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ABSTRACT

This paper fosters the idea that deep learning methods can be sided to classical
visual odometry pipelines to improve their accuracy and to produce uncertainty
models to their estimations. We show that the biases inherent to the visual odom-
etry process can be faithfully learned and compensated for, and that a learning
architecture associated to a probabilistic loss function can jointly estimate a full
covariance matrix of the residual errors, defining a heteroscedastic error model.
Experiments on autonomous driving image sequences and micro aerial vehicles
camera acquisitions assess the possibility to concurrently improve visual odome-
try and estimate an error associated to its outputs.

1 INTRODUCTION

Visual odometry (VO) is a well established motion estimation process in robotics (Scaramuzza &
Fraundorfer, 2011), successfully applied in a wide range of contexts such as autonomous cars or
planetary exploration rovers. Seminal work resorted to stereovision: by tracking point features
in images, 3D points correspondences are used to recover the motion between two stereovision
acquisitions – the integration of elementary motions yielding an estimate of the robot pose over its
course. Continuous work on VO led to a well established processes pipeline, composed of feature
extraction, matching, motion estimation, and finally optimization. This scheme has been extended
to single camera setups, in which case motions are estimated up to a scale factor, retrieved e.g. by
fusing inertial information. Direct methods for VO have recently been proposed: they bypass the
feature extraction process and optimize a photometric error (Engel et al., 2018). These methods
overcome the limits of sparse feature-based methods in poorly textured environments or in presence
of low quality images (blurred), and they have proven to be on average more accurate.

The advent of convolutional neural networks (CNN) sprouted alternate solutions to VO, that achieve
the full estimation process to deep-learning architectures in an end-to-end fashion (see e.g. (Konda &
Memisevic, 2015; Li et al., 2017), and especially (Wang et al., 2018) – note these work consider the
monocular version of the problem, leaving the scale estimation untackled). In such approaches, the
system has to learn the various information necessary to perform vision-based egomotion estimation,
which can be a daunting task for a CNN.

The work presented here builds upon existing work that exploits a CNN to predict corrections to
classic stereo VO methods (Peretroukhin & Kelly, 2017), aiming at improving their precision. This
concurs with the idea that it is more beneficial to side deep-learning based methods with classical
localization estimation processes rather than delegating the full pose estimation to a CNN. Our
developments consider that visual odometry estimation errors do not have zero mean, as assessed in
e.g. (Dubbelman et al., 2012; Peretroukhin et al., 2014), and provide corrections that improve the
precision of VO. Furthermore, they provide a full error model for each computed motion estimation
(in form of a Gaussian model), akin to (Liu et al., 2018). This is a significant achievement, as to our
knowledge no precise error models have been derived for classic VO methods.

2 PROBLEM STATEMENT AND RELATED WORK

Consider a robot moving in a three dimensional environment. Let xi ∈ R6 (3 translations and
3 orientations) be its pose at time i in a given reference frame. The actual motion (ground truth)
between time instants i and i + 1 is represented by a homogeneous 4 × 4 transformation matrix
iTi+1.
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A vision-based motion estimator uses raw image data Ii ∈ Rn to obtain an estimate iT̂i+1. In the
VO case, the raw data Ii is a pair of monocular or stereoscopic images captured at two different
time instants i, i+ 1 (i.e. 2 or 4 images). The error ei of VO is:

ei = iTi+1 · iT̂−1
i+1 (1)

The dataset to feed a learning architecture is D = {Ii, ei|∀i ∈ [1, d]}, where d is the size of the
dataset.

The literature provides three different approaches to leverage this type of dataset. The first one di-
rectly learns the motion estimate and associated error (Wang et al., 2018). The two other approaches
side a classic VO process with learning to either estimate (i) a motion correction to apply to iT̂−1

i+1,
thus improving its accuracy (Peretroukhin & Kelly, 2017), or (ii) an error model associated to iT̂−1

i+1
(Liu et al., 2018), thus allowing its fusion with any other motion or pose estimation process.

2.1 DIRECTLY LEARNING VO AND AN ERROR MODEL

Wang et al. (2018) introduce an end-to-end, sequence-to-sequence probabilistic visual odometry
(“ESP-VO”) based on recurrent CNN. ESP-VO outputs both a motion estimate iT̂−1

i+1 and an as-
sociated error. The learned error model is a diagonal covariance matrix, hence not accounting for
possible correlations between the different dimensions of the motions. It is unclear how the proba-
bilistic loss is mixed to the mean squared error of the Euclidean distance between the ground truth
and the estimated motions, and the makes use of a hand-tuned scaling factor to balance rotation
and translation. . The article present significant results obtained with an impressive series of varied
datasets, with comparisons to state of the art VO schemes. The results show that ESP-VO is a se-
rious alternative to classic schemes, all the more since it also provides the variances associated to
the estimations. Yet, they are analysed over whole trajectories, which inherit from the random walk
effect of motion integration, and as such do not provide thorough statistical insights – e.g. on the
satisfaction of the gaussianity of the error model.

2.2 LEARNING CORRECTIONS TO VO

The work presenting DPC-net (Peretroukhin & Kelly, 2017) learns an estimate of ei, which is further
applied to the VO estimate iT̂−1

i+1 to improve its precision. The authors introduce an innovative pose
regression loss based on the SE(3) geodesic distance modelled with matrix Lie groups approach.
Instead of resorting to a scalar weight to unify with a linear combination the translation and rotation
errors, the proposed distance function naturally balances these two types of errors. The loss takes
the following form:

L(ξ) = 1

2
g(ξ)TΣ−1g(ξ) (2)

where ξ ∈ R6 is a vector of Lie algebra coordinates estimated by the network, g(ξ) computes the
equivalent of Eq.1 in the Lie vector space, and Σ is an empirical average covariance of the estimator
pre-computed over the training dataset. The paper provides statistically significant results that show
DPC-net improves a classic feature-based approach, up to the precision of a dense VO approach.
In particular, it alleviates biases (e.g. due to calibration errors) and environment factors. Worth to
notice though is that the authors interlace the corrections estimated at lower rate than the underlying
VO process with VO, which processes all the images, using a pose-graph relaxation approach.

2.3 LEARNING AN ERROR MODEL OF VO

Inferring an error model for VO come to learn the parameters of a predefined distribution to couple
VO with uncertainty measures. Liu et al. (2018) introduces DICE (Deep Inference for Covariance
Estimation), which learns the covariance matrix of a VO process as a maximum-likelihood for Gaus-
sian distributions. However, they consider the distribution over measurement errors as a zero-mean
Gaussian N (0,Σ). Such model is acceptable for unbiased estimators, which unfortunately if not
the case of VO. Yet the authors show that their variance estimates are highly correlated with the VO
errors, especially in case of difficult environment conditions, such as large occlusions.
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3 SIMULTANEOUSLY LEARNING CORRECTIONS AND UNCERTAINTY

To jointly estimate a correction to the VO process and a full error model after having applied the
correction, we expand the network structure of Liu et al. (2018) adding a vector µi ∈ R6 to the
output layer, which is incorporated in the negative log-likelihood loss that is derived as follows.
Given a dataset D of size d, where the observations {e1, . . . , ed}T of VO errors are assumed to
be independently drawn from a multivariate Gaussian distribution, estimate the parameters of the
Gaussian by

argmax
µ1:d,Σ1:d

d∑
i=1

p(ei|µi,Σi) (3)

This is equivalent to minimize the negative log-likelihood (NLL)

argmin
µ1:d,Σ1:d

d∑
i=1

− log (p(ei|µi,Σi)) (4)

= argmin
µ1:d,Σ1:d

d∑
i=1

log |Σi|+ (ei − µi)
TΣ−1

i (ei − µi) (5)

≈ argmin
fµ1:d

,fΣ1:d

d∑
i=1

log |fΣi(Ii)| + (ei − fµi(Ii))
TfΣi(Ii)

−1(ei − fµi(Ii)) (6)

We split the output of the network in two different parts: the mean vector fµi
(Ii) and the covariance

matrix fΣi
(Ii), where f(Ii) represents the full output given a pair of stereo images.

To enforce a positive definite covariance matrix we use the LDL matrix decomposition. fΣi
(Ii) is

reformulated as a vector αi = [li,di]
T with li ∈ R

(n2−n)
2 and di ∈ Rn. We have then

Σi ≈ L(li)D(di)L(li)
T (7)

where li and di are the vectors containing the elements of the respective L and D matrices. The
LDL decomposition is unique and exists as long as the diagonal ofD is strictly positive. This can be
enforced using the exponential function exp(di) on the main diagonal. Thanks to some additional
properties around the computation of its log determinant the first term of Eq.6 can be simplified as
sum(di), that is the sum of the elements of the vector di. In the second term fΣi(Ii)

−1 is replaced
by the LDL product. Replacing fµi(Ii) with the mean output vector µ̂i we finally obtain

L(I1:d) = argmin
µ̂1:d,α1:d

d∑
i=1

sum(di) + (ei − µ̂i)
T(L(li)D(exp(di))L(li)

T)−1(ei − µ̂i) (8)

Formulating the problem as in Eq.8, the loss function recalls the formulation of the Lie algebra
loss in Eq.2. The covariance matrix in this case is learned in relation to the input, capturing the
heteroscedastic uncertainty of each sample. The learned covariance matrix acts as in Kendall &
Cipolla (2017), weighting position and orientation errors. The main difference resides in the nature
of the learned uncertainty, homoscedastic vs heteroscedastic: through back-propagation with respect
to the input data, Kendall & Gal (2017), we learn a heteroscedastic error.

Assuming that errors can be drawn from a distribution N (µi,Σi), estimating µi corresponds to
predicting the maximum likelihood value that the error model can assume. This corresponds to the
desired correction in our case. At the same time, we estimate a covariance matrix Σi, returning an
uncertainty measure relative to each particular input and predicted correction.
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4 EXPERIMENTS

4.1 SETUP

We use the open-source VO implementation libviso2 (Kitt et al., 2010). It is a feature-based ap-
proach, that uses a Kalman Filter in combination with a RANSAC scheme to produce SE(3) esti-
mates using rectified stereoscopic pairs.

4.1.1 DATASETS

We exploit two different datasets: the KITTI dataset (Geiger et al., 2012) and the Euroc Micro Air
Vehicles dataset (Burri et al., 2016).

KITTI provides various sequences of rectified images acquired while driving in urban areas. We
tested training the network using several combinations and obtained consistent results splitting train
and validation trajectories in different configurations: for all results shown here we trained using
sequences 04 to 10 excluding one or two for validation purposes. The estimated motions are ex-
pressed in camera frame (z axis pointing forward), and the Tait-Bryan angles are defined wrt. this
reference frame (e.g. yaw encodes rotations around the optical axis z).

Euroc contains different stereoscopic sequences recorded in different environments. We rectified the
images in order to use them as input for both the VO process and the network. We use the first three
sequences MH 01 to MH 03. Note that in some cases VO fails to produce a pose estimate (mainly
when images have a strong motion blur): these data have simply been discarded from the dataset.
Contrary to the KITTI dataset, Euroc estimations and ground truth are expressed in the vehicle body
frame (x pointing forward, y leftward).

4.1.2 NETWORK STRUCTURES

We initially compared the results produced using the architectures in DPC-net (Peretroukhin &
Kelly, 2017) and DICE (Liu et al., 2018). The first trial was to adapt the loss in Eq. 8 to DPC-
net. We noticed that the mean output vector was still rather constant throughout entire trajectories,
regardless of the dataset, and the same behavior was experienced using the loss in Eq. 2. Similar
tests were conducted with DICE. We experienced problems in reducing the average mean error along
the six dimensions, and an increase in the standard deviation. Alleging these issues a being caused
by the shallow architecture of DICE, we modified its network structure, first removing the max
pool layers to preserve spatial information (Handa et al., 2016), and achieving dimension reduction
by setting the stride to 2 in early layers. We also increased the number of convolutional filters to
tackle the estimation of both the corrections and error model, adding 50% dropout after each layer
to prevent over-fitting. We kept respective nonlinear activation function using parametric ReLu for
DPC-net and leaky ReLu for DICE. For the rest of the paper, we refer to this network as Deeper-
DICE (D-DICE, table 1).

The convolutional layers are followed by two fully connected layer, respectively composed of 2048
and 27 output units. In the six-dimensional case we need 21 values for the LDL decomposition and
6 for the mean vector. No rectification or dropout is applied to the last fully connected layer.

We trained using Adam optimizer with a learning rate of 1e-04 and halted the learning when test and
train loss start diverging. All the experiments have been carried out using using an Nvidia GeForce
RTX 2080 Ti with a batch size of 64.

Layer Kernel size Stride Number of channels
conv1 5x5 2 64
conv2 5x5 2 128
conv3 3x3 2 256
conv4 3x3 2 512
conv5 3x3 1 1024

Table 1: D-DICE convolutional architecture.
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4.2 EVALUATION

Most of the results presented in this section aim to analyse the improvements brought by the neural
network to VO, by complementing it with SE(3) pose corrections and an error estimate.

4.2.1 LOSS COMPARISON

Here we compare the results in terms of corrections between the loss based on the Lie algebra
formulation (Equ. 2) and our full negative log-likelihood loss (NLL, Equ. 4). Both are evaluated on
DPC-net.

Table 2 shows that corrections learned with the Lie loss and extracted from the Gaussian model
learned minimizing the negative log-likelihood. The results have been obtained after training without
sequences 05, left for validation and 06, used for testing.

µV O σV O µcorr Lie σcorr Lie µcorr NLL σcorr NLL
x 0.20 0.60 0.07 0.60 -0.92 0.66
y -0.25 0.58 0.07 0.58 -0.02 0.62
z -0.62 0.95 -0.25 0.95 -0.12 0.98
roll 1.21 28.17 -0.98 28.16 -0.2 28.55
pitch 0.81 28.16 0.82 28.13 1.01 28.06
yaw -14.32 30.59 0.28 30.60 2.26 30.85

Table 2: KITTI, sequence 05. Statistics for VO with and without corrections, applied using
DPC-net trained with the two losses of in Eq.2 and 8. Units are cm for x, y, z and in mrad for the
angles.

None of the two losses comes out as a clear winner, even if both improve the mean error along
five out of six dimensions compared to VO alone. Note small increases in the average standard
deviations using NLL loss, which are not significant compared to the improvements over the average
mean error.

Of course, the advantage of using the proposed NLL loss is to jointly provide an uncertainty estima-
tion.

4.2.2 ARCHITECTURE COMPARISON

We noticed that DPC-net tends to output rather constant corrections throughout a whole sequence,
certainly compensating biases. D-DICE behaves differently, as can be seen figure 1, exhibiting more
data-dependant corrections – which is the main point of a deep learning approach.

4.2.3 UNCERTAINTY ESTIMATION

Here we inspect the error estimates produced by D-DICE. Since we assumed a Gaussian error model
∼ N (µ,Σ), a common way to measure its relevance is to check the fraction of samples that do not
respect the following inequality:

µi − nσi ≤ ei ≤ µi + nσi (9)

where ei is a the value assumed by the error along the dimension i, and µi, σi respectively are the
mean and standard deviation predicted for the input associated to e on the i-th dimension. The
parameter n is associated to the number of considered standard deviations. We consider the three
sigma interval (n = 3) that, in case of samples drawn from a normal distribution, covers 99.7% of
the samples.

Fig.4 shows D-DICE uncertainty bounds trained considering the visual odometry error∼ N (0,Σi),
in red, and ∼ N (µi,Σi), in light blue. Our proposed loss already reaches a good precision on the
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Figure 1: The plots show the different nature of the learned corrections using DPC-net and D-DICE
(Euroc dataset). Each plot shows the difference between VO estimates and the corrected estimates
produced by the network.

σ 2σ 3σ

x 77.07% 95.99% 99.39%
y 69.88% 92.18% 97.20%
z 78.34% 95.00% 99.36%
roll 61.85% 86.27% 95.30%
pitch 68.67% 94.72% 99.33%
yaw 82.59% 96.90% 98.97%

Table 3: Euroc, sequence MH 01.
Percentages of samples that lie in the various
sigma-intervals around the mean. Mean and
standard deviations are produced by D-DICE
and correspond to Fig.2.

σ 2σ 3σ

x 87.24% 98.91% 99.63%
y 91.15% 99.42% 99.67%
z 79.49% 96.12% 98.94%
roll 75.72% 94.89% 98.69%
pitch 72.97% 95.14% 98.76%
yaw 70.57% 93.55% 98.69%

Table 4: KITTI, Sequence 05. Per-
centages of samples that lie in the various
sigma-intervals around the mean. Mean and
standard deviations are produced by D-DICE
and correspond to Fig.3.

uncertainty estimation in the 3-sigma interval, as shown in Table4. The results from considering an
unbiased error yield a non-significant increase of precision, as we already sit around 99%, at the cost
of being more uncertain, which is a much bigger downside.

5 CONCLUSIONS

We presented an insight into the learning of errors in visual odometry. Relying on existing state-
of-the-art techniques, we iterated on analysing what type of error and uncertainty can be learned by
deep neural networks. We concentrated our efforts on approaches that can be paired with classical
visual odometry pipelines, in order to ease the work done by the network and exploiting the power-
ful feature-based processes. We demonstrated that it is possible to assimilate the distribution over
visual odometry errors to Gaussians, and proceeded to cast the error prediction to a full maximum
likelihood for normal distributions case. Knowing that the errors are biased, we model such Gaus-
sians as non-zero mean distributions, showing the beneficial aspects of this approach compared to
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Figure 2: D-DICE. Euroc, MH 01. Uncertainty prediction in the six dimensions (translation
top, rotation bottom).
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Figure 3: D-DICE. KITTI, 05. Uncertainty prediction in the six dimensions (translation top,
rotation bottom).

works that rely only on the estimation of the covariance matrix. On the other hand, we pair visual
odometry corrections with a more precise model, inferred thanks to the assumption of biased distri-
butions. In future we would like to explore similar approaches, with different perception processes
that are yet to associated with precise error models, e.g. iterative closest points algorithm based on
LiDAR scans (Pomerleau et al., 2013).
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Figure 4: KITTI, sequence 05. Uncertainty prediction estimating
the mean of the distribution (blue) or not (red).
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