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ABSTRACT

Anatomical studies demonstrate that brain reformats input information to gener-
ate reliable responses for performing computations. However, it remains unclear
how neural circuits encode complex spatio-temporal patterns. We show that neu-
ral dynamics are strongly influenced by the phase alignment between the input
and the spontaneous chaotic activity. Input alignment along the dominant chaotic
projections causes the chaotic trajectories to become stable channels (or attrac-
tors), hence, improving the computational capability of a recurrent network. Us-
ing mean field analysis, we derive the impact of input alignment on the overall
stability of attractors formed. Our results indicate that input alignment determines
the extent of intrinsic noise suppression and hence, alters the attractor state stabil-
ity, thereby controlling the network’s inference ability.

1 INTRODUCTION

Brain actively untangles the input sensory data and fits them in behaviorally relevant dimensions
that enables an organism to perform recognition effortlessly, in spite of variations DiCarlo et al.
(2012); Thorpe et al. (1996); DiCarlo & Cox (2007). For instance, in visual data, object translation,
rotation, lighting changes and so forth cause complex nonlinear changes in the original input space.
However, the brain still extracts high-level behaviorally relevant constructs from these varying input
conditions and recognizes the objects accurately. What remains unknown is how brain accomplishes
this untangling.

Here, we introduce the concept of chaos-guided input alignment in a recurrent network (specifically,
reservoir computing model) that provides an avenue to untangle stimuli in the input space and im-
prove the ability of a stimulus to entrain neural dynamics. Specifically, we show that the complex
dynamics arising from the recurrent structure of a randomly connected reservoir Rajan & Abbott
(2006); Kadmon & Sompolinsky (2015); Stern et al. (2014) can be used to extract an explicit phase
relationship between the input stimulus and the spontaneous chaotic neuronal response. Then, align-
ing the input phase along the dominant projections determining the intrinsic chaotic activity, causes
the random chaotic fluctuations or trajectories of the network to become locally stable channels or
dynamic attractor states that, in turn, improve its’ inference capability. In fact, using mean field
analysis, we derive the effect of introducing varying phase association between the input and the
network’s spontaneous chaotic activity. Our results demonstrate that successful formation of stable
attractors is strongly determined from the input alignment. We also illustrate the effectiveness of in-
put alignment on a complex motor pattern generation task with reliable generation of learnt patterns
over multiple trials, even in presence of external perturbations.

2 MODEL DESCRIPTION

We describe the effect of chaos guided input alignment on a standard firing-rate based reservoir
model of N interconnected neurons. Specifically, each neuron in the network is described by an
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Figure 1: (a) Cartoon depicting the angle between subspace defined by the first two PCs of chaotic
activity (blue) and input driven activity (red). (b) [Left] Projections of the reservoir activity in the 3D
space of PC Vectors 1, 2, 3 - / [Right] Trajectories of 5 reservoir neurons across 10 different trials
- driven by input rotated by θrotate. (c) Relationship between input temporal phase (Θ) and the
orientation of driven activity with respect to chaotic subspace (θrotate) for varying input amplitude
and frequency.

activation variable xi ∀i = 1, 2, ...N , satisfying

τdxi/dt = −xi +

N∑
j=1

Wijrj +WInputI; z =

N∑
j=1

WOutrj (1)

where ri(t) = φ(xi(t)) represents the firing rate of each neuron characterized by the nonlinear
response function, φ(x) = tanh(x) and τ = 10ms is the neuron time constant. W represents a
sparse N × N recurrent weight matrix (with Wij equal to the strength of the synapse connecting
unit j to unit i) chosen randomly and independently from a Gaussian distribution with 0 mean and
variance, g2/pcN Van Vreeswijk et al. (1996); van Vreeswijk & Sompolinsky (1998), where g is the
synaptic gain parameter and pc is the connection probability between units. The output unit z reads
out the activity of the network through the connectivity matrix, WOut, with initial values drawn
from a Gaussian distribution with 0 mean and variance 1/N . The readout weights are trained using
Recursive Least Square (RLS) algorithm Laje & Buonomano (2013); Sussillo & Abbott (2009);
Jaeger & Haas (2004). The input weight matrix, WInput, is drawn from a Gaussian distribution
with zero mean and unit variance. The external input, I , is an oscillatory sinusoidal signal, I =
I0cos(2πft + χ), with amplitude I0, frequency f , that is the same for each unit i. Here, we use a
phase factor χ chosen randomly and independently from a uniform distribution between 0 and 2π.
This ensures that the spatial pattern of input is not correlated with the recurrent connectivity initially.
Through input alignment analysis, we then obtain the optimal phases to project the inputs in the
preferred direction of the network’s spontaneous or chaotic activity. In all our simulations (without
loss of generality), throughout the paper we have assumed, pc = 0.1, N = 800, g = 1.5, f = 10Hz,
unless, specified otherwise.

3 SUBSPACE ALIGNMENT

First, we ask the question how is the subspace of input driven activity aligned with respect to the
subspace of spontaneous or chaotic activity of a recurrent network. Using Principal Component
Analysis (PCA), we observed that the input-driven trajectory converges to a uniform shape becom-
ing more circular with increasing input amplitude (See Appendix A, Fig. A1 (a,b)). We utilize the
concept of principal angles, introduced in Rajan et al. (2010a); Ipsen & Meyer (1995), to visual-
ize the relationship between the chaotic and input driven (circular) subspace. Specifically, for two
subspaces of dimension D1 and D2 defined by unit principal component vectors (that are mutually
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Figure 2: (a) A reservoir framework [Left] stimulated by a brief sinusoidal input (t = 0 − 50ms)
trained to generate a timed output response shown in [Right]. (b) Cartoon showing the different
angles in the chaotic subspace along which the inputs can be aligned. (c) Euclidean distance between
trajectories of same (and different) inputs plotted for different orientation of I1, I2 in the chaotic
subspace. (d) Projections of the reservoir activity in the 3D space of PC Vectors 1, 2, 3 corresponding
to the two inputs I1, I2 for different alignment conditions.

orthogonal) V1a, for a = 1, 2, ...D1 and V2b, for b = 1, 2, ...D2, the angle between them is

θ = arccos(min(SingularV alueOf(V1
a.V2

b))) (2)

Fig. 1 (a) schematically represents the angle between the circular input driven network activity and
the irregular spontaneous chaotic activity. Here, θchaos (and θdriven) refers to the subspace defined
by the first two Principal Components (PCs) of the intrinsic chaotic activity (and input driven activ-
ity). It is evident that rotating the circular orbit by θrotate will align it along the chaotic trajectory
projection. We observe that aligning the inputs in directions (along dominant PCs) that account
for maximal variance in the chaotic spontaneous activity facilitates intrinsic noise suppression at
relatively low input amplitudes, thereby, allowing the network to produce stable trajectories. For in-
stance, instead of using random phase input, we set I = I0cos(2πft+Θ) and visualize the network
activity as shown in Fig. 1 (b). Even at lower amplitude of I0 = 1.5, we observe a uniform circu-
lar orbit (in the PC subspace) for the network activity that is characteristic of reduction in intrinsic
noise and input sensitization. In fact, even after the input is turned off after t = 50ms, the neural
units yield stable and synchronized trajectories with minimal variation across different trials (Fig.
1 (b, Right)) in comparison to the random phase input driven network (of higher amplitude). Note,
Appendix A (Fig. A1 (b)) shows an example of PC activity for random phase input driven reservoir
driven with high input amplitude I0 = 5. This shows the effectiveness of subspace alignment for
intrinsic noise suppression. In addition, working in low input-amplitude regimes offers an additional
advantage of higher network dimensionality (refer to Appendix A Fig. A1 (c) for dimensionality
discussion), that in turn improves the overall discriminative ability of the network. Note, previous
work Rajan et al. (2010a;b) have shown that spatial structure of the input does not have a keen in-
fluence on the spatial structure of the network response. Here, we bring in this association explicitly
with subspace alignment.

Θ, in the above analysis, is the input phase that corresponds to a subspace rotation of driven activity
toward spontaneous chaotic activity. We observe that the temporal phase of the input contributes to
the neuronal activity in a recurrent network. Fig. 1 (c) illustrates this correlation wherein the input
phase determines the orientation of the input-driven circular orbit with respect to the dominant sub-
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space of intrinsic chaotic activity. For a given input frequency (f = 10Hz), input phase, Θ = 83.2◦,
aligns the driven activity (θdriven) along the chaotic activity (θchaos) resulting in θrotate = 0◦ for
varying input amplitude (I0 = 1.5, 3). An interesting observation here is that the frequency of the in-
put modifies the orientation of the evoked response that yields different input phases at which θchaos
and θdriven are aligned (refer to Fig. 1 (c, Right)). We also observe that the subspace alignment is
extremely sensitive toward the input phase in certain regions with abrupt jumps and non-smooth cor-
relation. This non-linear behavior is a consequence of the recurrent connectivity that overall shapes
the complex interaction between the driving input and the intrinsic dynamics. While this correlation
yields several important implications for neuro-biological computational experiments DiCarlo et al.
(2012); Thorpe et al. (1996); DiCarlo & Cox (2007), we utilize this behavior for subspace alignment.
Consequently, in all our experiments, for a given θrotate, we find a corresponding input phase Θ that
approximately aligns the input in the preferred direction.

4 IMPACT OF INPUT ALIGNMENT ON DISCRIMINATIVE CAPABILITY

Next, we describe the implication of input alignment along the chaotic projections on the overall
learning ability of the network. First, we trained a recurrent network (Fig. 2 (a)) with two output
units to generate a timed response at t = 1s as shown in Fig. 2 (a, Right). Two distinct and brief
sinusoidal inputs (of 50 ms duration and amplitude I0 = 1.5) were used to stimulate the recurrent
network. The network trajectories produced were then mapped to the output units using RLS training
(to learn the weights WOut). Here, the network (after readout training) is expected to produce timed
output dynamics at readout unit 1 or 2 in response to input I1 or I2, respectively. The network is
reliable if it generates consistent response at the readout units across repeated presentations of the
inputs during testing, across different trials. This simple experiment utilizes the fact that neural
dynamics in a recurrent network implicitly encode timing that is fundamental to the processing and
generation of complex spatio-temporal patterns. Note, in such cases of multiple inputs, values of
both inputs are zero, except for a timing window during which one input is briefly turned on in a
given trial.

Since both the inputs, in the above experiment, have same amplitude and frequency dynamics, the
circular orbit describing the network activity in the input-driven state (for both inputs) is almost
similar giving rise to one principal angle (θdriven1,2 in Fig. 2 (b)) for the input subspace. To dis-
criminate between the output responses for the two inputs, it is apparent that the inputs have to
be aligned in different directions. One obvious approach is to align each input along two different
principal angles defining the chaotic spontaneous activity (i.e. I1 along ∠PC1.PC2 and I2 along
∠PC3.PC4). Note, ∠PC1.PC2 denotes the angle θ calculated using Eqn. 2. Another approach is
to align I1 along ∠PC1.PC2 ≡ θchaos and I2 along ∠PC1.PC2 + 90◦ ≡ θchaos,90◦ as shown in
Fig. 2 (b). We analyze the latter approach in detail as it involves input phase rotation in one subspace
that makes it easier for formal theoretical analysis.

To characterize the discriminative performance of the network, we evaluated the Euclidean distances
to measure the inter- and intra-input trajectories. Inter-input trajectory distance is measured in re-
sponse to different inputs (I1, I2). Intra-input trajectory distance is measured in response to the clean
input (say, I1 = I0cos(2πft + Θ1)) and a slightly varied version of the same input (for instance,
I1,δ = (I0 + ε)cos(2πft + Θ1). Here, ε is a random number between [0, 0.5]) and Θ1(Θ2) is the
input phase that aligns I1 (I2) along θchaos (θchaos,90◦ ). The Euclidean distance is calculated as√

1/N
∑N
i=1(ri,1(t)− ri,2(t))2 , where r1(t) (r2(t)) is the firing rate activity of the network corre-

sponding to I1 (I2). Note, for intra-input evaluation (say, for I1), the distance is measured between
firing rates corresponding to inputs I1 and I1,δ .

The inter-/intra-input trajectory distances are plotted in Fig. 2 (c) for scenarios- with and without
input alignment. It is desirable to have larger inter-trajectory distance and small intra-trajectory dis-
tance such that the network easily distinguishes between two inputs while being able to reproduce
the required output response even when a particular input is slightly perturbed. We observe that
aligning the inputs in direction parallel and perpendicular to the dominant projections (i.e. I1 along
θchaos, I2 along θchaos,90◦ as in Fig. 2 (c, Middle)) increases the inter-trajectory distance compared
to the non-aligned case (Fig. 2 (c, Left)) while decreasing the intra-input trajectory separation. This
further ascertains the fact that subspace alignment reduces intrinsic fluctuations within a network
thereby enhancing its discrimination capability. Note, without input alignment, the intrinsic fluctua-
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tions cannot be overcome with low-amplitude inputs (I0 = 1.5). Hence, for fair comparison and to
obtain stable readout-trainable trajectory in the non-aligned case, we use a higher input amplitude
of I0 = 3.

We hypothesize that intrinsic noise suppression occurs as input subspace alignment along domi-
nant projections (that account for maximal variance such as PC1, PC2) causes chaotic trajectories
along different directions (in this case, along θchaos, θchaos,90◦ ) to become locally stable channels
or attractor states. These attractors behave as potential wells (or local minima from an optimization
standpoint) toward which the network activity converges for different inputs. Thus, the successful
formation of stable yet distinctive attractors for different inputs are strongly influenced by the ori-
entation along which the inputs are aligned. As a consequence of our hypothesis, depending upon
the orientation of the input with respect to the dominant chaotic activity (θchaos in Fig. 2 (b)), the
extent of noise suppression will vary that will eventually alter the stability of the attractor states. To
test this, we rotated I2 (from θchaos,90◦ ) further by 90◦ (θchaos,180◦ in Fig. 2 (b)) and monitored
the intra-trajectory distance. In Fig. 2 (c, Middle) corresponding to 90◦ phase difference between
I1, I2 (I1 along θchaos, I2 along θchaos,90◦ ), I2 corresponds to a more stable attractor since its intra-
distance is lower than I1. In contrast, in Fig. 2 (c, Right) corresponding to 180◦ phase difference
(I1 along θchaos, I2 along θchaos,180◦ ), I1 turns out be more stable than I2. Note, the 90◦, 180◦

phase difference between I1, I2 (mentioned above and in the remainder of the paper) refers to the
phase difference between the inputs in the chaotic subspace after subspace alignment using Θ. For
our analysis, Θ1 = 83.2◦,Θ2 = 111◦ yields ∼ 90◦ phase between I1, I2 in chaotic subspace, while
Θ1 = 83.2◦,Θ2 = 263.2◦ yields ∼ 180◦ phase.

In addition to the trajectory distance, visualizing the network activity in the 3-D PC space (Fig. 2
(d)), also, shows the influence of input orientation (and hence the phase correlation) toward forma-
tion of distinct attractor states. Since I1, I2 are aligned in the subspace defined by ∠PC1.PC2, the
2D projection of the circular orbit onto PC1 and PC2 in both input aligned scenarios (90◦, 180◦

phase) are comparable. However, the third dimension, PC3, marks the difference between the two
input projections. In fact, the progress of the network activity as time evolves (shown by dashed ar-
rows in Fig. 2 (d)) follows a completely different cycle for the input aligned scenarios. The change
in the overall rotation cycle from anti-clockwise (I2 with 90◦ phase, Fig. 2 (d, Middle)) to clock-
wise (I2 with 180◦ phase, Fig. 2 (d, Right)) can be viewed as an indication toward the altering of
the attractor state stability. On the other hand, the non-aligned case with I0 = 3 yields incoherent
and more random trajectory (Fig. 2 (d, Left) representative of intrinsic noise. In order to get more
coherent activity and to suppress the noise further, we need to increase the input amplitude to I0 ≥ 5
as shown in Appendix A (Fig. A1 (a,b)).

5 MEAN FIELD ANALYSIS

To explain the above results analytically, we use mean-field methods developed to evaluate the
properties of random network models in the limit N →∞ Rajan et al. (2010b); Sompolinsky et al.
(1988). A key quantity in Mean Field Theory (MFT) is the average autocorrelation function that
characterizes the interaction within the network as

C(τ) = 1/N

N∑
i=1

< φ(xi(t))φ(xi(t+ τ)) > (3)

where <> denotes the time average. The main idea of MFT is to replace the network interaction
term in Eqn. 1 by Gaussian noise η such that dxi

1

dt = −xi1 + η, where xi = xi
0 + xi

1 and
xi

0(t) = Acos(2πft+ζ) with A = I0/
√

1 + (2πft)2. Here, ζ incorporates the averaged temporal
phase relationship between the reservoir neurons and the input induced by input subspace alignment,
ζ(θrotate) = Θ. The temporal correlation of η is calculated self-consistently from C(τ). For self-
consistence, the first and second moment of η must match the moments of the network interaction
term. Thus, we get < ηi(t) >= 0 as mean of the recurrent synaptic matrix < Wij >= 0. For
calculating the second moment , we use the identity < WijWkl >= g2δijδkl/N and obtain <
ηi(t)ηj(t + τ) >= g2C(τ). Combining this result with the MFT noise-interaction based network
equation yields

d2∆(τ)

dτ2
= ∆(τ)− g2C(τ) (4)
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Figure 3: Evolution of potential energy (and hence attractor state formation) by varying the input
G as a function of ζ

where ∆(τ) =< xi
1(t)xi

1(t+τ) >. Eqn. 4 resembles the Newtonian motion equation of a classical
particle moving under the influence of force given by the right hand side of the equation. This force
depends on C that, in turn, depends on the input subspace alignment (ζ) which directs the initial
position of the particle (or state of the network ∆(0)). From this analogy, it is evident that analyzing
the overall potential energy function of the particle (or network) will be equivalent to visualizing the
different attractor states formed in a network in response to a particular input stimulus. Thus, we
formulated an expression for the correlation function (with certain constraints) using Taylor series
expansion, that allows us to derive the force and hence the dynamics of the network under various
input alignment conditions.

The non-linear firing rate function r(x) = φ(x) = tanh(gx) can be expanded with Taylor se-
ries for small values of g, i.e. g = 1 + δ, where δ denotes a small increment in g beyond
1. Note, g = 1 + δ satisfies the criterion, g > 1 Rajan & Abbott (2006); Sompolinsky et al.
(1988), to operate the networks in chaotic regime. Also, the overall network statistics does not
change with g being expressed as a gain factor in the firing-rate function instead of overall synaptic
strength. Using tanh(gx) ' gx − 1/3g3x3 + 2/15g5x5, we can express C(τ) from Eqn. 3 as
C = 1/2g2A2cos(ωτ + 2ζ) + l(g2 − 2g4m) + 2/3g6l3, where m = ∆(0), l = ∆(τ), ω = 2πf .
Now, we can express Eqn. 4 as d2l

dτ2 = l − C. Writing l = kδ due to the small limit of g, Eqn. 4
simplifies to

d2k

dt2
= −G+ nk − 2/3k3 (5)

where G = g2A2cos(ωτ + 2ζ)/(2δ3) and n is a parameter defined in terms of m, δ. Appendix B
provides a detailed derivation of Eqn. 5 and comments about the assumptions on initial conditions.
Note, Eqn. 5 is an approximate version of Eqn. 4 that depicts network activity in the manner
of Newtonian motion independent of all intrinsic time (or averaging parameters) while taking into
account the influence of input alignment. Now, we can express the potential of the network driven
by a force, F , equivalent to the right hand side of Eqn. 5 as

V = −
∫
Fdk = Gk − n/2k2 + k4/6 (6)

We solve Eqn. 5, 6 with initial conditions k(0) = 1, k̇(0) = 0 and monitor the change in force, F ,
and potential, V , for different values of G. First, let us examine the attractor state formation when
there is no input stimulus (i.e. G = 0) by visualizing the potential V . For G = 0, the expressions
for force and potential become

F (k) = nk − 2/3k3; V (k) = −nk2/2 + k4/6 (7)

Fig. 3 shows the evolution of potential energy as k varies for different G. When input G = 0, the
network dynamics is chaotic that results in the formation of potential wells that are both equally
stable. The network activity will thus converge to any one of these wells (that can be interpreted as
attractor states) depending upon the initial state or starting point. This supports the observation that
a network with no input yields chaotic activity with incoherent and irregular trajectory for every trial
(see Fig. A1 (a) in Appendix A for reference). For nonzero G, the force (and potential) equation
will be dependent on ζ since G ' cos(ωτ + 2ζ). For different values of ζ, we solved for V (Eqn. 6)
numerically and plotted the potential evolution as shown in Fig. 3. For ζ = π/4, the potential well
is more attractive on the left end. This validates the fact that intrinsic fluctuations are suppressed
in the presence of an input. For ζ = π/2, the left attractor becomes more stable. Changing ζ
further shows that the potential well on the right end becomes more stable. This result confirms
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that input subspace alignment with respect to the initial chaotic state influences the overall stability
and convergence capability of a recurrent network. The fact that stability corresponding to different
attractor states (ζ = π/2, π) arises, qualifies our earlier hypothesis that input orientation with respect
to the chaotic subspace alters the attractor state stability, corroborating the result of Fig. 2 (c).

Note, we solved Eqn. 6 by setting some initial and boundary value conditions on k and by iterating
over different n until we reached a steady state solution. Changing these conditions will result in
a completely new set of ζ values (different from those in Fig. 3). Nevertheless, we will observe a
similar evolution of the potential well and change in attractor state stability as Fig. 3. Furthermore,
the MFT calculations use ζ to denote a functional relationship between subspace alignment and input
phase that eventually affects the attractor state stability. In the future, we will examine the real-time
evaluation of ζ and its’ impact on the analytical studies. Finally, the constraint under which we
derive the potential energy functions and show the altering of attractor state is g = 1 + δ. We expect
all our results to be valid for large g as well since Eqn. 4 (that was simplified with Taylor expansion)
still remains unchanged.

6 HANDWRITING GENERATION

Finally, we illustrate the effectiveness of input alignment on a complex motor pattern generation
task Laje & Buonomano (2013). We trained a recurrent network to generate the handwritten words
“chaos” and “neuron” in response to two different inputs1 Laje & Buonomano (2013). After obtain-
ing the principal angle of the chaotic spontaneous activity, we aligned the input I1 corresponding to
“chaos” along ∠PC1.PC2 using optimal input phase Θ. Then, we monitored the output activity
for different orientation (i.e. 90◦, 180◦) of input I2, corresponding to “neuron”, with respect to I1 in
the chaotic subspace. The two output units (representing the x and y axes) were trained using RLS
to trace the original target locations (x(t), y(t)) of the handwritten patterns at each time instant. Fig.
4 (a) shows the handwritten patterns generated by the network across 10 test trials for the scenario
when inputs are aligned at 90◦ in the chaotic subspace. We observe similar robust patterns generated
for 180◦ phase as well. The notable feature of input alignment is that the chaotic trajectories become
locally stable channels and function as dynamic attractor states. However, external perturbation can
induce more chaos in the reservoir that will overwhelm the stable patterns of activity.

To test the susceptibility of the dynamic attractor states formed with input alignment to external
perturbation, we introduced random Gaussian noise onto a trained model along with the standard
intrinsic chaos-aligned inputs during testing. The injection of noise alters the net external current
received by the neuronal units (I = Σi[WInputiI + N0rand(i)], where N0 is the noise amplitude,
i denotes a neural unit in the reservoir and rand is the random Gaussian distribution). Fig. 4
(b) shows the mean squared error (calculated as the average Euclidean distance between the target
(x, y) and the actual output produced at different time instants, averaged across 20 test trials) of
the network for varying levels of noise. As N0 increases, we observe a steady increase in the error
value implying degradation in the prediction capability of the network. However, for moderate noise
(with N0 < 0.01), the network exhibits high robustness with negligible degradation in prediction
capability for both the words. Interestingly, for 90◦ phase difference, “neuron” is more stable than
“chaos” with increased reproducibility across different trials even with more noise (N0 = 0.2). In
contrast, for 180◦ phase, “chaos” is less sensitive to noise (Fig. 4 (b)). On the other hand, for 45◦

phase alignment between I1, I2 in the chaotic subspace, we observe that the network is sensitive
even toward slight perturbation (N0 = 0.001). This implies that the attractor states formed, in this
case, are very unstable. This further corroborates the fact that the extent of noise suppression and
hence the attractor state stability varies based upon the input alignment.

Fig. 4(c) shows the handwritten pattern generated in one test trial for different phase alignment
between I1, I2, when I1 is aligned along the principal angle defining the spontaneous chaotic ac-
tivity of the network. It is noteworthy to mention that the neural trajectories of the recurrent units
corresponding to both cases are stable. In fact, we observe in the 90◦ case, the trajectories of neu-
rons responding to I1 that corresponds to output “chaos” become slightly divergent and incoherent
beyond 1000ms. In contrast, the trajectories of units responding to the word “neuron” are more
synergized and coherent throughout the 1500ms time period of simulation. This indicates that the
network activity for “neuron” converges to a more stable attractor state than “chaos”. As a result,

1The handwritten patterns were adopted from the experiments of Laje et al. Laje & Buonomano (2013)
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Figure 4: (a) Handwriting patterns generated across 10 test trials in response to I1 [Top] and I2
[Bottom] in absence of external noise (b) Variation of performance (measured as mean squared
error) with different noise amplitude shown for each output pattern in different input alignment sce-
narios. Chaos90,180,45 represents the error value obtained during “chaos” generation when I1, I2
have 90◦, 180◦, 45◦ phase difference in the chaotic subspace, respectively. (c) Generation of hand-
writing patterns corresponding to two brief sinusoidal inputs I1, I2 for different phase difference
between the inputs in the chaotic subspace. [Left column] shows the patterns generated in absence
of external perturbation in one test trial, [Middle Column] shows the trajectories of 5 recurrent units
in the reservoir across 10 test trials corresponding to each output pattern, [Right Column] shows the
patterns generated in presence external perturbation for one test trial.

we see that the network is more robust while reproducing “neuron” even in presence of external
perturbation (N0, noise amplitude is 0.2). In the 180◦ phase difference case, we see exactly opposite
stability phenomena with “chaos” converging to more stable attractor.

7 DISCUSSION

Models of cortical networks often use diverse plasticity mechanisms for effective tuning of recurrent
connections to suppress the intrinsic chaos (or fluctuations) Laje & Buonomano (2013); Panda &
Roy (2017). We show that input alignment alone produces stable and repeatable trajectories, even,
in presence of variable internal neuronal dynamics for dynamical computations. Combining input
alignment with recurrent synaptic plasticity mechanism can further enable learning of stable cor-
related network activity at the output (or readout layer) that is resistant to external perturbation to
a large extent. Furthermore, since input subspace alignment allows us to operate networks at low
amplitude while maintaining a stable network activity, it provides an additional advantage of higher
dimensionality. A network of higher dimensionality offers larger number of disassociated princi-
pal chaotic projections along which different inputs can be aligned (see Appendix A, Fig. A1(c)).
Thus, for a classification task, wherein the network has to discriminate between 10 different inputs
(of varying frequencies and underlying statistics), our notion of untangling with chaos-guided input
alignment can, thus, serve as a foundation for building robust recurrent networks with improved in-
ference ability. Further investigation is required to examine which orientations specifically improve
the discrimination capability of the network and the impact of a given alignment on the stability of
the readout dynamics around an output target. In summary, the analyses we present suggest that
input alignment in the chaotic subspace has a large impact on the network dynamics and eventually
determines the stability of an attractor state. In fact, we can control the network’s convergence to-
ward different stable attractor channels during its voyage in the neural state space by regulating the
input orientation. This indicates that, besides synaptic strength variance Rajan & Abbott (2006), a
critical quantity that might be modified by modulatory and plasticity mechanisms controlling neural
circuit dynamics is the input stimulus alignment.
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APPENDIX

A PCA FOR EXAMINING NETWORK ACTIVITY

To examine the structure of the recurrent network’s representations, we visualize and compare the
neural trajectories in response to varying inputs using Principal Component Analysis (PCA) Rajan
et al. (2010a). The network state at any given time instant can be described by a point in the N-
dimensional space with coordinates corresponding to the firing rates of the N neuronal units. With
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time, the network activity traverses a trajectory in this N-dimensional space and we use PCA to
outline the subspace in which this trajectory lies. To conduct PCA, we diagonalize the equal-time
cross-correlation matrix of the firing rates of the N units as

Dij =< (ri(t)− < ri >)(rj(t)− < rj >) > (8)

where the angle brackets, <>, denote time average and r(t) denotes the firing rate activity of the
neuron. The eigenvalues of the matrix D (specifically, λa/

∑N
a=1 λa, where λa is the eigenvalue

corresponding to principal component a) indicate the contribution of different Principal Compo-
nents (PCs) toward the fluctuations/total variance in the spontaneous activity of the network. Fig. A1
shows the impact of varying input amplitude (I0) on the spontaneous chaotic activity of the network.
For I0 = 0, the network is completely chaotic as is evident from the highly variable projections of
the network activity onto different Principal Components (PCs) (see Fig. A1 (a, Left)).Generally,
the leading 10−15% (depending upon the value of g) of the PCs account for∼ 95% of the network’s
chaotic activity Rajan et al. (2010a). Visualizing the network activity in a 3D space composed of the
dominant principal components (PC1, 2, 3) shows a random and irregular trajectory characteristic
of chaos (Fig. A1 (a, Middle)). In fact, plotting the trajectories (firing rate r(t) of the neuron as time
evolves) of 5 recurrent units in the network (Fig. A1 (a, Right)) shows diverging and incoherent ac-
tivity across 10 different trials, also, representative of intrinsic chaos. In addition, the projections of
the network activity onto components with smaller variances, such as PC50, fluctuate more rapidly
and irregularly (Fig. A1 (a, Left)). This further corroborates the fact that the leading PCs (such as,
PC1-PC15) define a network’s spontaneous chaotic activity.

Driving the recurrent network with a sinusoidal input of high amplitude (Fig. A1 (b)) sensitizes
the network toward the input, thereby, suppressing the intrinsic chaotic fluctuations. The PC pro-
jections of the network activity are relatively periodic. A noteworthy observation here is that the
trajectories of the recurrent units (Fig. A1 (b, Right) become more stable and consistent across 10
different presentations of the input pattern with increasing amplitude. A readout layer appended to
a recurrent network can be easily trained on these stable trajectories for a particular task. Thus, the
input amplitude determines the network’s encoding trajectories and in turn, its’ inference ability. In
fact, the chaotic intrinsic activity is completely suppressed for larger inputs. However, this is not
preferred as input dominance drastically declines the discriminative ability of a network that can
be justified by dimensionality measurements. The effective dimensionality of a reservoir is calcu-
lated as Neff =

∑N
a=1(λ2a)−1 that provides a measure of the effective number of PCs describing

a network’s activity for a given input stimulus condition. Fig. A1 (c) illustrates how the effective
dimensionality decreases with increasing input amplitude for different g values. It is, hence, critical
that input drive be strong enough to influence network activity while not overriding the intrinsic
chaotic dynamics to enable the network to operate at the edge of chaos. Note, higher g in Fig. A1
(c) yields a larger dimensionality due to richer chaotic activity.

In our simulations in Fig. A1 (b), the input is shown for 50ms starting at t = 0. Thus, we observe
that the trajectories of the recurrent units are chaotic until the input is turned on. Although the
network returns to spontaneous chaotic fluctuations when the input is turned off (at t = 50ms), we
observe that the network trajectories are stable and non-chaotic that is in coherence with the previous
findings from Bertschinger & Natschläger (2004); Rajan et al. (2010b). From the visualization of
network activity in the dominant PC space, we see that the input-driven trajectory converges to a
uniform shape becoming more circular (along PC1 and PC2 dimensions) with higher input amplitude
(Fig. A1 (b, Middle)). This informs us that the orbit describing the network activity in the
input-driven state consists of a circle in a two-dimensional subspace of the full N-dimensional
hyperspace of the neuronal activities (supporting the schematic depiction of driven and chaotic
subspaces in Fig. 1 (a)). Note, all simulations in Appendix are conducted with similar parameters
mentioned in the main text, i.e., N = 800, f = 10Hz, pc = 0.1.

B MEAN FIELD DERIVATION WITH TAYLOR SERIES

First, let us solve for xi1 such that we can get an expression for the correlation function, C(τ) in
Eqn. 3 of main text. Noting that, xi1 is driven by Gaussian noise (as indicated by the MFT noise-
interaction equation: dxi

1

dt = −xi1 + η), we can assume their moments as < xi
1(t) >=< xi

1(t +

τ) >= 0, < xi
1(t)xi

1(t) >=< xi
1(t+ τ)xi

1(t+ τ) >= ∆(0) and < xi
1(t)xi

1(t+ τ) >= ∆(τ).
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Figure A1: (a) [Left] For zero input, projections of the chaotic spontaneous activity onto PC vectors
1, 5, 50 , [Middle] Visualization of the chaotic trajectory in 3D subspace composed of dominant
PC vectors 1,2,3 that account for significant variance in network activity, [Right] Trajectories of 5
reservoir neurons across 10 different trials. (b) Same as panel (a), but for non-chaotic input driven
activity with input amplitude I0 = 5. (c) Effective dimensionality of the network at different input
amplitudes for g=1.5, g=2.5.

x1(t) (dropping index i as all neuronal variables have similar statistics) can then be written as

x1(t) = αz1 + βz3; x1(t+ τ) = αz2 + γz3 (9)

where z1, z2, z3 are Gaussian random variables with 0 mean/unit variance and α =√
∆(0)− |∆(τ)|, β = sgn(∆(τ))

√
|∆(τ)|,

γ =
√
|∆(τ)|. Now, writing x = x0 + x1, C is computed by integrating over z1, z2, z3 as

C(τ) = 1/N

N∑
i=1

<< φ(xi
0(t) + αz1 + βz3) >z1

< φ(xi
0(t+ τ)) + αz2 + γz3 >z2>z3 (10)

where < f(z) >z=
∫∞
−∞ dz f(z)exp(−z

2/2)√
2π

for z = z1, z2, z3. Now, xi0(t) = Acos(2πft + ζ),

where A = I0/
√

1 + (2πft)2 (solve dxi
0

dt = −xi0 + I0cos(2πft + ζ) for xi0) and ζ incorporates
the averaged temporal phase relationship between the individual neurons and the input induced by
input subspace alignment. Replacing the value of xi0 in Eqn. 10, we get

C(τ) = 1/N

N∑
i=1

<<< φ(Acos(ζ) + αz1 + βz3) >z1)

< φ(Acos(ωτ + ζ) + αz2 + γz3 >z2>z3) >ζ (11)

The above correlation function also satisfies Eqn. 4 of main text. Note, ω = 2πf in Eqn. 11.

Now we solve Eqn. 11 using Taylor series approximation for tanh(gx) = gx−1/3g3x3+2/15g5x5.
We have

φ(Acos(ζ) + αz1 + βz3) = g(Acos(ζ) + αz1 + βz3)− 1/3g3(αz1 + βz3)3 + 2/15g5(αz1 + βz3)5

= g(Acos(ζ) + αz1 + βz3)− 1/3g3(α3z1
3 + 3α2z1

2βz3 + 3αz1β
2z3

2 + β3z3
3)

+2/15g5(α5z1
5 + 5α4z1

4βz3 + 10α3z1
3β2z3

2 + 10α2z1
2β3z3

3

+5αz1β
4z3

4 + β5z3
5 (12)

Now using < z1
2 >z1= 1, < z1

4 >z1= 3, < z1
6 >z1= 15 and noting that averages over odd

powers of z1 are zero, we get

< φ(Acos(ζ) + αz1 + βz3) >z1= g(Acos(ζ) + βz3)− 1/3g3(3α2γz3 + γ3z3
3)

+2/15g5(15α4βz3 + 10α2β3z3
3 + β5z3

5) (13)
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Similarly,

< φ(Acos(ζ + ωτ) + αz2 + γz3) >z2= g(Acos(ζ + ωτ) + γz3)− 1/3g3(3α2γz3 + γ3z3
3)

+2/15g5(15α4γz3 + 10α2γ3z3
3 + γ5z3

5) (14)

Multiplying Eqn. 5 with Eqn. 14 upto the sixth order, we can simplify Eqn. 11 as

C = << g2A2cos(ζ)cos(ζ + ωτ) + g2βγz2
2 − 2g4α2βγz3

2 − 1/3g4(β3γ + βγ3)z3
2

+4g6α4βγz3
2 + 4/3g6α2(β3γ + βγ3)z3

4 + 2/15g6(β5γ + βγ5)z3
6

+g6α4βγz3
2 + 1/3g6α2(β3γ + βγ3)z3

4 + 1/9g6β3γ3z3
6 >z3>ζ (15)

Now averaging Eqn. 15 over ζ will still retain the ζ term unlike general MFT calculations where ζ
gets washed out since there is no fixed relationship between the input and recurrent activity. Here,
we use yet another approximation i.e. Cos(A).Cos(B) ' Cos(A+B) and finally get C as

C = 1/2g2A2cos(2ζ + ωτ) + g2βγ − 2g4α2βγ − g4(β3γ + βγ3) + 5g6α4βγ

+5g6α2(β3γ + βγ3) + 2g6(β5γ + βγ5) + 5/3g6β3γ3 (16)

Using the definition of α, β, γ in Eqn. 9 and denoting m = ∆(0), l = ∆(τ), we get

α2 = m− |l|; βγ = l; β3γ = βγ2 = |l|l; β5γ = βγ5 = β3γ3 = l3 (17)

Substituting α, β, γ values from Eqn. 17 in Eqn. 16, we get

C = 1/2g2A2cos(2ζ + ωτ) + g2l − 2g4(m− |l|)l − 2g4|l|l + 5g6(m− |l|2l + 10g6(m− |l|)|l|l + 17/3g6l3

= 1/2g2A2cos(ωτ + 2ζ) + l(g2 − 2g4m) + 2/3g6l3 (18)

Now, l satisfies d2l
dt2 = l − C. By putting the value of C from Eqn. 18 we get

d2l

dt2
= 1/2g2A2cos(ωτ + 2ζ) + (1− g2 − 2g4m)l + 2/3g6l3 (19)

For deriving Eqn. 5 from the main text, we use l = kδ and define 1/2g2A2cos(ωτ + 2ζ) = Gδ3.
Then, Eqn. 19 becomes

δ3
d2k

dt2
= −δ3G+ δ(−2δ + 2(1 + 4δ)m)k − 2/3δ3k3 (20)

Now, we introduce the parameter n, where m = δ + (n/2− 4)δ2 to further simplify Eqn. 20 as

d2k

dt2
= −G+ nk − 2/3k3 (21)

Eqn. 21 is the force equation (Eqn. 5 in the main text) from which we derived the potential
energy. Note, the MFT approximate equations are derived with respect to a single input G driving
the entire network. Multiple inputs (Gin where in = 1, 2...) and corresponding alignment of the
inputs along different projections (as in Fig. 1 of main text) will result in a potential well that
can be roughly interpreted as a linear combination of Vin observed for each input, Gin. The linear
combination will follow a similar evolution profile as shown in Fig. 3 of main text. Thus, the change
in intra-trajectory distance for varying alignment of the two inputs in the chaotic subspace, shown
in Fig. 2 (c) of main text, is justified from the given analysis.
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