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ABSTRACT

Data augmentation techniques, e.g., flipping or cropping, which systematically
enlarge the training dataset by explicitly generating more training samples, are
effective in improving the generalization performance of deep neural networks.
In the supervised setting, a common practice for data augmentation is to assign
the same label to all augmented samples of the same source. However, if the
augmentation results in large distributional discrepancy among them (e.g., rota-
tions), forcing their label invariance may be too difficult to solve and often hurts
the performance. To tackle this challenge, we suggest a simple yet effective idea
of learning the joint distribution of the original and self-supervised labels of aug-
mented samples. The joint learning framework is easier to train, and enables an
aggregated inference combining the predictions from different augmented sam-
ples for improving the performance. Further, to speed up the aggregation process,
we also propose a knowledge transfer technique, self-distillation, which transfers
the knowledge of augmentation into the model itself. We demonstrate the effec-
tiveness of our data augmentation framework on various fully-supervised settings
including the few-shot and imbalanced classification scenarios.

1 INTRODUCTION

Training deep neural networks (DNNs) generally requires a large number of training samples. When
the number of training samples is small, DNNs become susceptible to overfitting, causing high
generalization errors on the test samples. This overfitting problem is at the center of DNN research,
where many regularization techniques have been investigated in the literature (Srivastava et al., 2014;
Huang et al., 2016; Gastaldi, 2017). The most explicit and easy-to-use regularization technique is
data augmentation (Zhong et al., 2017; DeVries & Taylor, 2017; Zhang et al., 2018; Cubuk et al.,
2019), which aims to increase the volume of the training set by altering the existing training data.

In supervised learning scenarios, data augmentation is done simply by augmenting each sample with
multiple transformations that do not affect their semantics. Consequently, data augmentation during
training forces DNNs to be invariant to the augmentation transformations. However, depending on
the type of transformations, learning transformation-invariant properties may be difficult or compete
with the original task, and thus could hurt the performance. For example, for certain fine-grained
image classification tasks (e.g., species of birds), the color information could be crucial in class
discrimination. In such a case, the data augmentation using color transformations should be avoided.

The evidence that learning invariance is not always helpful could be found in many recent works on
self-supervised learning (Gidaris et al., 2018; Zhang et al., 2019; Doersch et al., 2015; Noroozi &
Favaro, 2016), where the model is trained with artificial labels constructed by input transformations,
e.g., the rotation degree for rotated images, without any human-annotated labels. These works
have shown that it is possible to learn high-level representations just by learning to predict such
transformations. This suggests that some meaningful information could be lost when trying to learn
a transformation-invariant property under conventional data augmentation.

While self-supervision was originally developed for unsupervised learning, there are many recent
attempts to use it for other related purposes, e.g., semi-supervised learning (Zhai et al., 2019), ro-
bustness (Hendrycks et al., 2019) and adversarial generative networks (Chen et al., 2019). They
commonly maintain two separated classifiers (yet sharing common feature representations) for the
original and self-supervised tasks. However, such a multi-task learning strategy also forces invari-
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Figure 1: (a) An overview of our self-supervised data augmentation and previous approaches with
self-supervision. (b) Illustrations of our aggregation method utilizing all augmented samples and
self-distillation method transferring the aggregated knowledge into itself. (c) Rotation-based aug-
mentation. (d) Color-permutation-based augmentation.

ance with respect to self-supervision for the primary classifier performing the original task. Thus,
utilizing the self-supervised labels in this way could hurt the performance, e.g., in fully supervised
settings. This inspires us to revisit and explore data augmentation methods with self-supervision.

Contribution. We primarily focus on fully supervised learning setups, i.e., assume not only the
original/primary labels for all training samples, but also self-supervised labels for the augmented
samples. Our main idea is simple and intuitive (see Figure 1(a)): maintain a single joint classifier,
instead of two separate classifiers typically used in the prior self-supervision literature. For example,
if the original and self-supervised tasks are CIFAR10 (10 labels) and rotation (4 labels), respectively,
we learn the joint probability distribution on all possible combinations of 40 labels. This approach
assumes no relationship between the original and self-supervised labels, and consequently does not
force any invariance to the transformations. Furthermore, since we assign different self-supervised
labels for each transformation, it is possible to make a prediction by aggregating across all trans-
formations at test time, as illustrated in Figure 1(b). This can provide an (implicit) ensemble effect
using a single model. Finally, to speed up the evaluation process, we also propose a novel knowledge
transfer technique, self-distillation, which transfers the knowledge of the aggregated prediction into
the model itself.

In our experiments, we consider two types of transformations for self-supervised data augmentation,
rotation (4 transformations) and color permutation (6 transformations), as illustrated in Figure 1(c)
and Figure 1(d), respectively. We also consider composed transformations using both rotation and
color permutation, i.e., up to 24 transformations. To show wide applicability of our method, we
consider various image benchmark datasets and classification scenarios including the few-shot and
imbalanced classification tasks. In all tested settings, our simple method improves the classification
accuracy significantly and consistently. As desired, the gain tends to be larger when using more
augmentation (or self-supervised) labels. We highlight some of our experimental results as follows:

e We show that the proposed self-supervised data augmentation methods with aggregation
(SDA+AG) and self-distillation (SDA+SD) can provide significant improvements in the
standard fully supervised settings. For example, by using 4 self-supervised labels of rota-
tion, SDA+AG (or SDA+SD) achieves 8.60% (or 5.24%) and 18.8% (or 15.3%) relative
gains on the CIFAR100 and CUB200 datasets, respectively, compared to the baseline.'
The gain is increased up to 20.8% in CUB200 by using 12 composed transformations of
the rotation and color permutation.

'In this case, SDA+SD is 4 times faster than SDA+AG, as the latter aggregates predictions of 4 rotations.
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e We show that SDA+AG can improve the state-of-the-art methods, ProtoNet (Snell et al.,
2017) and MetaOptNet (Lee et al., 2019), for few-shot classification, e.g., MetaOptNet
with SDA+AG achieves 7.05% relative gain on 5-way 5-shot tasks on the FC100 dataset.

e We show that SDA+SD can improve the state-of-the-art methods, Class-Balanced (Cui
et al., 2019) and LDAM (Cao et al., 2019), for imbalanced classification, e.g., LDAM with
SDA+SD achieves 8.30% relative gain on an imbalanced version of the CIFAR100 dataset.

We remark that rotation and color permutation are rarely used in the literature for improving fully
supervised learning. We think our results are useful to guide many interesting future directions.

2  SELF-SUPERVISED DATA AUGMENTATION

In this section, we provide the details of our self-supervised data augmentation techniques. We first
discuss conventional techniques on data augmentation and self-supervision with their limitations
in Section 2.1. Then, we propose our learning framework for data augmentation that can fully
utilize the power of self-supervision. In Section 2.2, we also introduce a self-distillation technique
transferring the augmented knowledge into the model itself for accelerating the inference speed.

Notation. Let = € RY be an input, y € {1,..., N} be its label where N is the number of
classes, Lcg be the cross-entropy loss function, o(+; u) be the softmax classifier, i.e., 0;(z;u) =
exp(u; z)/ Y, exp(u] z), and = = f(z;6) be an embedding vector of = where f is a neural
network with the parameter 8. We also let & = ¢(x) denote an augmented sample using a transfor-
mation ¢, and Z = f(&; 0) be the embedding of the augmented sample.

2.1 DATA AUGMENTATION AND SELF-SUPERVISION

Data augmentation. In a supervised setting, the conventional data augmentation aims to improve
upon the generalization ability of the target neural network f by leveraging certain transformations
that can preserve their semantics, e.g. cropping, contrast enhancement, and flipping. We can write
the training objective Lpa with data augmentation as follows:

Lon(@, y; 0, 1) = Eyr | Ler(o(f(#:0); ), y)] M

where T is a distribution of the transformations for data augmentation. Optimizing the above loss
forces the classifier o(f(+;0); u) to be invariant to the transformations. However, depending on the
type of transformations, forcing such invariance may not make sense, as the statistical characteris-
tics of the augmented training samples could become very different from those of original training
samples (e.g., rotation). In such a case, enforcing invariance to those transformations would make
the learning more difficult, and even degrade the performance (see Table 1 in Section 3.2).

Self-supervision. The recent self-supervised learning literature (Zhang et al., 2019; Doersch et al.,
2015; Noroozi & Favaro, 2016; Larsson et al., 2017; Oord et al., 2018; Gidaris et al., 2018) has
shown that high-level semantic representations can be learned by predicting labels that could be
obtained from the input signals without any human annotations. In self-supervised learning, models
learn to predict which transformation ¢ is applied to an input x given a modified sample & = t(x).
The common approach to utilize self-supervised labels is to optimize two losses of the original and
self-supervised tasks, while sharing the feature space among them; that is, the two tasks are trained in
a multi-task learning framework (Hendrycks et al., 2019; Zhai et al., 2019; Chen et al., 2019). Thus,
in a fully supervised setting, one can formulate the multi-task objective Ly with self-supervision
as follows:

M
Ly (z,y;0,u,v) = % > Leu(o(f(&5:0);w),y) + Lee(o(f(&5:0);v), ) 2
j=1

where {t; ;”il is a set of pre-defined transformations, M is the number of self-supervised labels,
o(-;v) is the classifier for self-supervision, and &; = t;(x). The above loss also forces the primary
classifier o(f(-;0); u) to be invariant to the transformations {¢;}. Therefore, due to the aforemen-
tioned reason, the usage of additional self-supervised labels does not guarantee the performance
improvement, in particular, for fully supervised settings (see Table 1 in Section 3.2).
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2.2 ELIMINATING INVARINCE VIA JOINT-LABEL CLASSIFIER

Our key idea is to remove the unnecessary invariant property of the classifier o(f(-;0);u) in (1)
and (2) among the transformed samples. To this end, we use a joint softmax classifier p(-; w) which
represents the joint probability as P(i, j|&) = pi;(Z;w) = exp(w;;2)/ Y,  exp(w),;Z). Then,
our training objective can be written as

M
1 - .
Lspa(x,y; 0, w) = MZLCE(P(f(fCﬁO);'w)v(ya])) 3)
j=1
where Lcg(p(2; w), (4,5)) = —log p;;(Z; w). Note that the above objective can be reduced to the

data augmentation objective (1) when w;; = wu; for all ¢, and the multi-task learning objective (2)
when w;; = u; + v; for all ¢, j. It means that (3) is easier to optimize than (2) since both consider
the same set of multi-labels, but latter forces the additional constraint w;; = w; +v;. The difference
between the conventional augmentation, multi-task learning, and ours is illustrated in Figure 1(a).
During training, we feed all M augmented samples simultaneously for each iteration as Gidaris
et al. (2018) did, i.e., we minimize &ﬁ‘ > (w.y)en Lspal@, y; 6, w) for each mini-batch B. We also

assume the first transformation is the identity function, i.e., 1 = t1(x) = «.

Aggregated inference. Given a test sample x or its augmented sample &; = ¢, (x) by a transforma-
tion ¢, we do not need to consider all N x M labels for the prediction of its original label, because
we already know which transformation is applied. Therefore, we predict a label using the conditional
probability P(i|&;, j) = exp(w;;2;)/ ., exp(wy;Z;) where z; = f(&;;6). Furthermore, for all
possible transformations {¢, }, we aggregate the corresponding conditional probabilities to improve
the classification accuracy, i.e., we train a single model, which can perform inference as an ensem-
ble model. To compute the probability of the aggregated inference, we first average pre-softmax
activations, and then compute the softmax probability as follows:

exp(s;)
ZkN:1 exp(sk)

Since we assign different labels for each transformation ¢;, our aggregation scheme improves accu-
racy significantly. Somewhat surprisingly, it achieves comparable performance with the ensemble
of multiple independent models in our experiments (see Table 2 in Section 3.2). We refer to the
counterpart of the aggregation as single inference, which uses only the non-augmented or original
sample &, = x, i.e., predicts a label using P(i|Z1,1).

M
) 1 .
Pigoregated (1) = where s; = i E w;;Zj.
i=1

Self-distillation from aggregation. Although the aforementioned aggregated inference achieves
outstanding performance, it requires to compute zZ; = f(&;; ) for all 7, i.e., it requires M times
higher computation cost than the single inference. To accelerate the inference, we perform self-
distillation (Hinton et al., 2015; Lan et al., 2018) from the aggregated knowledge Piggregatcd(:|) to
another classifier o ( f (x; 0); u) parameterized by w, as illustrated in Figure 1(b). Then, the classifier
o(f(x;0);u) can maintain the aggregated knowledge using only one embedding z = f(x;0). To
this end, we optimize the following objective:

Lspassp(z,y; 0, w, u) = Lspa(x,y; 0, w)
+DxL(Paggregared (*[) [l (f (25 0);w)) + BLcE(o(f(x;0);u),y)

where [ is a hyperparameter and we simply choose 8 € {0,1}. When computing the gradient
of Lspa+sp, we consider Piggregated(1|@) as a constant. After training, we use o(f(x;0);u) for
inference without aggregation.

4)

3 EXPERIMENTS

We experimentally validate our self-supervised data augmentation techniques described in Section
2. Throughout this section, we refer to data augmentation (1) as DA, multi-task learning (2) as MT,
and ours self-supervised data augmentation (3) as SDA for notational simplicity. After training with
SDA, we consider two inference schemes: the single inference and the aggregated inference denoted
by SDA+SI and SDA+AG, respectively. We also denote the self-distillation method (4) as SDA+SD
which uses only the single inference o (f(x;0); u).
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3.1 SETUP

Datasets and models. We evaluate our method on various classification datasets: CIFAR10/100
(Krizhevsky et al., 2009), Caltech-UCSD Birds or CUB200 (Wah et al., 2011), Indoor Scene
Recognition or MIT67 (Quattoni & Torralba, 2009), Stanford Dogs (Khosla et al., 2011), and tiny-
ImageNet? for standard or imbalanced image classification; mini-ImageNet (Vinyals et al., 2016),
CIFAR-FS (Bertinetto et al., 2019), and FC100 (Oreshkin et al., 2018) for few-shot classification.
Note that CUB200, MIT67, and Stanford Dogs are fine-grained datasets. We use residual networks
(He et al., 2016) for all experiments: 32-layer ResNet for CIFAR, 18-layer ResNet for three fine-
grained datasets and tiny-ImageNet, and ResNet-12 (Lee et al., 2019) for few-shot datasets.

Implementation details. For the standard image classification datasets, we use SGD with learning
rate of 0.1, momentum of 0.9, and weight decay of 10~*. We train for 80k iterations with batch size
of 128. For the fine-grained datasets, we train for 30k iterations with batch size of 32 because they
have a relatively smaller number of training samples. We decay the learning rate by the constant
factor of 0.1 at 50% and 75% iterations. We report the average accuracy of 3 trials for all exper-
iments. For few-shot learning and imbalance experiments, we use the publicly available codes of
MetaOptNet (Lee et al., 2019) and LDAM (Cao et al., 2019), respectively.

Choices of transformation. Since using the entire input image during training is important in
achieving improved classification accuracy, some self-supervision techniques are not suitable for our
purpose. For example, the Jigsaw puzzle approach (Noroozi & Favaro, 2016) divides an input image
to 3 x 3 patches, and computes their embedding separately. Prediction using the embedding performs
worse than that using the entire image. To avoid this issue, we choose two transformations which
use the entire input image without cropping: rotation (Gidaris et al., 2018) and color permutation.
Rotation constructs M = 4 rotated images (0°, 90°, 180°, 270°) as illustrated in Figure 1(c). This
transformation is widely used for self-supervision due to its simplicity, e.g., Chen et al. (2019). Color
permutation constructs M = 3! = 6 different images via swapping RGB channels as illustrated in
Figure 1(d). This transformation can be useful when color information is important such as fine-
grained classification datasets.

3.2 ABLATION STUDY

Comparison with DA and MT. We first verify that our
proposed method can utilize self-supervision without
loss of accuracy on fully supervised datasets while data
augmentation and multi-task learning approaches can-
not. To this end, we train models on generic classifica-
tion datasets, CIFAR10/100 and tiny-ImageNet, using
three different objectives: data augmentation Lpa (1),
multi-task learning Lyr (2), and our self-supervised
data augmentation Lgps (3) with rotation. As reported
in Table 1, Lpa and Ly degrade the performance sig-
nificantly compared to the baseline that does not use oo son aomoe aana0
the rotation-based augmentation. However, when train- Iterations

ing with Lspa, the performance is improved. Figure 2 . o

shows the classification accuracy on training and test Figure 2: Training/test accuracy of DA,
samples of CIFAR100 while training. As shown in the MT, SDA while training on CIFAR100.
figure, Lpa causes a higher generalization error than others because Lpa forces the unnecessary in-
variant property. Moreover, optimizing Lyt is harder than doing Lspa as described in Section 2.2,
thus the former achieves the lower accuracy on both training and test samples than the latter. These
results show that learning invariance to some transformations, e.g., rotation, makes optimization
harder and degrades the performance. Namely, such transformations should be carefully handled.
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Comparison with ten-crop and ensemble. Next, to evaluate the effect of aggregation in SDA-
trained models, we compare the aggregation using rotation with other popular aggregation schemes:
the ten-crop (Krizhevsky et al., 2012) method which aggregates the prediction scores over a number
of cropped images, and the independent ensemble which aggregates the scores over four indepen-
dently trained models. Note that the ensemble requires 4 x more parameters than ours and ten-crop.

Mhttps://tiny-imagenet .herokuapp.com/
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Table 1: Classification accuracy (%) of single inference using data augmentation (DA), multi-task
learning (MT), and ours self-supervised data augmentation (SDA) with rotation. The best accuracy
is indicated as bold, and the relative gain over the baseline is shown in brackets.

Dataset Baseline DA MT SDA+SI

CIFARI10 92.39 90.44 (-2.11%) 90.79 (-1.73%)  92.50 (+0.12%)
CIFAR100 68.27 65.73 (-3.72%) 66.10 (-3.18%) 68.68 (+0.60%)
tiny-ImageNet 63.11 60.21 (-4.60%) 58.04 (-8.03%) 63.99 (+1.39%)

Table 2: Classification accuracy (%) of the ten-crop, indenpendent ensemble, and our aggregation
using rotation (SDA+AG). The best accuracy is indicated as bold, and the relative gain over the
baseline is shown in brackets.

Single Model 4 Models
Dataset Baseline ten-crop SDA+AG Ensemble Enemble + SDA+AG
CIFAR10 92.39 93.33 94.50 (+2.28%) 94.36 95.10 (+2.93%)
CIFAR100 68.27 70.54 74.14 (+8.60%) 74.82 76.40 (+11.9%)
tiny-ImageNet 63.11 64.95 66.95 (+6.08%) 68.18 69.01 (+9.35%)
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Figure 3: Relative improvements of aggregation  Figure 4: Relative improvements over baselines
versus the number of transformations. on subsets of CIFAR100.

Surprisingly, as reported in Table 2, the aggregation using rotation performs significantly better than
ten-crop, and also achieves competitive performance compared to the ensemble with 4 indepen-
dently trained models. When using both independent ensemble and aggregation with rotation, i.e.,
the same number of parameters as the ensemble, the accuracy is improved further.

3.3 EVALUATION ON STANDARD SETTING

Basic transformations. We demonstrate the effectiveness of our self-supervised augmentation
method on various image classification datasets: CIFAR10/100, CUB200, MIT67, Stanford Dogs,
and tiny-ImageNet. We first evaluate the effect of aggregated inference Piggregated (-|) described in
Section 2.2: see the SDA+AG column in Table 3. Using rotation as augmentation improves the clas-
sification accuracy on all datasets, e.g., 8.60% and 18.8% relative gain over baselines on CIFAR100
and CUB200, respectively. With color permutation, the performance improvements are less signif-
icant on CIFAR and tiny-ImageNet, but it still provides meaningful gains on fine-grained datasets,
e.g., 12.6% and 10.6% relative gain on CUB200 and Stanford Dogs, respectively.

To maintain the performance of the aggregated inference and reduce its computation cost simulta-
neously, we apply the self-distillation method described in Section 2.2. As reported in the SDA+SD
column in Table 3, it also significantly improves the performance of the single inference (without
aggregation) up to 16.1% and 12.4% relatively based on rotation and color permutation, respectively.

Composed transformations. We now show one can improve the performance further by using
various combinations of two transformations, rotation and color permutation, on CUB and Stanford
Dogs datasets. To construct the combinations, we first choose two subsets 7. and 7. of rotation
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Table 3: Classification accuracy (%) using self-supervised data augmentation with rotation and color
permutation. SDA+SD and SDA+AG indicate the single inference trained by Lgpa+sp, and the
aggregated inference trained by Lgspa, respectively. The relative gain is shown in brackets.

Rotation Color Permutation

Dataset Baseline SDA+SD SDA+AG SDA+SD SDA+AG
CIFAR10 92.39 93.26 (+0.94%) 94.50 (+2.28%) 91.51 (-0.95%) 92.51 (+0.13%)
CIFAR100 68.27 71.85 (+5.24%) 74.14 (+8.60%) 68.33 (+0.09%) 69.14 (+1.27%)
CUB200 54.24 62.54 (+15.3%) 64.41 (+18.8%) 60.95 (+12.4%) 61.10 (+12.6%)
MIT67 5475  63.54 (+16.1%) 64.85 (+18.4%) 60.03 (+9.64%)  59.99 (+9.57%)
Stanford Dogs 60.62 66.55 (+9.78%) 68.70 (+13.3%) 65.92 (+8.74%) 67.03 (+10.6%)
tiny-ImageNet 63.11 65.53 (+3.83%) 66.95 (+6.08%) 63.98 (+1.38%) 64.15 (+1.65%)

Table 4: Classification accuracy (%) depending on the set of transformations. The best accuracy is
indicated as bold.

CUB200 Stanford Dogs
Rotation Color permutation M SDA+SI SDA+AG SDA+SI SDA+AG
0° RGB 1 54.24 60.62
0°, 180° RGB 2 56.62 58.92 63.57 65.65
0°,90°, 180°, 270° RGB 4 60.85 64.41 65.67 67.03
0° RGB, GBR, BRG 3 52.91 56.47 63.26 65.87
0° RGB, RBG, GRB, GBR, BRG, BGR 6 56.81 61.10 64.83 67.03
0°, 180° RGB, GBR, BRG 6 56.14 60.87 65.45 68.75
0°,90°, 180°, 270° RGB, GBR, BRG 12 60.74 65.53 66.40 69.95
0°,90°, 180°,270° RGB, RBG, GRB, GBR, BRG, BGR 24 61.67 65.43 64.71 67.80

and color permutation, respectively, e.g., T, = {0°,180°} or T, = {RGB, GBR, BRG}. Then, let
T = T, x T, be a set of composed transformations of all ¢, € T, and t. € T.. It means that
t = (t,,t.) € T rotates an image by ¢, and then swaps color channels by t.. We first evaluate how
the set of transformations 71" affects training. As reported in Table 4, using a larger set 1" achieves
better performance on both the single and aggregated inference than a smaller set 7/ C T in most
cases. However, under too many transformations, the aggregation performance can be degraded
since the optimization becomes too harder. When using M = 12 transformations, we achieve the
best performance, 20.8% and 15.4% relatively higher than baselines on CUB200 and Stanford Dogs,
respectively.

Next, we demonstrate the aggregation effect at test time depending on various combinations of
transformations. To this end, we use the model trained with M = 12 transformations, and evaluate
the aggregated performance using all possible 2 combinations. Figure 3 shows the performance
of the aggregated inference depending on the size of combinations. As shown in the figure, the
average is consistently increasing as the number of transformations increases. We also observe
that the maximum performance of M = 4 is similar to that of M = 12, e.g., the aggregation of
T = {(0°,GBR), (90°, BRG), (180°,RGB), (270°,RGB)} achieves 65.1%, while that of all 12
transformations achieves 65.4% on CUB200. Namely, one can choose a proper subset of transfor-
mations for saving inference cost and maintaining the aggregation performance simultaneously.

3.4 EVALUATION ON LIMITED-DATA SETTING

Limited-data regime. Our augmentation techniques are also effective when only few training sam-
ples are available. To evaluate the effectiveness, we first construct sub-datasets of CIFAR100 via
randomly choosing n € {25, 50, 100,250} samples for each class, and then train models with and
without our rotation-based self-supervised data augmentation. As shown in Figure 4, our scheme
improves the accuracy relatively up to 37.5% under aggregation and 21.9% without aggregation.

Few-shot classification. Motivated by the above results in the limited-data regime, we also apply
our SDA+AG method to solve few-shot classification, combined with the state-of-the-art methods,
ProtoNet (Snell et al., 2017) and MetaOptNet (Lee et al., 2019) specialized for this problem. Note
that our method augments N-way K -shot tasks to N A/-way K-shot when using M-way transfor-
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Table 5: Average classification accuracy (%) with 95% confidence intervals of 1000 5-way few-shot
tasks on mini-ImageNet, CIFAR-FS, and FC100. { and I indicates 4-layer convolutional and 28-
layer residual networks (Zagoruyko & Komodakis, 2016), respectively. Others use 12-layer residual
networks as Lee et al. (2019). The best accuracy is indicated as bold.

mini-ImageNet CIFAR-FS FC100
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MAML! (Finn et al., 2017) 48.70+184  63.11+092 58.9+19 71.5+10 - -

R2D2" (Bertinetto et al., 2019) - - 65.3+02  79.4+01 - -
RelationNet (Sung et al., 2018) 50.44+082 65324070 55.0+10 69.3+038 - -

SNAIL (Mishra et al., 2018) 55714099 68.88+092 - - - -
TADAM (Oreshkin et al., 2018) 58.50+030  76.70+030 - - 40.1+04 56.1+04

LEO?! (Rusu et al., 2019) 61.76+008  77.59+0.12 - - - -
MetaOptNet-SVM (Lee et al., 2019)  62.64+061  78.63+046 72.0407 84.2+05 41.1x06 55.5+06
ProtoNet (Snell et al., 2017) 59.25+064  75.60+048 722407 83.5+05 37.5+06 52.5+06
ProtoNet + SDA+AG (ours) 62.22+060 77.78+051  74.6+07 86.8+t05 40.0x06 55.7+06

MetaOptNet-RR (Lee et al., 2019)  61.41+061  77.88+046 72.6+07 84.3+05 40.5+06 55.3+06
MetaOptNet-RR + SDA+AG (ours)  62.93+063  79.63+047 73.5+07 86.7+05 422106 59.2+05

Table 6: Classification accuracy (%) on imbalance datasets of CIFAR10/100. Imbalance Ratio is
the ratio between the numbers of samples of most and least frequent classes. The best accuracy is
indicated as bold, and the relative gain is shown in brackets.

Imbalanced CIFAR10 Imbalanced CIFAR100
Imbalance Ratio (Nyax/Nmin) 100 10 100 10
Baseline 70.36 86.39 38.32 55.70
Baseline + SDA+SD (ours) 74.61 (+6.04%) 89.55 (+3.66%) 43.42 (+13.3%) 60.79 (+9.14%)
CB-RW (Cui et al., 2019) 72.37 86.54 33.99 57.12
CB-RW + SDA+SD (ours) 77.02 (+6.43%)  89.50 (+3.42%) 37.50 (+10.3%) 61.00 (+6.79%)
LDAM-DRW (Cao et al., 2019) 77.03 88.16 42.04 58.71

LDAM-DRW + SDA+SD (ours) 80.24 (+4.17%) 89.58 (+1.61%) 45.53 (+8.30%) 59.89 (+1.67%)

mations. As reported in Table 5, ours improves consistently 5-way 1/5-shot classification accuracy
on mini-ImageNet, CIFAR-FS, and FC100. For example, we obtain 7.05% relative improvements
on 5-shot tasks of FC100.

Imbalanced classification. Finally, we consider a setting where training datasets are imbalanced,
where the number of instances per class largely differs and some classes have only a few train-
ing instances. For this experiment, we combine our SDA+SD method with two recent approaches,
Class-Balanced (CB) loss (Cui et al., 2019) and LDAM (Cao et al., 2019), specialized for this prob-
lem. Under imbalanced datasets of CIFAR10/100 which have long-tailed label distributions, our
approach consistently improves the classification accuracy as reported in Table 6 (13.3% relative
gain on imbalanced CIFAR100 datasets). These results show that our self-supervised data augmen-
tation can be useful for various scenarios of limited training data.

4 CONCLUSION

In this paper, we proposed a simple yet effective data augmentation approach, where we introduce
self-supervised learning tasks as auxiliary tasks and train the model to jointly predict both the label
for the original problem and the type of transformation, and validated it with extensive experiments
on diverse datasets. We believe that our work could bring in many interesting directions for future
research; for instance, one can revisit prior works on applications of self-supervision, e.g., training
generative adversarial networks with self-supervision (Chen et al., 2019). Applying our joint learn-
ing framework to fully-supervised tasks other than the few-shot or imbalanced classification task,
or learning to select tasks that are helpful toward improving the main task prediction accuracy, are
other interesting research directions we could further explore.
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