Under review as a conference paper at ICLR 2020

MODEL-AUGMENTED ACTOR-CRITIC:
BACKPROPAGATING THROUGH PATHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current model-based reinforcement learning approaches use the model simply as a
learned black-box simulator to augment the data for policy optimization or value
function learning. In this paper, we show how to make more effective use of the
model by exploiting its differentiability. We construct a policy optimization algo-
rithm that uses the pathwise derivative of the learned model and policy across future
timesteps. Instabilities of learning across many timesteps are prevented by using a
terminal value function, learning the policy in an actor-critic fashion. Furthermore,
we present a derivation on the monotonic improvement of our objective in terms
of the gradient error in the model and value function. We show that our approach
(1) is consistently more sample efficient than existing state-of-the-art model-based
algorithms, (ii) matches the asymptotic performance of model-free algorithms, and
(iii) scales to long horizons, a regime where typically past model-based approaches
have struggled.

1 INTRODUCTION

Model-based reinforcement learning (RL) offers the potential to be a general-purpose tool for learning
complex policies while being sample efficient. When learning in real-world physical systems, data
collection can be an arduous process. Contrary to model-free methods, model-based approaches are
appealing due to their comparatively fast learning. By first learning the dynamics of the system in a
supervised learning way, it can exploit off-policy data. Then, model-based methods use the model to
derive controllers from it either parametric controllers (Luo et al.,2019;Buckman et al.||2018} Janner
et al.| 2019) or non-parametric controllers (Nagabandi et al., 2017} |Chua et al., [2018)).

Current model-based methods learn with an order of magnitude less data than their model-free
counterparts while achieving the same asymptotic convergence. Tools like ensembles, probabilistic
models, planning over shorter horizons, and meta-learning have been used to achieved such perfor-
mance (Kurutach et al., [2018}; |Chua et al.| 2018 |Clavera et al., [2018)). However, the model usage
in all of these methods is the same: simple data augmentation. They use the learned model as a
black-box simulator generating samples from it. In high-dimensional environments or environments
that require longer planning, substantial sampling is needed to provide meaningful signal for the
policy. Can we further exploit our learned models?

In this work, we propose to estimate the policy gradient by backpropagating its gradient through the
model using the pathwise derivative estimator. Since the learned model is differentiable, one can
link together the model, reward function, and policy to obtain an analytic expression for the gradient
of the returns with respect to the policy. By computing the gradient in this manner, we obtain an
expressive signal that allows rapid policy learning. We avoid the instabilities that often result from
back-propagating through long horizons by using a terminal Q-function. This scheme fully exploits
the learned model without harming the learning stability seen in previous approaches (Kurutach
et al., |2018}; [Heess et al., 2015). The horizon at which we apply the terminal Q-function acts as a
hyperparameter between model-free (when fully relying on the Q-function) and model-based (when
using a longer horizon) of our algorithm.

The main contribution of this work is a model-based method that significantly reduces the sample
complexity compared to state-of-the-art model-based algorithms (Janner et al., 2019; Buckman et al.|
2018)). For instance, we achieve a 10k return in the half-cheetah environment in just 50 trajectories.
We theoretically justify our optimization objective and derive the monotonic improvement of our

Under review as a conference paper at ICLR 2020

learned policy in terms of the Q-function and the model error. Furtermore, we experimentally
analyze the theoretical derivations. Finally, we pinpoint the importance of our objective by ablating
all the components of our algorithm. The results are reported in four model-based benchmarking
environments (Wang et al. [2019; [Todorov et al., [2012). The low sample complexity and high
performance of our method carry high promise towards learning directly on real robots.

2 RELATED WORK

Model-Based Reinforcement Learning. Learned dynamics models offer the possibility to reduce
sample complexity while maintaining the asymptotic performance. For instance, the models can act as
a learned simulator on which a model-free policy is trained on (Kurutach et al.; 2018 |Luo et al.|[2019;
Janner et al.| 2019). The model can also be used to improve the target value estimates (Feinberg et al.|
2018)) or to provide additional context to a policy (Du & Narasimhan, [2019). ontrary to these methods,
our approach uses the model in a different way: we exploit the fact that the learned simulator is
differentiable and optimize the policy with the analytical gradient. Long term predictions suffer from
a compounding error effect in the model, resulting in unrealistic predictions. In such cases, the policy
tends to overfit to the deficiencies of the model, which translates to poor performance in the real
environment; this problem is known as model-bias (Deisenroth & Rasmussen, 2011). The model-bias
problem has motivated work that uses meta-learning (Clavera et al., |2018]), interpolation between
different horizon predictions (Buckman et al.| 2018} Janner et al., 2019), and interpolating between
model and real data (Kalweit & Boedecker, 2017). To prevent model-bias, we exploit the model for a
short horizon and use a terminal value function to model the rest of the trajectory. Finally, since our
approach returns a stochastic policy, dynamics model, and value function could use model-predictive
control (MPC) for better performance at test time, similar to (Lowrey et al.,|2018; [Hong et al., [2019).
MPC methods (Nagabandi et al.l 2017)) have shown to be very effective when the uncertainty of the
dynamics is modelled (Chua et al.| 2018 |Wang & Bal 2019).

Policy Gradient Estimation. The reinforcement learning objective involves computing the gradient
of an expectation (Schulman et al.| 2015a). By using Gaussian processes (Deisenroth & Rasmussen,
2011), it is possible to compute the expectation analytically. However, when learning expressive
parametric non-linear dynamical models and policies, such closed form solutions do not exist. The
gradient is then estimated using Monte-Carlo methods (Mohamed et al.||2019). In the context of
model-based RL, previous approaches mostly made use of the score-function, or REINFORCE
estimator (Peters & Schaal, 2006} [Kurutach et al.,2018). However, this estimator has high variance
and extensive sampling is needed, which hampers its applicability in high-dimensional environments.
In this work, we make use of the pathwise derivative estimator (Mohamed et al.,[2019). Similar to
our approach, |[Heess et al.| (2015) uses this estimator in the context of model-based RL. However,
they just make use of real-world trajectories that introduces the need of a likelihood ratio term for the
model predictions, which in turn increases the variance of the gradient estimate. Instead, we entirely
rely on the predictions of the model, removing the need of likelihood ratio terms.

Actor-Critic Methods. Actor-critic methods alternate between policy evaluation, computing the
value function for the policy; and policy improvement using such value function (Sutton & Barto),
1998; Barto et al.,|1983)). Actor-critic methods can be classified between on-policy and off-policy.
On-policy methods tend to be more stable, but at the cost of sample efficiency (Sutton| [1991f Mnih
et al.| 2016). On the other hand, off-policy methods offer better sample complexity (Lillicrap et al.|
2015)). Recent work has significantly stabilized and improved the performance of off-policy methods
using maximum-entropy objectives (Haarnoja et al.,[2018a) and multiple value functions (Fujimoto
et al.,|2018). Our method combines the benefit of both. By using the learned model we can have a
learning that resembles an on-policy method while still being off-policy.

3 BACKGROUND
In this section, we present the reinforcement learning problem, two different lines of algorithms that
tackle it, and a summary on Monte-Carlo gradient estimators.

3.1 REINFORCEMENT LEARNING

A discrete-time finite Markov decision process (MDP) M is defined by the tuple (S, A, f,r,v,po, T).
Here, S is the set of states, A4 the action space, s;+1 ~ f(S¢,a) the transition distribution, r :
S x A — Ris areward function, pg : S — R, represents the initial state distribution, ~ the discount

Under review as a conference paper at ICLR 2020

factor, and 7" is the horizon of the process. We define the return as the sum of rewards r (s, a;) along
a trajectory 7 := (8o, ag, ..., ST—1, ar—1, ST). The goal of reinforcement learning is to find a policy
7o : S x A — R that maximizes the expected return, i.e., maxg J(60) = maxg E[>_, v'7(s¢, ar)].

Actor-Critic. In actor-critic methods, we learn a function Q (critic) that approximates the expected
return conditioned on a state s and action a, E[Y_, v'7(s:, a;)|so = s,a0 = a]. Then, the learned
Q-function is used to optimize a policy 7 (actor). Usually, the Q-function is learned by iteratively
minimizing the Bellman residual:

Jo = E[(Q(st,ar) — (r(se, ar) +YQ(Se41, art1)))?]

The above method is referred as one-step Q-learning, and while a naive implementation often results
in unstable behaviour, recent methods have succeeded in stabilizing the Q-function training (Fujimoto

et al.l 2018). The actor then can be trained to maximize the learned Q function .J, = E |Q(s, w(s))].

The benefit of this form of actor-critic method is that it can be applied in an off-policy fashion,
sampling random mini-batches of transitions from an experience replay buffer (Lin} [1992).

Model-Based RL. Model-based methods, contrary to model-free RL, learn the transition dis-
tribution from experience. Typically, this is carried out by learning a parametric function ap-

proximator fg, known as a dynamics model. We define the state predicted by the dynam-
ics model as 8;11, i.e., §141 ~ fp(st,ar). The models are trained via maximum likelihood:
maxg Jf(¢) = maxg E[log p(5¢41]st, ar)]

3.2 MONTE-CARLO GRADIENT ESTIMATORS

In order to optimize the reinforcement learning objective, it is needed to take the gradient of an
expectation. In general, it is not possible to compute the exact expectation so Monte-Carlo gradient
estimators are used instead. These are mainly categorized into three classes: the pathwise, score
function, and measure-valued gradient estimator (Mohamed et al.,[2019). In this work, we use the
pathwise gradient estimator, which is also known as the re-parameterization trick (Kingma & Welling|
2013). This estimator is derived from the law of the unconscious statistician (LOTUS) (Grimmett &
Stirzaker, [2001)

Epe(m) [f(l‘)] = Ep(e) [f(QO(E)]

Here, we have stated that we can compute the expectation of a random variable x without knowing
its distribution, if we know its corresponding sampling path and base distribution. A common case,
and the one used in this manuscript, § parameterizes a Gaussian distribution: © ~ pg = N (g, 03),
which is equivalent to x = pg + €og for e ~ N (0, 1).

4 PoLIiCcY GRADIENT VIA MODEL-AUGMENTED PATHWISE DERIVATIVE

Exploiting the full capability of learned mod-
els has the potential to enable complex and
high-dimensional real robotics tasks while main-
taining low sample complexity. Our approach,
model-augmented actor-critic (MAAC), exploits
the learned model by computing the analytic gra-
dient of the returns with respect to the policy. In
contrast to sample-based methods, which one
can think of as providing directional derivatives
in trajectory space, MAAC computes the full
gradient, providing a strong learning signal for
policy learning, which further decreases the sam-
ple Complexity. In the fol]owing’ we present our Figure 1: Stochastic computation graph of the pl’OpOSEd

policy optimization scheme and describe the full objective J. The stochastic nodes are represented by
algorithm circles and the deterministic ones by squares.

4.1 MODEL-AUGMENTED ACTOR-CRITIC OBJECTIVE

Among model-free methods, actor-critic methods have shown superior performance in terms of
sample efficiency and asymptotic performance (Haarnoja et al.l 2018a). However, their sample

Under review as a conference paper at ICLR 2020

efficiency remains worse than model-based approaches, and fully off-policy methods still show
instabilities comparing to on-policy algorithms (Mnih et al.}2016). Here, we propose a modification
of the Q-function parametrization by using the model predictions on the first time-steps after the
action is taken. Specifically, we do policy optimization by maximizing the following objective:

H—-1
J(0) =E | Y v'r(s)) + v Q(su, an)
t=0

whereby, s;11 ~ f (s¢,a;) and a; ~ mwg(s¢). Note that under the true dynamics and Q-function, this
objective is the same as the RL objective. Contrary to previous reinforcement learning methods,
we optimize this objective by back-propagation through time. Since the learned dynamics model
and policy are parameterized as Gaussian distributions, we can make use of the pathwise derivative
estimator to compute the gradient, resulting in an objective that captures uncertainty while presenting
low variance. The computational graph of the proposed objective is shown in Figure[I]

While the proposed objective resembles n-step bootstrap (Sutton & Barto, |1998)), our model usage
fundamentally differs from previous approaches. First, we do not compromise between being off-
policy and stability. Typically, n-step bootstrap is either on-policy, which harms the sample complexity,
or its gradient estimation uses likelihood ratios, which presents large variance and results in unstable
learning (Heess et al.l [2015)). Second, we obtain a strong learning signal by backpropagating the
gradient of the policy across multiple steps using the pathwise derivative estimator, instead of the
REINFORCE estimator (Mohamed et al., 2019; Peters & Schaal, [2006)). And finally, we prevent the
exploding and vanishing gradients effect inherent to back-propagation through time by the means of
the terminal Q-function (Kurutach et al., 2018)).

The horizon H in our proposed objective allows us to trade off between the accuracy of our learned
model and the accuracy of our learned Q-function. Hence, it controls the degree to which our
algorithm is model-based or well model-free. If we were not to trust our model at all (H = 0), we
would end up with a model-free update; for H = oo, the objective results in a shooting objective.
Note that we will perform policy optimization by taking derivatives of the objective, hence we require
accuracy on the derivatives of the objective and not on its value. The following lemma provides a
bound on the gradient error in terms of the error on the derivatives of the model, the Q-function, and
the horizon H.

Lemma 4.1 (Gradient Error). Let f and Q be the learned approximation of the dynamics f and
Q-function Q, respectively. Assume that Q) and Q) have L /2-Lipschitz continuous gradient and f and
f have Ly /2-Lipschitz continuous gradient. Let €y = maxy ||V f(8;,a;) — V f(s¢, ar)||2 be the error

on the model derivatives and e = |V Q (35, d5) — VQ(su,am)|2 the error on the Q-function
derivative. Then the error on the gradient between the learned objective and the true objective can

be bounded by:
E [||v9J,r - vgjﬁnz} < er(H)ep + ea(H)eg

Proof. See Appendix. O

The result in Lemma .| stipulates the error of the policy gradient in terms of the maximum error in
the model derivatives and the error in the Q derivatives. The functions ¢; and ¢, are functions of the
horizon and depend on the Lipschitz constants of the model and the Q-function. Note that we are just
interested in the relation between both sources of error, since the gradient magnitude will be scaled
by the learning rate, or by the optimizer, when applying it to the weights.

4.2 MONOTONIC IMPROVEMENT

In the previous section, we presented our objective and the error it incurs in the policy gradient with
respect to approximation error in the model and the Q function. However, the error on the gradient
is not indicative of the effect of the desired metric: the average return. Here, we quantify the effect
of the modeling error on the return. First, we will bound the KL-divergence between the policies
resulting from taking the gradient with the true objective and the approximated one. Then we will
bound the performance in terms of the KL.

Under review as a conference paper at ICLR 2020

Algorithm 1 MAAC

1: Initialize the policy mg, model f¢, Q¢, Deny + 0, and the model dataset Dyoge < 0
2: repeat
3: Sample trajectories from the real environment with policy mg. Add them to Depy.

4: fori=1...G;do

5: ¢ — ¢ — BrVeJr(¢) using data from Depy.

6: end for .

7: Sample trajectories 7 from fy. Add them to Dpyogel-

8: D < Dmodet U Deny

9: fori=1...G2do
10: Update 0 < 0 + 3, Vg J.(0) using data from D
11: Update ¢ < ¢ — g VJo(¢) using data from D
12: end for

13: until the policy performs well in the real environment
14: return Optimal parameters 6*

Lemma 4.2 (Total Variation Bound). Under the assumptions of the Lemma[.1] let @ = 6, +aVgJ-
be the parameters resulting from taking a gradient step on the exact objective, and 0=0,+aVgJ,
the parameters resulting from taking a gradient step on approximated objective, where o € R, Then
the following bound on the total variation distance holds

Il’lSaXDT\/(WgHﬂ'é) < acs(efei(H) + egea(H))

Proof. See Appendix. O

The previous lemma results in a bound on the distance between the policies originated from taking
a gradient step using the true dynamics and Q-function, and using its learned counterparts. Now,
we can derive a similar result from [Kakade & Langford| (2002) to bound the difference in average
returns.

Theorem 4.1 (Monotonic Improvement). Under the assumptions of the Lemma be 0’ and 8 as
defined in Lemma[.2] and assuming that the reward is bounded by Tvax. Then the average return of
the T4 satisfies

2armax
ey csen (H) + cqea(H))

T=(0) 2 Jx(0) =

Proof. See Appendix. O

Hence, we can provide explicit lower bounds of improvement in terms of model error and function
error. Theorem [4.T| extends previous work of monotonic improvement for model-free policies (Schul}
man et al., 2015b; |Kakade & Langford, [2002), to the model-based and actor critic set up by taking
the error on the learned functions into account. From this bound one could, in principle, derive the
optimal horizon H that minimizes the gradient error. However, in practice, approximation errors are
hard to determine and we treat H as an extra hyper-parameter. In section we experimentally
analyze the error on the gradient for different estimators and values of H.

4.3 ALGORITHM

Based on the previous sections, we develop a new algorithm that explicitly optimizes the model-
augmented actor-critic (MAAC) objective. The overall algorithm is divided into three main steps:
model learning, policy optimization, and Q-function learning.

Model learning. In order to prevent overfitting and overcome model-bias (Deisenroth & Rasmussen|
2011), we use a bootstrap ensemble of dynamics models { f¢1, e f¢ w1+ Each of the dynamics
models parameterizes the mean and the covariance of a Gaussian distribution with diagonal covariance.
The bootstrap ensemble captures the epistemic uncertainty, uncertainty due to the limited capacity or
data, while the probabilistic models are able to capture the aleatoric uncertainty (Chua et al.| 2018)),

Under review as a conference paper at ICLR 2020

inherent uncertainty of the environment. We denote by f4 the transitions dynamics resulting from
¢y, where U ~ U[M] is uniform random variable on {1, ..., M }. The dynamics models are trained
via maximum likelihood with early stopping on a validation set.

Policy Optimization. We extend the MAAC objective with an entropy bonus (Haarnoja et al.|
2018b), and perform policy learning by maximizing

H-1

J(0) =E | Y v'r(3) + v Qy(3u, am) | + BH(7e)
t=0

where 5,41 ~ fp (81, at), S0 ~ D, a ~ mg. We learn the policy by using the pathwise derivative of
the model through H steps and the Q-function by sampling multiple trajectories from the same 3.
Hence, we learn a maximum entropy policy using pathwise derivative of the model through H steps
and the Q-function. We compute the expectation by sampling multiple actions and states from the
policy and learned dynamics, respectively.

Q-function Learning. In practice, we train two Q-functions (Fujimoto et al.,[2018) since it has been
experimentally proven to yield better results. We train both Q functions by minimizing the Bellman
error (Section[3.1)). In order to estimate the targets we make use of the model by bootstrapping its
predictions and combining them to minimize the estimation error (Buckman et al.| 2018). In doing
so, we maximally make use of the model by not only using it for the policy gradient step, but also for
training the Q-function. Finally, we obtain more accurate estimates on the Q-function by training it
on data points sampled from the model (Janner et al.,[2019), thus reducing the distributional shift
when computing its gradient on a predicted state [{ steps ahead (Feinberg et al., 2018).

Our algorithm consolidates the insights built through the course of this paper, while at the same
time making maximal use of recently developed actor-critic and model-based methods. All in all, it
consistently outperforms previous model-based and actor-critic methods. A practical implementation
of our method is described in Algorithm I}

5 RESULTS

Our experimental evaluation aims to examine the following questions: 1) How does MAAC compares
against state-of-the-art model-based and model-free methods? 2) Does the gradient error correlate
with the derived bound?, 3) Which are the key components of its performance?, and 4) Does it benefit
from planning at test time?

In order to answer the posed questions, we evaluate our approach on model-based continuous control
benchmark tasks in the MuJoCo simulator (Todorov et al.,[2012; Wang et al., 2019).

5.1 COMPARISON AGAINST STATE-OF-THE-ART

We compare our method on sample complexity and asymptotic performance against state-of-the-art
model-free (MF) and model-based (MB) baselines. Specifically, we compare against the model-free
soft actor-critic (SAC) (Haarnoja et al.| |2018al), which is an off-policy algorithm that has been proven
to be sample efficient and performant; as well as two state-of-the-art model-based baselines: model-
based policy-optimization (MBPO) (Janner et al., 2019) and stochastic ensemble value expansion
(STEVE) (Buckman et al.,|2018)). The original STEVE algorithm builds on top of the model-free
algorithm DDPG (Lillicrap et al.,[2015)), however this algorithm is outperformed by SAC. In order
to remove confounding effects of the underlying model-free algorithm, we have implemented the
STEVE algorithm on top of SAC.

The results, shown in Fig. |2} highlight the strength of MAAC in terms of performance and sample
complexity. MAAC scales to higher dimensional tasks while maintaining its sample efficiency and
asymptotic performance. In all the four environments, our method learns faster than previous MB
and MF methods. We are able to learn near-optimal policies in the half-cheetah environment in
just over 50 rollouts, while previous model-based methods need at least the double amount of data.
Furthermore, in complex environments, such as ant, MAAC achieves near-optimal performance
within 150 rollouts while other take orders of magnitudes more data.

Under review as a conference paper at ICLR 2020

AntEnv HalfCheetahEnv
< 4000
5 10000
bt
G000 7500
Y 2000 5000
o
@ 1000 2500
z
0.00 025 050 0.75 1.00 125 150 0.0 02 04 0.6 0.8
Time-steps 1e5 Time-steps 1le5
- HopperEnv Walker2dEnv
—
2 2000 1000
9]
ﬁ 0
0
e —1ooo/ﬁ6
o
Z —2000 —2000
0 2 4 6 00 02 04 06 08 10
Time-steps led Time-steps 1e5
—— mbpo — steve =—— sac —— maac(ours)

Figure 2: Comparison against state-of-the-art model

-free and model-based baselines in four different MuJoCo

environments. Our method, MAAC, attains better sample efficiency and asymptotic performance than previous

approaches. The gap in performance between MAAC
in complexity.

5.2 GRADIENT ERROR

Here, we investigate how the bounds obtained
relate to the empirical performance. In partic-
ular, we study the effect of the horizon of the
model predictions on the gradient error. In or-
der to do so, we construct a double integrator
environment; since the transitions are linear and
the cost is quadratic for a linear policy, we can
obtain the analytic gradient of the expect return.

Figure 3|depicts the L1 error of the MAAC ob-
jective for different values of the horizon H as
well as what would be the error using the true
dynamics. As expected, using the true dynam-
ics yields to lower gradient error since the only
source comes from the learned Q-function that is
weighted down by 7. The results using learned
dynamics correlate with our assumptions and the
derived bounds: the error from the learned dy-
namics is lower than the one in the Q-funtion,
but it scales poorly with the horizon. For short
horizons the error decreases as we increase the
horizon. However, large horizons is detrimental
since it magnifies the error on the models.

5.3 ABLATIONS

and previous work increases as the environments increase

L1 Error of the Gradient

0.5 1.0 1.5 2.0

Time-steps

2.5
le3

—— H=3
— H=10
—— true dynamics(H=5)

=0
=2
=5

I T T

Figure 3: L1 error on the policy gradient when using
the proposed objective for different values of the horizon
H as well as the error obtained when using the true
dynamics. The results correlate with the assumption
that the error in the learned dynamics is lower than the
error in the Q-function, as well as they correlate with the
derived bounds.

In order to investigate the importance of each of the components of our overall algorithm, we carry
out an ablation test. Specifically, we test three different components: 1) not using the model to train

Under review as a conference paper at ICLR 2020

the policy, i.e., set H = 0, 2) not using the STEVE targets for training the critic, and 3) using a single
sample estimate of the path-wise derivative.

AntEnv HalfCheetahEnv HopperEnv Walker2dEnv

2500 10000
E 2000 1))
S 8000
& 2000 1000
® 6000 o
19
11500 0
o 4000 -1000
CD
4 —~1000 =
& 1000 R 2000

—2000 L4
—2000
50Q 0
0. 0.2 0.4 0.6 0.8 0 2 4 6 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0
Time-steps 1e5 Time-steps led Time-steps led Time-steps 1le5
—— H=0 —— -steve on critic single sample ~ —— maac(ours)

Figure 4: Ablation test of our method. We test the importance of several components of our method: not using
the model to train the policy (H = 0), not using the STEVE targets for training the Q-function (-STEVE), and
using a single sample estimate of the pathwise derivative. Using the model is the component that affects the
most the performance, highlighting the importance of our derived estimator.

The ablation test is shown in Figure[d The test underpins the importance of backpropagating through
the model: setting H to be 0 inflicts a severe drop in the algorithm performance. On the other hand,
using the STEVE targets results in slightly more stable training, but it does not have a significant
effect. Finally, while single sample estimates can be used in simple environments, they are not
accurate enough in higher dimensional environments such as ant.

5.4 MODEL PREDICTIVE CONTROL

One of the key benefits of methods that combine model-based reinforcement learning and actor-critic
methods is that the optimization procedure results in a stochastic policy, a dynamics model and a
Q-function. Hence, we have all the components for, at test time, refine the action selection by the
means of model predictive control (MPC). Here, we investigate the improvement in performance of
planning at test time. Specifically, we use the cross-entropy method with our stochastic policy as
our initial distributions. The results, shown in Table[I] show benefits in online planning in complex
domains; however, its improvement gains are more timid in easier domains, showing that the learned
policy has already interiorized the optimal behaviour.

H AntEnv HalfCheetahEnv ‘ HopperEnv | Walker2dEnv

maac+mpc || 3.97e3 = 1.48e3 | 1.09e4 + 94.5 2.8e3 + 11 1.76e3 £ 78
maac 3.06e3 £+ 1.45e3 1.07e4 4+ 253 2.77e3 £3.31 | 1.61e3 + 404

Table 1: Performance at test time with (maac+mpc) and without (maac) planning of the converged
policy using the MAAC objective.

6 CONCLUSION

In this work, we present model-augmented actor-critic, MAAC, a reinforcement learning algorithm
that makes use of a learned model by using the pathwise derivative across future timesteps. We
prevent instabilities arisen from backpropagation through time by the means of a terminal value
function. The objective is theoretically analized in terms of the model and value error, and we
derive a policy improvement expression with respect to those terms. Our algorithm that builds on
top of MAAC is able to achieve superior performance and sample efficiency than state-of-the-art
model-based and model-free reinforcement learning algorithms. For future work, it would be enticing
to deploy the presented algorithm on a real-robotic agent.

Under review as a conference paper at ICLR 2020

REFERENCES

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5):
834-846, Sep. 1983. doi: 10.1109/TSMC.1983.6313077.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-efficient
reinforcement learning with stochastic ensemble value expansion. CoRR, abs/1807.01675, 2018.
URLhttp://arxiv.org/abs/1807.01675.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114,
2018.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. CoRR, abs/1809.05214, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465-472,2011.

Yilun Du and Karthik Narasimhan. Task-agnostic dynamics priors for deep reinforcement learning.
CoRR, abs/1905.04819, 2019. URL http://arxiv.org/abs/1905.048109.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

G.R. Grimmett and D.R. Stirzaker. Probability and random processes, volume 80. Oxford
university press, 2001. URL http://scholar.google.com/scholar.bib?g=info:
xzStZXK20NkJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,
S5&ct=citation&cd=0.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. CoRR, abs/1812.05905, 2018b.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, pp. 2944-2952, 2015.

Zhang-Wei Hong, Joni Pajarinen, and Jan Peters. Model-based lookahead reinforcement learning.
ArXiv, abs/1908.06012, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. CoRR, abs/1906.08253, 2019.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In IN
PROC. 19TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, pp. 267-274, 2002.

Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous deep rein-
forcement learning. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg (eds.), Proceedings
of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning
Research, pp. 195-206. PMLR, 13-15 Nov 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

http://arxiv.org/abs/1807.01675
http://arxiv.org/abs/1905.04819
http://scholar.google.com/scholar.bib?q=info:xzStZXK20NkJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,5&ct=citation&cd=0
http://scholar.google.com/scholar.bib?q=info:xzStZXK20NkJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,5&ct=citation&cd=0
http://scholar.google.com/scholar.bib?q=info:xzStZXK20NkJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,5&ct=citation&cd=0

Under review as a conference paper at ICLR 2020

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8(3):293-321, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992699.

Kendall Lowrey, Aravind Rajeswaran, Sham M. Kakade, Emanuel Todorov, and Igor Mordatch.
Plan online, learn offline: Efficient learning and exploration via model-based control. CoRR,
abs/1811.01848, 2018.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. /CLR, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928-1937, 2016.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning, 2019.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning. arXiv preprint
arXiv:1708.02596, 2017.

J. Peters and S. Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2219-2225, Oct 2006. doi: 10.1109/IROS.2006.
282564.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. CoRR, abs/1506.05254, 2015a. URL http://arxiv.org/
abs/1506.05254.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pp. 1889—-1897, 2015b.

Richard S Sutton. Planning by incremental dynamic programming. In Machine Learning Proceedings
1991, pp. 353-357. Elsevier, 1991.

Richard S. Sutton and Andrew G. Barto. [Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998. ISBN 026219398]1.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026—
5033. IEEE, 2012.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. CoRR,
abs/1906.08649, 2019. URL http://arxiv.org/abs/1906.08649.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning. CoRR, abs/1907.02057, 2019.

10

http://arxiv.org/abs/1506.05254
http://arxiv.org/abs/1506.05254
http://arxiv.org/abs/1906.08649

Under review as a conference paper at ICLR 2020

A APPENDIX
Here we prove the lemmas and theorems stated in the manuscript.

A.1 PROOF OF LEMMA [4.1]

Let J, () and J,(8) be the expected return of the policy g under our objective and under the RL
objective, respectively. Then, we can write the MSE of the gradient as

E[[|VoJx(8) — Vo Jn(8)l|2] = E[[Va(M — M) + [Vor" (Q — Q)]l2]
<E[|Ve(M — M)|l2] + E[|Ver™ (Q — Q)]|2]
whereby, M = Zio vtr(sy) and M = ZtH:o yir(8y).

We will denote as V the gradient w.r.t the inputs of network, z; = (s, a;) and &y = (8¢, a;); where

a; ~ (). Notice that since f f and 7 are Lipschitz and their gradient is Lipschitz as well, we have
that Vgi; < K*, where K depends on the Lipschitz constants of the model and the policy. Without
loss of generality, we assume that K is larger than 1. Now, we can bound the error on the Q as

IVo(Q — Q)ll2 =IVQVerr — VQVoinl>
= (VQ — VQ)Verr — VQ(Voin — Vers)l|:
<IVQ = VQ|2llVezul2 + IVQI2Veir — Vorm|l2
< eqllVerull2 + Lol Vein — Veru|2
<eqK" + Lg||Vein — Vers|2

Now, we will bound the term || Vo811 — Vgsiy1||2:
[Vodis1 — Veosirillz = Vs fVes: + VafVear — Vs fVes: — VafVoar|2
< ||VsfVasi — Vs fVasilla + |Vaf Ve — Vaf Va2
€rIVosilla + Lyl[Vest — Vosill2 + L¢[|[Vear — Vear|| + €5 Voarl|2
€rIVosilla + (Ly + LyLx)|[Ved: — Vesilla + €| Vaar
= €rl|[Vodella + (Ly + LyLx)||[Vos: — Vst

IAINA

Hence, applying this recursion we obtain that

t

R B R Lt+1 —1
IVodii1 — Voriilla <er Y (L + LyLn) | Voiy|2 < e~ K
k=0

where L = Ly + Ly L. Then, the error in the gradient in the previous term is bounded by

H
N -1
IVo(Q = Q)llz < cK™ + Loes7— K"
In order to bound the model term we need first to bound the rewards since
H
IVo(M — M)l <> 4" Va(r(se) — (1))l
t=0

Similar to the previous bounds, we can bound now each reward term by

t+1_1

. L
Ve (r(st) —r(5:))[l2 < GfLrﬁKt

With this result we can bound the total error in models

H-1

. L -1 Ly ((WKL)H -1 (yK)H —1
M- M)l < Y A'esL, Kt=_"4 -

IV e A (L—1) \ 7KL -1 VK —1

11

Under review as a conference paper at ICLR 2020

Then, the gradient error has the form

Ley (('yKL)H—l (’yK)H—1> L -1

(Vo (0) - Vo (6)la] < -5 + ()" + Lo (vK)"

vyKL -1 vK —1
= Efcl(H) + EQCQ(H)
A.2 PROOF OF LEMMA [4.2]

The total variation distance can be bounded by the KL-divergence using the Pinsker’s inequality

Dk r(melmg)

Dry(me|mg) < 5

Then if we assume third order smoothness on our policy, by the Fisher information metric theorem
then

Drcw(mellmg) = ¢l — 8]13 + (|6 — 8]3)

Given that |0 — 8|y = «||Ve.J, — VgJyx||2, for a small enough step the following inequality holds

Dir(me|mg) < azé(efcl(H) + 6QCQ(H))2 =

Combining this bound with the Pinsker inequality
¢
Drv(me||lmg) < a\/g(efcl (H) + egea(H)) = acs(eper (H) + egea(H))

A.3 PROOF OF THEOREM [4.1]

Given the bound on the total variation distance, we can now make use of the monotonic improvement

theorem to establish an improvement bound in terms of the gradient error. Let .J () and J(8) be
the expected return of the policy mg and 75 under the true dynamics. Let p and p be the discounted
state marginal for the policy mg and 7y, respectively

|1(8) = Jx(6)| =| Y p(s)mor (s, a) — pls)mgr(s, a)]
<[> pls)malals)r(s,a) — p(s)mg(als)r(s, a)|

< Fmax| Y p(s)ma(als) — p(s)mg(als)|

2rmax
-7

IN

msaxz | (als) — mg(als)|

2rmax
= 1_ ~ m;lXDTv(TrgH’lTé)

Then, combining the results from Lemma@ we obtain the desired bound.

12

