
Under review as a conference paper at ICLR 2020

BERT-AL: BERT FOR ARBITRARILY LONG DOCU-
MENT UNDERSTANDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretrained language models attract lots of attentions, and they take advantage of
the two-stages training process: pretraining on huge corpus and finetuning on
specific tasks. Thereinto, BERT (Devlin et al., 2019) is a Transformer (Vaswani
et al., 2017) based model and has been the state-of-the-art for many kinds of Na-
ture Language Processing (NLP) tasks. However, BERT cannot take text longer
than the maximum length as input since the maximum length is predefined during
pretraining. When we apply BERT to long text tasks, e.g., document-level text
summarization: 1) Truncating inputs by the maximum sequence length will de-
crease performance, since the model cannot capture long dependency and global
information ranging the whole document. 2) Extending the maximum length re-
quires re-pretraining which will cost a mass of time and computing resources.
Whats even worse is that the computational complexity will increase quadratically
with the length, which will result in an unacceptable training time. To resolve
these problems, we propose to apply Transformer to only model local dependency
and recurrently capture long dependency by inserting multi-channel LSTM into
each layer of BERT. The proposed model is named as BERT-AL (BERT for Ar-
bitrarily Long Document Understanding) and it can accept arbitrarily long input
without re-pretraining from scratch. We demonstrate BERT-ALs effectiveness on
text summarization by conducting experiments on the CNN/Daily Mail dataset.
Furthermore, our method can be adapted to other Transformer based models, e.g.,
XLNet (Yang et al., 2019) and RoBERTa (Liu et al., 2019), for various NLP tasks
with long text.

1 INTRODUCTION

In recent years, neural networks are proposed to solve various NLP tasks. Especially, pretrained
language models (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019)
attract lots of attentions, which take advantage of the two-stages training process: pretraining on
unlabeled corpus and then finetuning on specific tasks. The most famous model is BERT. BERT and
its varieties are the state-of-the-art for many kinds of NLP tasks. The power of BERT does not only
come from its architecture of networks, but also because it can be pretrained on a mass of text as a
masked language model.

BERT can be used to solve almost all NLP tasks, and especially it can perform best on datasets with
short text, e.g., GLUE (Wang et al., 2018) and Squad (Rajpurkar et al., 2016). However, there are
still many document-level tasks, e.g., document-level text summarization (Hermann et al., 2015),
long-document machine reading comprehension (Hewlett et al., 2016) and long text classification
(Zhang et al., 2015). BERT cannot be finetuned for such tasks with long text directly or perform
good on these tasks, since it is limited by the fixed-length position embedding which was determined
during pretraining. We employ document-level text summarization as an example, which usually has
longer text than the maximum sequence length of BERT.

Intuitively, there are two alternative solutions: 1) Truncating inputs by the maximum sequence length
to fit the BERTs constraint. 2) Increasing the length of position embedding and re-pretraining the
BERT from scratch. The first method will decrease performance, obviously, since some useful
information placing behind the maximum sequence length is discarded by truncating. E.g., for text
summarization, if the key point sentence locates at the end of the document, it never be recalled

1

Under review as a conference paper at ICLR 2020

even though the model is powerful. For the second method, re-pretraining the BERT from scratch
will cost a mass of computing time and resources. Whats even worse is that the computational
complexity will increase quadratically with the length, which will result in an unacceptable training
time. For example, the XLNet-Large (Yang et al., 2019) costs 2.5 days on 512 TPU v3 chips and
the RoBERTa (Liu et al., 2019) costs 1 day on 1024 V100 GPUs.

To resolve these problems, we propose BERT-AL (BERT for Arbitrarily Long Document Under-
standing) model that extracts local features by applying parallel multi-layer Transformers into chun-
ked input and employs multi-channel LSTMs to capture global information crossing Transformers.
This fusion breaks the limitation of BERT by the ability of capture unlimited sequential information
from LSTM, and makes it be able to process arbitrarily long text. On the other hand, it also skillfully
avoids gradient vanishing and exploding problem (Li et al., 2018) of LSTM since only few steps are
required by multi-channel LSTM. Therefore, BERT-AL can solve the problems of original BERT:
1) For document-level tasks, BERT-AL can directly take all text as the input without truncating. 2)
When the input length is longer then maximum sequence length of BERT, BERT-AL still can load
the pretrained BERT model, which avoids pretraining much longer BERT model from scratch.

We demonstrate BERT-ALs effectiveness on text summarization by conducting experiments on the
CNN/Daily Mail dataset (Hermann et al., 2015) with various maximum sequence lengths of pre-
trained BERT. The results prove that BERT-AL can consistently outperform BERTSUM (Liu, 2019)
which is the BERT-based state-of-the-art, when finetuning from the pretrained BERT model with
the same maximum sequence length. Additionally, BERT-AL is a general NLP model which has
no specific setting for text summarization, so it can be easily adapted to other tasks with long text,
e.g., document-level machine reading comprehension and long text classification. Furthermore, the
method, applying multi-channel LSTM on hidden states from transformers, also can be used in other
Transformer based pretrained models, e.g., XLNet and RoBERTa.

In summary, contributions of this paper are shown as follow.

1) We propose a new architecture that combines Transformer and LSTM, which resolve the problem
Transformer cannot be used in very long text, and skillfully avoid LSTMs drop backs.

2) We propose multi-channel LSTM only applied on the corresponding position across different
Transformers, which can take fully advantage of LSTM without hurting Transformers representation
too much.

3) We conduct experiments to prove BERT-AL can outperform other models with the BERT pre-
trained under the same maximum sequence length, and can perform very close to BERTSUM with
at least twice the maximum length than ours.

2 BACKGROUND

2.1 BERT

According to the original implementation described in Vaswani et al. (2017), BERT is a multi-layer
bidirectional Transformer encoder, and Multi-Head Self-Attention is the key structure of Trans-
former encoder.

For the input H ∈ RL×D of each Transformer layer, H will be mapped to three different spaces,
named as Q, K and V , respectively. Self-attention computes the dot products between Q and K
to roughly get the weight matrix, and then multiply V to get the hidden representation. Multi-head
mechanism promotes the power of Transformer because it allows the model to jointly attend to
information from different representation subspaces at different positions.

BERT employs two tasks for pretraining: Masked Language Model and Next Sentence Prediction.

Masked Language Model: BERT proposes a bidirected language model, which replaces 15%
words in text by [MASK] label and then predicts which words they are. To mitigate the mismatch
between pretraining and finetuning, i.e., the [MASK] token does not appear during finetuning, they
do not always replace masked words with the actual [MASK] token. Then, BERT will predict the
original token with cross entropy loss.

2

Under review as a conference paper at ICLR 2020

Next Sentence Prediction: BERT is also pretrained by the next sentence prediction task. Specif-
ically, when choosing the sentences A and B for each pretraining example, 50% of the time B is
the actual next sentence that follows A (labeled as IsNext), and 50% of the time it is a random
sentence from the corpus (labeled as NotNext). Then, BERT will predict whether the sentence B
is the actual next sentence that follows A or not with cross entropy loss.

For most of all NLP tasks, BERT concatenates different parts of input into a sequence beginning
with [CLS] token and inserts [SEP] token between two different parts. Before going through
Transformer layers, BERT merges three different embeddings into one, i.e., word embedding, posi-
tion embedding and segment embedding. Thereinto, position embedding is the information about the
relative or absolute position of the tokens in the sequence. Since the model contains no recurrence
and no convolution, position embedding is added to make use of the order of the sequence. There
are two implements of position embedding, i.e., learned position embedding and sine and cosine
functions of different frequencies, but both of them cannot expand to longer without a performance
regression (Wang et al., 2019a).

2.2 BERTSUM

BERTSUM is an extension of BERT on extractive text summarization task and it truncates only
the first 512 tokens as input. To select sentences, BERTSUM adds [CLS] to the head of each
sentence and [SEP] to the tail of each sentence indicating the end of that sentence. The following
summarization layer will score each [CLS] which presents the importance of that sentence. Finally,
sentences with top 3 highest scores compose the summary. There are three summarization layers
proposed in Liu (2019):

1) Simple Classifier: only adds a linear layer on each [CLS] and uses a sigmoid function to get the
predicted score:

Ŷi = σ(WoTi + bo) (1)

where Ti is the logit of ith sentence, σ is the Sigmoid function.

2) Inter-Sentence Transformer: applies more Transformer layers into sentence-level representa-
tions as follows.

h̃l = LN(hl−1 +MHAtt(hl−1))

hl = LN(h̃l + FFN(h̃l))

Ŷi = σ(Wohi + bo)

(2)

where h0 = PosEmb(T) and T are the sentence vectors output by BERT, PosEmb is the function
of adding position embeddings to T ; LN is the layer normalization operation; FFN is a feedfor-
ward network; MHAtt is the multi-head attention operation; the superscript l indicates the depth of
the stacked layer. The final output layer is still a sigmoid classifier and Ti is the logit of ith sentence.

3) Recurrent Neural Network: applies an LSTM layer over the BERT outputs to learn
summarization-specific features. At time step i, the input to the LSTM layer is the BERT output
Ti, and the output is calculated as:(

Fi

Ii
Oi

Gi

)
= LNh(Whhi−1 + LNx(WxTi))

Ci = σ(Fi

⊙
Ci−1) + σ(Ii)

⊙
tanh(Gi−1)

hi = σ(Ot)
⊙

tanh(LNc(Ct))

Ŷi = σ(Wohi + bo)

(3)

where Fi, Ii, Oi are forget gates, input gates, output gates; Gi is the hidden vector and Ci is the
memory vector; hi is the output vector; LNh, LNx, LNc are there difference layer normalization
operations; The final output layer is also a sigmoid classifier and Ti is the logit of ith sentence.

However, we argue that the way of truncation will result in the loss of information in the latter part
of the document. If the key sentences locate at the end of the document, they will never be recalled

3

Under review as a conference paper at ICLR 2020

even though the model is powerful. In contrast, if model can take all the tokens of the document as
input, it will get these key sentences and produce better result. Therefore, we propose BERT-AL to
solve this problem. For simplicity, we only employ the Simple Classifier as the summarization layer
in the following sections.

3 BERT-AL

In this section, we will introduce the detail about BERT-AL, and as illustrated in Figure 1, BERT-
AL has mainly two key components different with BERTSUM: one is the multi-channel LSTM and
another is the positional encoding.

 LSTM

TransformerTransformerTransformer

 LSTM

LSTM

[CLS] [SEP]sent1 [SEP]sent3[CLS] [CLS]

E[CLS] E[CLS]Esent1 E[CLS]

EA EA EA

E1 E4E2 E3 E3 E4E2E1

T2T1

summarization layer

Y2Y1 Yn

X N

Input Document

Token Embeddings

Segment Embeddings

Position Embeddings

R1 R4R2 R3 R8R7

T11 T12 T32T31
......

[SEP]sent2 [SEP]sent n

E[SEP]Esent2

EBEBEB EA EAEA

E[SEP]Esent3

[CLS]

EsentnE[CLS] E[SEP]

EB EBEB

R5 R6 Rn-3 Rn-2 Rn-1 Rn

Tn1 Tn2T22T21 T3 Tn

E[SEP]

Y3
......

E1 E4E2 E3

Figure 1: The architecture of BERT-AL

3.1 MULTI-CHANNEL LSTM

We first give the definition of our scenario: assume that the length of the document is ldoc, and we
have only a pretrained BERT model with the maximum sequence length lBERT . We first split the
document into nsegment segments and each segment has the length lBERT (the length of nsegmentth
segment is shorter than lBERT). We set lBERT−AL = nsegment ∗ lBERT as the maximum sequence
length of BERT-AL, and then we have lBERT−AL ≥ ldoc, which means BERT-AL can take arbitrar-
ily long document as input.

As we know, LSTM has the capability of capturing information across arbitrarily long steps but is
weak in capturing long-term dependencies. Therefore, within a segment, we use Transformer to
capture long-term dependencies and extract the feature via self-attention among local positions, and
then fully represent the segment at each layer. To this end, we propose a multi-channel LSTM to
chain the representation of different segments. For the above definition, ldoc can be arbitrarily long
and so is nsegment. Thus, we apply LSTM on nsegment dimension, and the steps of LSTM should
also be nsegment.

As Figure 1 shows, LSTM is following the segment-wise Transformers at each layer and takes the
hidden states from Transformers as its input. To fit the next layer, we set LSTM’s hidden size also
as dmodel, i.e., 768 for BERT-Base and 1024 for BERT-Large. Thus, the computing in each layer is
shown as follows.

Hi−1 = Concat(Hi−1,1, Hi−1,2, ...,Hi−1,nsegment
)

HTrans
i,j = Transformer(Hi−1,j ∈ R[lBERT ,dmodel])

Hi = LSTM(HTrans
i ∈ R[lBERT ,nsegment,dmodel])

(4)

4

Under review as a conference paper at ICLR 2020

where Hi is the hidden states from ith layer, Hi,j is jth segment in Hi, and HTrans
i,j is the hidden

states from jth Transformer. All segment-wise Transformers at the same layer share parameters.

BERT-AL employs a single layer of unidirectional LSTM as the implement of multi-channel LSTM,
and a channel is corresponding to a relative position within a segment. Per-gate layer normalization
is applied in each LSTM cell (Ba et al., 2016). We do not split the segments according to natural
sentences, so [CLS] may be at the beginning, in the middle or at the end of a block. Similarly, the
output at [CLS] positions also do not come from the same LSTM channel. The reason we apply
multi-channel LSTM on nsegment rather than a 2D LSTM on the whole sequence is taking advantage
of LSTM’s expandability on variable-length segments, but meanwhile, reducing the interference to
self-attention among positions within a segment.

3.2 EMBEDDING

BERT-AL take the same input format as BERTSUM does, i.e., adding [CLS] to the head of each
sentence and [SEP] to the tail of each sentence. Since BERT-AL has multiple segment-wise Trans-
formers at the first layer, its input embedding is also changed. More details are shown as follows.

Before feeding embedding to Transformers, the sequence is divided into segments whose lengths
are the same with the pretrained BERT model’s maximum sequence length. Token embedding and
segment embedding are also same as the original BERT. For position embedding, we also reserve the
learned position embedding used in the original BERT. However, if we do not re-pretrain the BERT,
the dimension of position embedding matrix in the pretrained BERT model is [lBERT , dmodel],
while the length of task’s input is lBERT−AL. To resolve this problem, we copy the original position
embedding matrix nsegment times and concatenate them. Therefore, we can get a position embed-
ding matrix with dimension [lBERT−AL, dmodel]. Through this way, each position in the input will
get a positional encoding. Therefore, the model can work correctly. In the Transformer layer, each
segment does not interact with each other. Therefore, although the position embeddings are same in
different segments, it does not affect the model to extract feature in its own segment.

3.3 OTHER DETAILS

It is obvious that each sentence’s length is different, but segments have the same length. Therefore,
the start of each segment may not be [CLS] and the tail may not be [SEP], either. In Figure 1, the
Ti is the representation of i sentence through N Transformers and LSTMs. After summarization
layer, Yi represents the score of that sentence, and then we choose sentences with top 3 highest
scores compose the summary. Finally, Table 1 shows difference of BERT-AL and BERTSUM.

Table 1: The difference of BERT-AL and BERT-SUM
BERTSUM BERT-AL

Architeture BERT +
summarization layer

segment-wise BERT + multi-channel LSTM +
summarization layer

Position embedding same as BERTs
position embedding

copy and concatenate BERTs
position embedding

Max input length BERTs input length arbitrarily long

4 EXPERIMENT

In this section, we demonstrate BERT-ALs effectiveness on text summarization by conducting ex-
periments on the CNN/Daily Mail dataset. We compare BERTSUM with our models on various
different settings, since BERTSUM is the state-of-the-art on CNN/Daily Mail dataset.

4.1 CNN/DAILY MAIL DATASET

The CNN/Daily Mail dataset contains news articles and associated highlights, i.e., a few bullet points
giving a brief overview of the article. We used the standard splits as training, validation and testing
sets as BERTSUM did. The statistics of datasets is shown in Tabel 2.

5

Under review as a conference paper at ICLR 2020

Table 2: Statistics of CNN/Daily Mail dataset

CNN Daily Mail Total
Train 90266 196961 287227
Validate 1220 12148 13368
Test 1093 10397 11490

We also perform the same preprocessing for data as BERTSUM did, including keeping entities,
splitting sentences by CoreNLP and following methods in See et al. (2017).

We employ ROUGE-1, 2, L (Lin, 2004) to evaluate the performance for different methods and focus
on the F1 score, as follows.

RROUGE−N =

∑
S∈{ReferenceSummaries}

∑
gramn∈S Countmatch(gramn)∑

S∈{ReferenceSummaries}
∑

gramn∈S Count(gramn)

PROUGE−N =

∑
S∈{ReferenceSummaries}

∑
gramn∈S Countmatch(gramn)∑

S∈{CandidateSummaries}
∑

gramn∈S Count(gramn)

FROUGE−N =
(1 + β2)RROUGE−NPROUGE−N

RROUGE−N + β2PROUGE−N

(5)

where n stands for the length of the n-gram, gramn, and Countmatch(gramn) is the maximum
number of n-grams co-occurring in a candidate summary and a set of reference summaries.

Rlcs =
LCS(X,Y)

m

Plcs =
LCS(X,Y)

n

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs

(6)

where X is a reference summary sentence and Y is a candidate summary sentence, m is the length
of X and n is the length of Y , LCS(X,Y) is the length of a longest common subsequence of X
and Y .

To adapt dataset to suit extractive summarization task, we also use a greedy algorithm which is same
as BERTSUM to generate an oracle summary for each document. The algorithm selects a set of
sentences as the oracle set, which can maximize the ROUGE scores.

4.2 EXPERIMENT SETTING

Table 3: Setting of experiment groups

lBERT lBERT−AL nsegment

Group-1 8 512 64
Group-2 16 512 32
Group-3 128 512 4
Group-4 256 1024 4

Assume that we have only a pretrained BERT model and the length of its position embedding is
lBERT . Our task is to produce summaries on documents with ldoc tokens. The BERT-AL can
take lBERT−AL length tokens as input (lBERT−AL = nsegment ∗ lBERT and lBERT−AL >= ldoc).
We design four groups of experiments and set lBERT = 8, 16, 128, 256 for them. More details
about settings are shown in Table 3. Under each group setting, we compare three different methods,
including Baseline-1, Baseline-2 and BERT-AL. More details about methods are shown as follows.

1) Baseline-1 applies BERTSUM to the dataset with length = lBERT , and then truncates text longer
than lBERT .

6

Under review as a conference paper at ICLR 2020

2) Baseline-2 concatenates the first lBERT position embedding of the original BERT with a ran-
domly initialized embedding with the length (nsegment − 1) ∗ lBERT , and then employs the con-
catenated embedding as BERTSUM’s position embedding. Finally, it applies BERTSUM to long
documents with length = lBERT−AL.

3) BERT-AL copies the position embedding matrix nsegment times and concatenates them along the
dimension of length, and then employs the embedding as the position embedding of segment-wise
Transformers at corresponding layers. Finally, it applies BERT-AL to long documents with length =
lBERT−AL

The Baseline-1 aims to compare BERTSUM and BERT-AL while the Baseline-2 aims to reveal the
effectiveness of multi-channel LSTM. Furthermore, Baseline-2 can be used to indicate whether the
promotion of BERT-AL is due to the longer input or the multi-channel LSTM.

For fairly comparison, we set all hyperparameters equal to BERTSUM reported in Liu (2019).
Specifically, we set the number of layers as 12, the hidden size as 768, the number of self-attention
heads as 12 and the feed-forward size as 3072. We use Adam with β1 = 0.9, β2 = 0.999 and
ε = 10−9. We also use a linear learning rate decreasing scheduler with warming-up on first 10,000
steps. All models are trained for 50,000 steps with gradient accumulation per two steps. We also
select the top-3 checkpoints based on their evaluation losses on the validations set and report the
averaged results on the test set.

4.3 RESULTS AND ANALYSIS

The results are showed in Table 4, including BERTSUM1. We can obtain the following observations:

Table 4: Experiment results

Model ROUGE-1 ROUGE-2 ROUGE-L
BERTSUM 42.94 20.14 39.38

Group-1
Baseline-1 6.47 1.24 5.68
Baseline-2 40.38 17.86 36.77
BERT-AL 41.26 18.63 37.69

Group-2
Baseline-1 11.81 3.69 10.47
Baseline-2 40.44 17.93 36.83
BERT-AL 41.73 19.00 38.18

Group-3
Baseline-1 41.19 18.57 37.50
Baseline-2 41.44 18.77 37.83
BERT-AL 42.14 19.38 38.60

Group-4
Baseline-1 42.30 19.58 38.73
Baseline-2 42.27 19.57 38.72
BERT-AL 42.61 19.79 39.07

1) For all of the four groups, BERT-AL outperforms baselines, consistently. It proves that BERT-AL
is effective on long document summarization task, which comes from merging Transformer’s local
feature extraction ability and LSTM’s global time capturing ability.

2) Comparing Baseline-1 across four groups, performance increases with lBERT is longer. It implies
longer input contains more useful information and truncating input leads to a performance drop.

3) Comparing Baseline-1 with Baseline-2, Baseline-2 performs better than Baseline-1 under nearly
all settings. It implies randomly initialized position embedding also can help capture longer in-
formation even only with finetuning. However, this improvement will decrease with the maximum
sequence length increases, and Baseline-2 has a worse perform than Baseline-1 when lBERT = 256.

4) Comparing BERT-AL and Baseline-1 in Group-4, BERT-AL can further promote the ROUGE
score and break up the bottleneck of Baseline-2 when the lBERT is large. It implies repeated position
embedding with multi-channel LSTM is more effective than random initialized one.

1The result comes from our reproduction

7

Under review as a conference paper at ICLR 2020

5) Comparing Baseline-2 with BERT-AL in all four groups, the promotion of ROUGE score is more
significant when the number of segments (i.e., LSTM’s time-steps) is larger. It implies that the
LSTM’s capability of timing capture is not be fully utilized when the LSTM has less time-steps.

4.4 DISCUSSION

BERT-AL is designed as the model with a shorter pretrained BERT, and it still can achieve a com-
parable performance to BERTSUM. In Group 4 experiments, we can find BERT-AL (256)s per-
formance has been very closed to BERTSUM (512). Simultaneously, BERT-AL has a much faster
training and inference speed, since Transformers runtime is proportional to l2 and multi-channel
LSTM is high parallelly applied on nsegment steps. Therefore, BERT-AL can be a good alterna-
tive under the following situations: 1) For a NLP task, the input text is too long to feed into a
BERT model due to GPU memory or other limitations. 2) The time of pretraining a longer model
from scratch is unacceptable under a limited computing resource. 3) There is restraint for inference
speed, and then we also can split the text into small segments and feed them into BERT-AL.

5 RELATED WORK

There are several works related to modeling recurrence for self-attention network (SAN) in Trans-
former. Dehghani et al. (2018) recurrently refines the representations of each layer to improve SAN
encoder. Shen et al. (2018) introduces a directional self-attention network (DiSAN), which only
allows each token to attend previous (or following) tokens. Both Hao et al. (2019) and Chen et al.
(2018) propose to combine SAN encoder with an additional RNN encoder. The former enhances
the Transformer with recurrence information, while the latter augments RNN-based models with
SAN encoder. Wang et al. (2019b) adds a local RNN layer in front of SAN in each Transformer
layer, which aims to capture both local structures and global long-term dependencies in sequences.
Wang et al. (2019a) adds LSTM after all the Transformer by the guide of Coordinate Architecture
Search. However, these above works all target to solve the limitation of positional encoding, while
our model aims to apply pretrained BERT to longer text and need not to pretrain from scratch,
which reduces the cost of time and computing resources. Transformer-XL (Dai et al., 2019) con-
tains segment-level recurrence with state reuse and relative positional encoding for language model
beyond a fixed-length context, which is similar with our model and also can processes longer text.
However, Transformer-XL aims at language model and need to pretrain the model from scratch.

For processing long input, Bengio et al. (2013) proposes ”conditional computation” which is to only
compute a subset of a networks units for a given input by gating different parts of the network. Ling
& Rush (2017) proposes a coarse-to-fine attention model that uses hard attention to find the text
chunks of importance and then only attend to words in that chunk. Liu et al. (2018) first coarsely
selects a subset of the input, then trains an model while conditioning on this subset. Cohan et al.
(2018) proposes a hierarchical encoder which represents each section using word-level RNN and
then represents all sections using section-level RNN. These works is all similar with our method,
which is splitting the long input into several subsets to process them respectively and then merging
them. However, they are all need re-pretrain the model from scratch. Furthermore, we use the most
powerful model–BERT.

6 CONCLUSION

BERT has been the state-of-the-art for all kinds of NLP tasks. However, BERT cannot be applied
to long text tasks, e.g., document-level text summarization, because it cannot take text longer than
the maximum length as input. However, the maximum length is predefined during pretraining,
and expanding maximum length need re-pretrain which will cost lots of computing resource. We
propose a novel model named BERT-AL which combines the advantages of Transformer and LSTM.
The BERT-AL can take arbitrarily long text as its input and need not re-pretrain from scratch. We
demonstrate BERT-ALs effectiveness on the text summarization task by conducting experiments on
the CNN/Daily Mail dataset, and the experimental results prove that BERT-AL is effective on NLP
tasks with very long text as input. Furthermore, our model can be easily adapted to various tasks
and pretrained models.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster,
Llion Jones, Niki Parmar, Mike Schuster, Zhifeng Chen, et al. The best of both worlds: Combin-
ing recent advances in neural machine translation. arXiv preprint arXiv:1804.09849, 2018.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. In Proceedings of NAACL-HLT, pp. 615–621, 2018.

Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Jie Hao, Xing Wang, Baosong Yang, Longyue Wang, Jinfeng Zhang, and Zhaopeng Tu. Modeling
recurrence for transformer. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 1198–1207, 2019.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in
neural information processing systems, pp. 1693–1701, 2015.

Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia Polosukhin, Andrew Fandrianto, Jay Han,
Matthew Kelcey, and David Berthelot. Wikireading: A novel large-scale language understanding
task over wikipedia. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 1535–1545, 2016.

Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural network
(indrnn): Building a longer and deeper rnn. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5457–5466, 2018.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Jeffrey Ling and Alexander Rush. Coarse-to-fine attention models for document summarization. In
Proceedings of the Workshop on New Frontiers in Summarization, pp. 33–42, 2017.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing long sequences. In International Conference on
Learning Representations, 2018.

Yang Liu. Fine-tune bert for extractive summarization. arXiv preprint arXiv:1903.10318, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of NAACL-HLT,
pp. 2227–2237, 2018.

9

Under review as a conference paper at ICLR 2020

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 1073–1083, 2017.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang. Disan: Di-
rectional self-attention network for rnn/cnn-free language understanding. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Chenguang Wang, Mu Li, and Alexander J. Smola. Language models with transformers. CoRR,
abs/1904.09408, 2019a.

Zhiwei Wang, Yao Ma, Zitao Liu, and Jiliang Tang. R-transformer: Recurrent neural network
enhanced transformer. arXiv preprint arXiv:1907.05572, 2019b.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in neural information processing systems, pp. 649–657, 2015.

10

	Introduction
	Background
	BERT
	BERTSUM

	BERT-AL
	Multi-channel LSTM
	Embedding
	Other details

	Experiment
	CNN/Daily Mail dataset
	Experiment setting
	Results and analysis
	Discussion

	Related work
	Conclusion

