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ABSTRACT

In this work, we aim to solve data-driven optimization problems, where the goal
is to find an input that maximizes an unknown score function given access to a
dataset of input, score pairs. Inputs may lie on extremely thin manifolds in high-
dimensional spaces, making the optimization prone to falling-off the manifold.
Further, evaluating the unknown function may be expensive, so the algorithm should
be able to exploit static, offline data. We propose model inversion networks (MINs)
as an approach to solve such problems. Unlike prior work, MINs scale to extremely
high-dimensional input spaces and can efficiently leverage offline logged datasets
for optimization in both contextual and non-contextual settings. We show that
MINs can also be extended to the active setting, commonly studied in prior work,
via a simple, novel and effective scheme for active data collection. Our experiments
show that MINs act as powerful optimizers on a range of contextual/non-contextual,
static/active problems including optimization over images and protein designs and
learning from logged bandit feedback.

1 INTRODUCTION

Data-driven optimization problems arise in a range of domains: from protein design (Brookes et al.,
2019) to automated aircraft design (Hoburg & Abbeel, 2012), from the design of robots (Liao et al.,
2019) to the design of neural net architectures (Zoph & Le, 2017) and learning from logged feedback,
such as optimizing user preferences in recommender systems. Such problems require optimizing
unknown reward or score functions using previously collected data consisting of pairs of inputs
and corresponding score values, without direct access to the score function being optimized. This
can be especially challenging when valid inputs lie on a low-dimensional manifold in the space of
all inputs, e.g., the space of valid aircraft designs or valid images. Existing methods to solve such
problems often use derivative-free optimization (Snoek et al.). Most of these techniques require
active data collection where the unknown function is queried at new inputs. However, when function
evaluation involves a complex real-world process, such as testing a new aircraft design or evaluating
a new protein, such active methods can be very expensive. On the other hand, in many cases there
is considerable prior data – existing aircraft and protein designs, and advertisements and user click
rates, etc. – that could be leveraged to solve the optimization problem.

In this work, our goal is to develop an optimization approach to solve such optimization problems that
can (1) readily operate on high-dimensional inputs comprising a narrow, low-dimensional manifold,
such as natural images, (2) readily utilize offline static data, and (3) learn with minimal active data
collection if needed. We can define this problem setting formally as the optimization problem

x? = arg max
x

f(x), (1)

where the function f(x) is unknown, and we have access to a dataset D = {(x1, y1), . . . , (xN , yN )},
where yi denotes the value f(xi). If no further data collection is possible, we call this the data-driven
model-based optimization setting. This can also be extended to the contextual setting, where the aim
is to optimize the expected score function value across a context distribution. That is,

π? = arg max
π

Ec∼p0(·)[f(c, π(c))], (2)

where π? maps contexts c to inputs x, such that the expected score under the context distribution p0(c)
is optimized. As before, f(c,x) is unknown and we have access to a dataset D = {(ci,xi, yi)}Ni=1,
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whereyi is the value off (ci ; x i ). Such contextual problems with logged datasets have been studied
in the context of contextual bandits (Swaminathan & Joachims, a; Joachims et al., 2018).

A simple way to approach these model-based optimization problems is to train a proxy functionf � (x)
or f � (c;x), with parameters� , to approximate the true score, using the datasetD. However, directly
usingf � (x) in place of the true functionf (x) in Equation (1) generally works poorly, because the
optimizer will quickly �nd an inputx for which f � (x) outputs an erroneously large value. This
issue is especially severe when the inputsx lie on a narrow manifold in a high-dimensional space,
such as the set of natural images (Zhu et al., 2016). The functionf � (x) is only valid near the
training distribution, and can output erroneously large values when queried at points chosen by the
optimizer. Prior work has sought to addresses this issue by using uncertainty estimation and Bayesian
models (Snoek et al., 2015) forf � (x), as well as active data collection (Snoek et al.). However,
explicit uncertainty estimation is dif�cult when the functionf � (x) is very complex or whenx is
high-dimensional.

Instead of learningf � (x), we propose to learn the inverse function, mapping from valuesy to
corresponding inputsx. This inverse mapping is one-to-many, and therefore requires astochastic
mapping, which we can express asf � 1

� (y; z) ! x , wherez is a random variable. We term such
modelsmodel inversion networks(MINs). MINs provide us with a number of desirable properties:
they can utilize static datasets, handle high-dimensional input spaces such as images, can handle
contextual problems, and can accommodate both static datasets and active data collection. We discuss
how to design simple active data collection methods for MINs, leverage advances in deep generative
modeling (Goodfellow et al.; Brock et al., 2019), and scale to very high-dimensional input spaces.
We experimentally demonstrate MINs in a range of settings, showing that they outperform prior
methods on high-dimensional input spaces, perform competitively to Bayesian optimization methods
on tasks with active data collection and lower-dimensional inputs, and substantially outperform prior
methods on contextual optimization from logged data (Swaminathan & Joachims, a).

2 RELATED WORK

Bayesian optimization. In this paper, we aim to solve data-driven optimization problems. Most
prior work aimed at solving such optimization problems has focused on the active setting. This
includes algorithms such as the cross entropy method (CEM) and related derivative-free methods Ru-
binstein (1996); Rubinstein & Kroese (2004), reward weighted regression Peters & Schaal, Bayesian
optimization methods based on Gaussian processes Shahriari et al. (2016); Snoek et al.; 2015), and
variants that replace GPs with parametric acquisition function approximators such as Bayesian neural
networks (Snoek et al., 2015) and latent variable models (Kim et al., 2019; Garnelo et al., 2018b;a), as
well as more recent methods such as CbAS (Brookes et al., 2019). These methods require the ability
to query the true functionf (x) at each iteration to iteratively arrive at a near-optimal solution. We
show in Section 3.3 that MINs can be applied to such an active setting as well, and in our experiments
we show that MINs can perform competitively with these prior methods. Additionally, we show that
MINs can be applied to the static setting, where these prior methods are not applicable. Furthermore,
most conventional BO methods do not scale favourably to high-dimensional input spaces, such as
images, while MINs can handle image inputs effectively.

Contextual bandits. Equation 2 captures the class of contextual bandit problems. Prior work on batch
contextual bandits has focused on batch learning from bandit feedback (BLBF), where the learner
needs to produce the best possible policy that optimizes the score function from logged experience.
Existing approaches build on the counterfactual risk minimization (CRM) principle (Swaminathan
& Joachims, a;b), and have been extended to work with deep nets (Joachims et al., 2018). In our
comparisons, we �nd that MINs substantially outperform these prior methods in the batch contextual
bandit setting.

Deep generative modeling.Recently, deep generative modeling approaches have been very success-
ful at modelling high-dimensional manifolds such as natural images (Goodfellow et al.; Van Den Oord
et al.; Dinh et al., 2016), speech (van den Oord et al., 2018) and text (Yu et al.). MINs combine
the strength of such generative models with important algorithmic decisions to solve model-based
optimization problems. In our experimental evaluation, we show that these design decisions are
important for adapting deep generative models to model-based optimization, and it is dif�cult to
perform effective optimization without them.
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3 MODEL INVERSION NETWORKS

In this section, we describe our model inversion networks (MINs) method, which can perform both
active and passive model-based optimization over high-dimensional input spaces.

Problem statement.Our goal is to solve optimization problems of the formx? = arg max x f (x),
where the functionf (x) is not known, but we must instead use a dataset of input-output tuples
D = f (x i ; yi )g. In the contextual setting described in Equation (2), each datapoint is also associated
with a contextci . For clarity, we present our method in the non-contextual setting, but the contextual
setting can be derived analogously by conditioning all functions on the context. In theactivesetting,
which is most often studied in prior work, the algorithm is allowed to actively queryf (x) one or
more times on each iteration to augment the dataset, while in thestaticsetting, only an initial static
dataset is available. The goal is to obtain the best possiblex? (i.e., the one with highest possible
value off (x?)).

One naïve way of solving MBO problems is to learn a proxy score functionf � (x), via standard
empirical risk minimization. We could then maximize this learned function with respect tox via
standard optimization methods. However, naïve applications of such a method would fail for two
reasons. First, the proxy functionf � (x) may not be accurate outside the samples on which it is
trained, and optimization with respect to it may simply lead to values ofx for which f � (x) makes the
largest mistake in the negative direction. The second problem is more subtle. Whenx lies on a narrow
manifold in very high-dimensional space (such as the space of natural images), the optimizer can
produce invalid values ofx, which result in arbitrary outputs when fed intof � (x). Since the shape
of this manifold is unknown, it is dif�cult to constrain the optimizer to prevent this. This second
problem is rarely addressed or discussed in prior work, which typically focuses on optimization over
low-dimensional and compact domains with known bounds.

3.1 OPTIMIZATION VIA INVERSEMAPS

Part of the reason for the brittleness of the naïve approach above is thatf � (x) has a high-dimensional
input space, making it easy for the optimizer to �nd inputsx for which the proxy function produces
an unreasonable output. Can we instead learn a function with a small input space, which implicitly
understands the space of valid, in-distribution values forx? The main idea behind our approach is
to model an inverse map that produces a value ofx given a score valuey, given byf � 1

� : Y ! X .
The input to the inverse map is a scalar, making it comparatively easy to constrain to valid values,
and by directly generating the inputsx, an approximation to the inverse function must implicitly
understand which input values are valid. As multiplex values can correspond to the samey, we
designf � 1

� as a stochastic map that maps a score value along with adz -dimensional random vector
to ax, f � 1

� : Y � Z ! X , wherez is distributed according to a prior distributionp0(z).

To de�ne the inverse map objective, let the data distribution be denotedpD (x ; y), let pD (y) be the
marginal overy, and letp(y) be an any distribution de�ned onY (which could be equal topD (y)). We
can train the proxy inverse mapf � 1

� under distributionp(y) by minimizing the following objective:
L p(D) = Ey � p(y) [D (pD (x jy); pf � 1

�
(x jy))] ; (3)

wherepf � 1
�

(x jy) is obtained by marginalizing overz, pf � 1
�

(x jy) =
R

z p0(z) � 1[[x = f � 1
� (z; y)]]dz,

and D is a measure of divergence between the two distributions. Using the Kullback-Leibler
divergence leads to maximum likelihood learning, while Jensen-Shannon divergence motivates
a GAN-style training objective. MINs can be adapted to the contextual setting by pass-
ing in the context as an input and learningf � 1

� (yi ; z; ci ). In standard empirical risk mini-
mization, we would choosep(y) to be the data distributionpD (y), such that the expectation

Algorithm 1 Generic Algorithm for MINs

1: Input: pD (y): distribution ofy in D
2: Train inverse mapf � 1

� : Y � Z ! X using
objective (Equation 3) with reweighting, active
data collection if needed

3: x?  APPROX-INFER(f � 1
� , pD (y))

4: returnx?

can be approximated simply by sampling train-
ing tuples(x i ; yi ) from the training set. How-
ever, as we will discuss in Section 3.3, a more
careful choice forp(y) can lead to better perfor-
mance. The MIN algorithm is based on training
an inverse map, and then using it via the infer-
ence procedure in Section 3.2 to infer thex that
approximately optimizesf (x). The structure of
the MIN algorithm is shown in Algorithm 1.
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3.2 INFERENCE WITHINVERSEMAPS (APPROX-INFER)

Once the inverse map is trained, the goal of our algorithm is to generate the best possiblex?, which
will maximize the true score function as well as possible under the dataset. Since a scorey needs
to be provided as input to the inverse map, we must select for which scorey to query the inverse
map to obtain a near-optimalx. One naïve heuristic is to pick the bestymax 2 D and produce
xmax � f � 1

� (y�
max ) as the output. However, the method should be able to extrapolate beyond the

best score seen in the dataset, especially in contextual settings, where a good score may not have
been observed for all contexts.

In order to extrapolate as far as possible, while still staying on the valid data manifold, we need to
measure the validity of the generated values ofx. One way to do this is to measure the agreement
between the learned inverse map and an independently trained forward modelf � : the values ofy for
which the generated samplesx are predicted to have a score similar toy are likely in-distribution,
whereas those where the forward model predicts a very different score may be too far outside the
training distribution. Since the latent variablez captures the multiple possible outputs of the one-to-
many inverse map, we can further optimize overz for a giveny to �nd the best, most trustworthy
outputx. This can be formalized as the following optimization:

~y� ; ~z� := arg max
y;z

f � (f � 1
� (z; y)) � � 1jj y � f � (f � 1

� (z; y)) jj2 + � 2 logp0(z) (4)

This optimization can be motivated as �nding an extrapolated score that corresponds to values of
x that lie on the valid input manifold, and for which independently trained forward and inverse
maps agree. Although this optimization uses an approximate forward mapf � (x), we show in our
experiments in Section 4 that it produces substantially better results than optimizing with respect
to a forward model alone. The inverse map substantially constraints the search space, requiring an
optimization over a 1-dimensionaly and a (relatively) low-dimensionalz, rather than the full space
of inputs.

3.3 REWEIGHTING THE TRAINING DISTRIBUTION

A naïve implementation of the training objective in Equation (3) samplesy from the data distribution
pD (y). However, as we are most interested in the inverse map's predictions forhighvalues ofy, it
is much less important for the inverse map to predict accuratex values for values ofy that are far
from the optimum. We could consider increasing the weights on datapoints with larger values ofy.
In the extreme case, we could train only on the best datapoint – either the single datapoint with the
largesty or, in the contextual case, the datapoint with the largesty for each context. More generally,
we can de�ne theoptimaly distributionp� (y), which is simply the delta function centered on the
besty, p� (y) = � y � (y), in the deterministic case. If we instead assume that the observed scores have
additive noise (i.e., we observef (x) + "; " � N ), thenp� (y) would be a distribution centered around
the optimaly. Of course, training onp� (y) is not practical, since it heavily down-weights most of the
training data, leading to a very high-variance training objective, and is not even known in general,
since the optimal data point is likely not in our training set. In this section, we will propose a better
choice forp(y) that trades off the variance due to an overly peaked training distribution and the bias
due to training on the “wrong” distribution (i.e., anything other thanp� (y)).

We can train under a distribution other than the empirical distribution by using importance sam-
pling, such that we sample frompD and assign an importance weight, given byw i = p(y i )

pD (y i ) ;
to each datapoint(x i ; yi ), wherep(yi ) is our desired distribution. The reweighted objective
is given by L̂ p(D) := 1

jDj

P
i w i � D̂ (x i ; f � 1

� (yi )) . We rearrange it to write:L̂ p(D) =

1
jYj

P
y j � pD (y )

p(y j )
pD (y j )

�
1

jN y j j

P jN y j j
k=1 D̂ (x j;k ; f � 1

� (yj ))
�

, whereD̂ denotes the empirical, sample-

based divergence estimator. By bounding the variance and the bias of the gradient ofL̂ p(D) estimate,
with respect to the reweighted objective without sampling error undery drawn fromp� (y), we obtain
the following result: (Proof in Appendix A)
Theorem 3.1((Informal) Bias + variance bound in MINs). LetL (p� ) be the objective underp� (y)
without sampling error:L (p� ) = Ey � p� (y ) [D (p(x jy); f � 1(y))] . LetNy be the number of datapoints
with the particulary value observed inD, For some constantsC1; C2; C3, with high con�dence,

E
h
jjr � L̂ p(D) � r � L (p� )jj2

2

i
� C1Ey � p(y)

�
1

Ny

�
+ C2

d2(pjjpD )
jDj

+ C3 � DTV (p� ; p)2
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Theorem 3.1 suggests a tradeoff between being close to the optimal distributionp� (y) and reducing
variance by covering the full data distributionpD . We observe that the distributionp(y) that minimizes
the RHS bound in Theorem 3.1 has the following form:p(y) / N y

N y + K � g(p� (y)) , whereg(p� ) is a
linear function ofp� (y) that ensures that the distributionsp andp� are close. We empirically choose
an exponential parameteric form for this function, which we describe in Section 3.5. This upweights
the samples with higher scores, reduces the weight onrare y-values (i.e., those with lowNy ), while
preventing the weight oncommony-values from growing, since N y

N y + K saturates to1 for largeNy .
This is consistent with our intuition: we would like to upweight datapoints with highy-values,
provided the number of samples at those values is not too low. Of course, for continuous-valued
scores, we rarely see the same score twice. Therefore, we bin they-values into discrete bins for the
purpose of weighting, as we discuss in Section 3.5.

3.4 ACTIVE DATA COLLECTION VIA RANDOMIZED LABELING

While the passive setting requires care in �nding the best value ofy for the inverse map, the active
setting presents a different challenge: choosing a new query pointx at each iteration to augment the
datasetD and make it possible to �nd the best possible optimum. Prior work on bandits and Bayesian
optimization often uses Thompson sampling (TS) (Russo & Van Roy, 2016; Russo et al., 2018;
Srinivas et al.) as the data-collection strategy. TS maintains a posterior distribution over functions
p(f t jD1:t ). At each iteration, it samples a function from this distribution and queries the pointx?

t
that greedily minimizes this function. TS offers an appealing query mechanism, since it achieves
sub-linear Bayesian regret (de�ned as the expected cumulative difference between the value of the
optimal input and the selected input), given byO(

p
T), whereT is the number of queries.

Maintaining a posterior over high-dimensional parametric functions is generally intractable. However,
we can devise a scheme to approximate Thompson sampling with MINs. To derive this method, �rst
note that samplingf t from the posterior is equivalent to sampling(x; y) pairs consistent withf t –
given suf�ciently many(x; y) pairs, there is a unique smooth functionf t that satis�esyi = f t (x i ).
For example, we can infer a quadratic function exactly from three points. For a more formal
description, we refer readers to the notion of Eluder dimension (Russo & Van Roy). Thus, instead of
maintaining intractable beliefs over the function, we identify a function by the samples it generates,
and de�ne a way to sample synthetic(x ; y) points such that they implicitly de�ne a unique function
sample from the posterior.

To apply this idea to MINs, we train the inverse mapf � 1
� t

at each iterationt with anaugmented
datasetD0

t = Dt [ S t , whereSt = f (~x j ; ~yj )gK
j =1 is a dataset of synthetically generated input-score

pairs corresponding to unseeny values inDt . Training f � 1
� t

on D0
t corresponds to trainingf � 1

� t

to be an approximate inverse map for a functionf t sampled fromp(f t jD1:t ), as the synthetically
generated samplesSt implicitly induce a model off t . We can then approximate Thompson sampling
by obtainingx?

t from f � 1
� t

, labeling it via the true function, and adding it toDt to produceDt +1 .
Pseudocode for this method, which we call “randomized labeling,” is presented in Algorithm 2. In
Appendix B, we further deriveO(

p
T) regret guarantees under mild assumptions. Implementation-

wise, this method is simple, does not require estimating explicit uncertainty, and works with arbitrary
function classes, including deep neural networks.
Algorithm 2 Active Data Collection with Model Inversion Networks via Randomized Labeling

1: Initialize inverse map,f � 1
� : Y � Z ! X , datasetD0 = fg ,

2: for stept in {0, . . . , T-1} do
3: Sample synthetic samplesSt = f (x i ; yi )gK

i =1 corresponding to unseen data pointsyi (by randomly
pairing noisy observedx i values with unobservedy values.)

4: Traininverse mapf � 1
t onD0

t = D t [ S t , using reweighting described in Section 3.3.
5: Query functionf at x t = f � 1

t (maxD 0
t

y)
6: Observe outcome:(x t ; f (x t )) and updateD t +1 = D t [ (x t ; f (x t ))
7: end for

3.5 PRACTICAL IMPLEMENTATION OF MIN S

In this section, we describe our instantiation of MINs for high-dimensional inputs with deep neural
network models. GANs (Goodfellow et al.) have been successfully used to model the manifold of
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high-dimensional inputs, without the need for explicit density modelling and are known to produce
more realistic samples than other models such as VAEs (Kingma & Welling, 2013) or Flows (Dinh
et al., 2016). The inverse map in MINs needs to model the manifold of validx thus making GANs a
suitable choice. We can instantiate our inverse map with a GAN by choosingD in Equation 3 to be
theJensen-Shannondivergence measure. Since we generatex conditioned ony, the discriminator is
parameterized asDisc(x jy), and trained to output 1 for a valid(x; y) pair (i.e., wherey = f (x) and
x comes from the data) and 0 otherwise. Thus, we optimize the following objective:

min
�

max
Disc

L p(D) = Ey � p(y)
�
Ex � pD (x jy ) [log Disc(xjy)] + Ez� p0 (z) [log(1 � Disc(f � 1

� (z; y)jy)]
�

This model is similar to a conditional GAN (cGAN), which has been used in the context of modeling
distribution ofx conditioned on a discrete-valued label (Mirza & Osindero, 2014). As discussed in
Section 3.3, we additionally reweight the data distribution using importance sampling. To that end,
we discretize the spaceY into B discrete binsb1; � � � ; bB and, following Section 3.3, weight each

bin bi according top(bi ) / N bi
N bi + � exp

�
j bi � y � j

�

�
, whereNbi is the number of datapoints in the bin

and� is a hyperparameter. Experimental details are provided in the appendix.

In the active setting, we perform active data collection using the synthetic relabelling algorithm
described in Section 3.4. In practice, we train two copies off � 1

� . The �rst, which we call the
exploration modelf � 1

expl, is trained with data augmented via synthetically generated samples (i.e.,
D0

t ). The other copy, called the exploitation modelf � 1
exploit, is trained on only real samples (i.e.,

Dt ). This improves stability during training, while still performing data collection as dictated by
Algorithm 2. After training, we infer best possiblex? from the trained model using the inference
procedure described in Section 3.2. In the active setting, the inference procedure is applied onf � 1

exploit,
the inverse map that is trained only on real data points.

4 EXPERIMENTAL EVALUATION

The goal of our empirical evaluation is to answer the following questions.(1) Can MINs successfully
solve optimization problems of the form shown in Equations 1 and 2, in static settings and active
settings, better than or comparable to prior methods?(2) Can MINs generalize to high dimensional
spaces, where valid inputsx lie on a lower-dimensional manifold, such as the space of natural images?
(3) Is reweighting the data distribution important for effective data-driven model-based optimization?
(4) Does our proposed inference procedure effectively discover valid inputsx with better values than
any value seen in the dataset?(5) Does randomized labeling help in active data collection?

4.1 DATA -DRIVEN OPTIMIZATION WITH STATIC DATASETS

We �rst study thedata-drivenmodel-based optimization setting. This requires generating points
that achieve a better function value than any point in the training set or, in the contextual setting,
better than the policy that generated the datasetfor each context. We evaluate our method on a batch
contextual bandit task proposed in prior work (Joachims et al., 2018) and on a high-dimensional
contextual image optimization task. We also evaluate our method on several non-contextual tasks
that require optimizing over high-dimensional image inputs to evaluate a semantic score function,
including hand-written characters and real-world photographs.

Batch contextual bandits.We �rst study the contextual optimization problem described in Equa-
tion 2. We follow the protocol set out by Joachims et al. (2018), which evaluates contextual bandit
policies trained on a static dataset for a simulated classi�cation tasks. The data is constructed by
selecting images from the dataset as the context, a random label as theinput, and a binary indicator
indicating whether or not the label is correct as thescore. We compare our method to previously
proposed techniques, including the BanditNet model proposed by Joachims et al. (2018) on the
MNIST and CIFAR-10 (Krizhevsky, 2009) datasets. Note that this task is different from regular
classi�cation, in that the observed feedback ((ci ; x i ; yi ) pairs) is partial, in that we do not observe the
correct label for each contextci , but only whether or not the label in the training tuple is correct or
not. We evaluate on two datasets: (1) data generated by selecting random labelsx i for each context
ci and (2) data where the correct label is used 49% of the time, which matches the protocol in prior
work (Joachims et al., 2018). We compare to BanditNet (Joachims et al., 2018) on identical dataset
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Dataset Dataset Labels BanditNet BanditNet� MIN (Ours) w/o Inf MIN (Ours)
MNIST 49%correct 36:42� 0:6 � 94:2 � 0:13 95.0� 0.16
MNIST Uniform 9:94� 0:0 � 92:21� 0:22 93.67� 0.51
CIFAR-10 49%correct 42:13� 2:35 87:0 91:35� 0:87 92.21� 1.0
CIFAR-10 Uniform 14:43� 1:43 � 76:31� 0:40 77.12� 0.54

Table 1: Test accuracy on MNIST and CIFAR-10 with 50k bandit feedback training examples. BanditNet� is
the result from Joachims et al. (2018), while the BanditNet column is our implementation; we were unable
to replicate the performance from prior work (details in Appendix C). MINs outperform both BanditNet and
BanditNet� , both with and without the inference procedure in Section 3.2.

(a) Thickest stroke (b) Thickest digit (3) (c) Most number of blobs (8)

Figure 1: Results for non-contextual static dataset optimization on MNIST: (a) and (b): Stroke width optimization,
and (c): Maximization of disconnected black pixel blobs. From left to right: MINs, MINs w/o Inference
(Section 3.2), MINs w/o Reweighting (Section 3.3), and direct optimization of a forward model. Obsere that
MINs can produce thickest characters which resemble valid digits. Optimizing the forward function often
turns non-digit pixels on, thus going off the valid manifold. Both the reweighting and inference procedure are
important for good results. Quantitative results are provided in Appendix C.3.

splits. We report the average 0-1 test accuracy for all methods in Table 1. The results show that MINs
drastically outperform BanditNet on both MNIST and CIFAR-10 datasets, indicating that MINs can
successfully perform contextual model-based optimization in the static (data-driven) setting. The
results also show that utilizing the inference procedure in Section 3.2 produces an improvement of
about 1.5% and 1.0% in test-accuracy on MNIST and CIFAR-10, respectively.

Character stroke width optimization. In the next experiment, we study how well MINs optimize
over high-dimensional inputs, where valid inputs lie on a lower-dimensional manifold. We constructed
an image optimization task out of the MNIST (LeCun & Cortes, 2010) dataset. The goal is to optimize
directly over the image pixels, to produce images with the thickest stroke width, such that the image
corresponds either (a) to any valid character or (b) a valid instance of a particular character class. A
successful algorithm will produce the thickest character that is still recognizable. In Figure 1, we
observe that MINs generate imagesx that maximize the respective score functions in each case. We
also evaluate on a harder task where the goal is to maximize the number of disconnected blobs of
black pixels in an image of a digit. For comparison, we evaluate a method that directly optimizes the
image pixels with respect to a forward model, of the formf � (x). In this case, the solutions are far off
the manifold of valid characters. We also compare to MINs without the reweighting scheme and the
inference procedure, wherey is the maximum possibley in the dataset to demonstrate the bene�ts of
these two aspects.

Semantic image optimization.The goal in these tasks is to quantify the ability of MINs to optimize
high-level properties that require semantic understanding of images. We consider MBO tasks on the
IMDB-Wiki faces (Rothe et al., 2015; 2016) dataset, where the functionf (x) is the negative of the
age of the person in the image. Hence, images with younger people have higher scores. We construct
two versions of this task: one where the training data consists of all faces older than 15 years, and
the other where the model is trained on all faces older than 25 years. This ensures that our model
cannot simply copy the youngest face. To obtain ground truth scores for the generated faces, we use
subjective judgement from human participants. We perform a study with 13 users. Each user was
asked to answer a set of 35 binary-choice questions each asking the user to pick the older image of the
two provided alternatives. We then �t an age function to this set of binary preferences, analogously to
Christiano et al. (2017).
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