Lagrangian
under any Gaussian prior covariance:

min
Σ0,Σ1

Cβ(D;P,Q) &
1

2
(
∑
i

ail(µi0 − µi1)2 + β
∑
i

ln(
hil + ail
ail

)), (16)

where ail , ail(β, µi0, µi1, hil) = 1
2 [
√
h2
il + 4βhil

(µi0−µi1)2 − hil].

12
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Proof. Setting Λ1 = Σ−1
1 We can then see that the minimizer is equal to Σ∗0 = β(Hl + β

λΛ1)−1.
Substituting Σ0 = Σ∗0 in Cβ(D;P,Q) we obtain:

Cβ(D;P,Q)|Σ0=Σ∗0
= E
η∼Q

[
1

2
ηTHlη] + βKL((Q||P ))|Σ0=Σ∗0

=

1

2
tr(Hlβ(Hl +

β

λ
Λ1)−1) +

β

2
(tr(

1

λ
Λ1β(Hl +

β

λ
Λ1)−1)

+
1

λ
(µ0 − µ1)TΛ1(µ0 − µ1)− k + ln

(
detλΛ−1

1

detβ(Hl + β
λΛ1)−1

)
)

=
β

2
tr(Hl(Hl +

β

λ
Λ1)−1) +

β2

2λ
(tr(Λ1(Hl +

β

λ
Λ1)−1))

+
β

2
(+

1

λ
(µ0 − µ1)TΛ1(µ0 − µ1)− k + ln

(
detλΛ−1

1

detβ(Hl + β
λΛ1)−1

)
)

=
β

2
(tr((Hl +

β

λ
Λ1)(Hl +

β

λ
Λ1)−1)

1

λ
(µ0 − µ1)TΛ1(µ0 − µ1)− k + ln

(
detλΛ−1

1

detβ(Hl + β
λΛ1)−1

)
)

=
β

2
[+

1

λ
(µ0 − µ1)TΛ1(µ0 − µ1) + ln

(
detλΛ−1

1

detβ(Hl + β
λΛ1)−1

)
]

(17)

The above matrix equation 17 is difficult to deal with directly. We will therefore use the common
diagonal approximation of the Hessian which is more amenable to manipulation. Substituting Λ1 =
diag(Λ11,Λ21, ...,Λk1) and Hl = diag(h1l, h2l, ..., hkl) in the above expression we get

Cβ(D;P,Q)|Σ0=Σ∗0
=
β

2
(
1

λ

∑
i

Λi1(µi0 − µi1)2 −
∑
i

ln(
Λi1
λ

) +
∑
i

ln(
hil + β

λΛi1

β
)) (18)

The above expression is easy to optimize. We see that the sole stationary point exists at

Λ∗i1 =
λ

2β
[

√
h2
il +

4βhil
(µi0 − µi1)2

− hil]. (19)

We now turn to the original objective and calculate it’s second derivatives. For our diagonal approx-
imation the original objective turns into a sum of separable functions. We will analyze the behavior
of one of them for simplicity. The result applies to all other functions in the sum.

Cβ(D;P,Q) =
∑
i

hil
2
νi0 +

∑
i

β

2λ

νi0
νi1
−
∑
i

β

2
+
∑
i

β(µi0 − µi1)2

2λ

1

νi1

+
β

2
[
∑
i

ln(λνi1)−
∑
i

ln(νi0)]

=
∑
i

Aiνi0 +
∑
i

Bi
νi0
νi1
−
∑
i

β

2
+
∑
i

Ci
1

νi1
+Di[

∑
i

ln(λνi1)−
∑
i

ln(νi0)]

(20)

where we have set Ai = hil
2 , Bi = β

2λ , Ci = β(µi0−µi1)2

2λ , Di = β
2 . Denoting Ciβ(D;P,Q) one

function from this sum we calculate

13
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∂Ciβ(D;P,Q)

∂νi0
= Ai +

Bi
ν1i
− Di

νi0
,

∂Ciβ(D;P,Q)

∂νi1
= −Biνi0

ν2
i1

− Ci
ν2
i1

+
Di

νi1
(21)

and
∂Ciβ(D;P,Q)

∂2νi0
=
Di

ν2
i0

,
∂Ciβ(D;P,Q)

∂2νi1
= 2(Biνi0 + Ci)

1

ν3
i1

− Di

ν2
i1

(22)

∂Ciβ(D;P,Q)

∂νi0∂νi1
= −Bi

ν2
i1

,
∂Ciβ(D;P,Q)

∂νi1∂νi0
= −Bi

ν2
i1

(23)

We need to check whether the Hessian matrix is PSD so that the stationary point we found is a local
minimum and the function is convex. We do that by calculating whether all principal minors of the
Hessian are positive.

∇2Ciβ(νi0, νi1) =

[
Di
ν2
i0

− Bi
ν2
i1

− Bi
ν2
i1

2(Biνi0 + Ci)
1
ν3
i1
− Di

ν2
i1

]
(24)

We see easily that det(Di
ν2
i0

) > 0. While

det(∇2Ciβ(νi0, νi1)) =
Di

ν2
i0

(
2(Biνi0 + Ci)

1

ν3
i1

− Di

ν2
i1

)
− B2

i

ν4
i1

=
1

ν2
i0ν

4
i1

(
2CiDiνi1 − (Diνi1 −Biνi0)2

)
=

(
1

ν2
i0ν

4
i1

β2

2

)(
(µi0 − µi1)2

λ
νi1 −

1

2
(νi1 −

νi0
λ

)2

) (25)

A first observation is that this determinant is not always positive and the function is not convex
everywhere. However we observe that it is not highly non convex either and the non convexity
mainly results from the function tending to infinity logarithmically on one of the boundaries. We
now check whether the sole stationary point is always a local minimum. We start by substituting
ν?i0 = β(hil + β

λ
1
νi1

)−1 in the multiplicand of 25 as the multiplier is positive by definition

det(∇2Ciβ(ν?i0, νi1)) =
1

ν?i0
2ν4
i1

β2

2

(
(µi0 − µi1)2

λ
νi1 −

1

2
(νi1 −

β

λ
(hil +

β

λ

1

νi1
)−1)2

)
=

1

ν?i0
2ν4
i1

β2

2

(
(µi0 − µi1)2

λ
νi1 −

1

2
(νi1 −

β

λ
(

νi1λ

hilλνi1 + β
))2

)
=

1

ν?i0
2ν4
i1

β2

2

(
(µi0 − µi1)2

λ
νi1 −

ν2
i1

2
(1− (

β

hilλνi1 + β
))2

)
=

1

ν?i0
2ν3
i1

β2

2

(
(µi0 − µi1)2

λ
− νi1

2
(

hilλνi1
hilλνi1 + β

)2

)
=

1

ν?i0
2ν3
i1

β2

2

(
(µi0 − µi1)2

λ
− λ2h2

ilν
3
i1

2(hilλνi1 + β)2

)
=

1

ν?i0
2ν3
i12λ(hilλνi1 + β)2

(2(µi0 − µi1)2(hilλνi1 + β)2 − λ3h2
ilν

3
i1)

=
1

ν?i0
22λ(hilλΛ−1

i1 + β)2
(2Λi1(µi0 − µi1)2(hilλ+ Λi1β)2 − λ3h2

il)

(26)

Where we substituted νi1 = Λ−1
i1 as this will make the calculations easier. We now show a useful

identity for Λ?i1 = λ
2β [
√
h2
il + 4βhil

(µi0−µi1)2 − hil]

14
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(Λ?i1)
2

=
λ2

4β2

(
h2
il +

4βhil
(µi0 − µi1)2

− 2hil

√
h2
il +

4βhil
(µi0 − µi1)2

+ h2
il

)

=
λ2

4β2

(
2hil

(
hil −

√
h2
il +

4βhil
(µi0 − µi1)2

)
+

4βhil
(µi0 − µi1)2

)

=
hilλ

β

λ

2β

((
hil −

√
h2
il +

4βhil
(µi0 − µi1)2

)
+

2β

(µi0 − µi1)2

)

=
hilλ

β

(
λ

(µi0 − µi1)2
− Λ?i1

)
(27)

We substitute Λi1 = Λ?i1 in 26 and again develop only the multiplicand

det(∇2Ciβ(ν?i0, ν
?
i1)) =

1

ν?i0
22λ(hilλΛ?i1

−1 + β)2
(2Λ?i1(µi0 − µi1)2(hilλ+ Λ?i1β)2 − λ3h2

il)

= Ai(2Λ?i1(µi0 − µi1)2(hilλ+ Λ?i1β)2 − λ3h2
il)

= Ai(2Λ?i1(µi0 − µi1)2(h2
ilλ

2 + 2hilλΛ?i1β + (Λ?i1)
2
β2)− λ3h2

il)

= Ai(2Λ?i1(µi0 − µi1)2(h2
ilλ

2 + 2hilλΛ?i1β +
hilλ

β

(
λ

(µi0 − µi1)2
− Λ?i1

)
β2)− λ3h2

il)

= Ai(2Λ?i1(µi0 − µi1)2(h2
ilλ

2 + hilλΛ?i1β +
βλ2hil

(µi0 − µi1)2
)− λ3h2

il)

= Ai(2Λ?i1(µi0 − µi1)2(h2
ilλ

2 +
βλ2hil

(µi0 − µi1)2
) + 2(Λ?i1)2(µi0 − µi1)2hilλβ − λ3h2

il)

= Ai(2Λ?i1(µi0 − µi1)2(h2
ilλ

2 +
βλ2hil

(µi0 − µi1)2
)

+ 2
hilλ

β

(
λ

(µi0 − µi1)2
− Λ?i1

)
(µi0 − µi1)2hilλβ − λ3h2

il)

= Ai(2Λ?i1(µi0 − µi1)2(h2
ilλ

2 +
βλ2hil

(µi0 − µi1)2
) + 2λ3h2

il − 2h2
ilλ

2(µi0 − µi1)2Λ?i1 − λ3h2
il)

= Ai(2Λ?i1(µi0 − µi1)2(h2
ilλ

2 +
βλ2hil

(µi0 − µi1)2
) + λ3h2

il − 2h2
ilλ

2(µi0 − µi1)2Λ?i1)

= Ai(2Λ?i1βλ
2hil + λ3h2

il)

> 0
(28)

where we have set Ai = 1
ν?i0

22λ(hilλ(Λ?i1)−1+β)2
> 0. We have used 27 in lines 4 and 7.

Indeed the stationary point is always a local minimum. What remains is to show that there are no
other local minima at the boundaries of the domain. From 20 we see that we only need to evaluate
expressions of the form f(νi0) = νi0 − ln(νi0) and g(νi1) = 1

νi0
+ ln(νi0). By application of

L’Hôpital’s rule it’s easy to show that

lim
νi0→0
νi1=ct

Ciβ(νi0, νi1) = lim
νi0→+∞
νi1=ct

Ciβ(νi0, νi1)

= lim
νi0=ct
νi1→0

Ciβ(νi0, νi1) = lim
νi0=ct

νi1→+∞

Ciβ(νi0, νi1) = +∞
(29)

this concludes the proof.
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Theorem 5.1. Assuming the following empirical loss L̂(θ) = ||fθ(X) − Y||F with X =
[x0, ...,xN ] and Y = [y0, ...,yN ] the following is an upper bound on the IB Lagrangian given
that we are at a local minimum:

Cβ(D;P,Q) .
∑
l

√∑
j

clj E
η∼Q′lj

[
1

2
ηTHljη] + β

∑
l,j

KL((Qlj ||Plj)), (30)

where l denotes different layers, j denotes the different neurons at each layer (we assume the same
number for simplicity), Hlj denotes the local Hessian, and Q′lj is a centered version of Qlj . The

local Hessian can be computed efficiently as Hlj = 1
N

∑N
i=1 z

i
l−1z

i
l−1

T and zil−1 is the latent
representation input to layer l for signal i.

Proof. We start by defining a layerwise empirical error Êl(θl) := 1
N

∑N
i=1 ||Wlz

i
l−1 − zil ||22. One

can then easily show that L̂(θ) ≤
∑L−1
k=1

√
Êl(θl)

∏L
k=l+1 ||θ̂k||F +

√
ÊL(θL) Dong et al. (2017)

substituting this in the IB Lagrangian we get

Cβ(D;P,Q) = E
θ∼Q

[L̂(θ)] + βKL((Q||P ))

≤ E
θ∼Q

[

L−1∑
l=1

√
Êl(θl)

L∏
k=l+1

||θ̂k||F +

√
ÊL(θL)] + βKL((Q||P ))

≤
L−1∑
l=1

√
E
θ∼Q

[Êl(θl)]

L∏
l=k+1

E
θ∼Q

[||θ̂l||F ] +

√
E
θ∼Q

[ÊL(θL)] + βKL((Q||P ))

≤
L∑
l=1

cl

√
E
θ∼Q

[Êl(θl)] + βKL((Q||P ))

≤
L∑
l=1

cl

√√√√ E
η∼Q′

[

(
∂Êl(θl)

∂θl

)T
η +

1

2
ηTHlη +O(||η||3)] + βKL((Q||P ))

≈
L∑
l=1

cl

√
E

η∼Q′
[
1

2
ηTHlη] + βKL((Q||P ))

(31)

were in line 3 we use the linearity of expectation, Hölder’s inequality due to the non-negativity
of the random variables, and Jensen’s inequality for the concave square root. In line 4 we hide
the Frobenius terms into constants cl. Each error term Êl(θl) is only multiplied with Frobenius
norm terms ||θ̂l||F from the deeper layers. Therefore one can start optimizing from the final layer
and proceed to the first while considering cl as constant. In practice we will just consider all cl
as unknown scaling factors. In line 5 we expand each Êl(θl) term using a Taylor expansion, and
subsequently ignore the first term as the DNN is assumed to be well trained and the first derivative
will be zero, while terms with order higher than 2 are unimportant. We also use Q′ to denote the
centered version of distribution Q.

Taking the first and second derivatives of the layerwise error with respect to Wl we get

∂El(θ)

∂Wl
=

1

N

N∑
i=1

∂

∂Wl
||Wlz

i
l−1 − zil ||22 =

1

N

N∑
i=1

(Wlz
i
l−1 − zil )2zil−1

T
(32)

∂2El(θ)

∂Wl∂W
(j,:)
l

=
1

N

N∑
i=1

zil−1z
i
l−1

T
(33)

Where the second derivative is with respect to any row W
(j,:)
l of the weight matrix Wl. We see

that the full Hessian matrix Hl = ∂2El(θ)
∂2Wl

then has a block diagonal structure where each block is

equal to Hlj = 1
N

∑N
i=1 z

i
l−1z

i
l−1

T . Each row W
(j,:)
l corresponds to a neuron of the layer and for
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an appropriate choice of prior and posterior with block diagonal covariances it is easy to see that the
final form of expression 31 factorizes as

Cβ(D;P,Q) .
∑
l

√∑
j

clj E
η∼Q′lj

[
1

2
ηTHljη] + β

∑
l,j

KL((Qlj ||Plj)) (34)

this completes the proof.
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