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ABSTRACT

Generating reliable illumination and viewpoint invariant keypoints is critical for
tasks such as feature-based SLAM and SfM. Recently, many learned keypoint
methods have demonstrated improved performance on challenging benchmarks.
However, it is extremely difficult to create consistent training samples for interest
points in natural images, since they are hard to define clearly and consistently for
a human annotator. In this work, we propose a novel end-to-end self-supervised
learning scheme that can effectively exploit unlabeled data to provide more re-
liable keypoints under various scene conditions. Our key contributions are (i) a
novel way of regressing keypoints, which avoids discretization errors introduced
by related methods; (ii) a novel way of extracting associated descriptors by means
of an upsampling step, which allows regressing the descriptors with a more fine-
grained detail for the per-pixel level metric learning and (iii) a novel way of train-
ing the descriptor by using a proxy task, i.e. neural outlier rejection. By using this
proxy task we can derive a fully self-supervised training loss for the descriptor,
thus avoiding the need for manual annotation. We show that these three contribu-
tions greatly improve the quality of feature matching and homography estimation
on challenging benchmarks over the state-of-the-art.

1 INTRODUCTION

Detecting interest points in RGB images and matching them across views is a fundamental capa-
bility of many robotic system. Tasks such Simultaneous Localization and Mapping (SLAM) (Ca-
dena et al., 2016), Structure-from-Motion (SfM) (Agarwal et al., 2010) and object detection as-
sume that salient keypoints can be detected and re-identified in a wide range of scenarios, which
requires invariance properties to lighting effects, viewpoint changes, scale, time of day, etc. How-
ever, these tasks still mostly rely on handcrafted image features such as SIFT (Lowe et al., 1999) or
ORB (Rublee et al., 2011), which have been shown to be limited in performance when compared to
learned alternatives (Balntas et al., 2017).

Deep learning methods have revolutionized many computer vision applications including 2D/3D ob-
ject detection (Lang et al., 2019; Tian et al., 2019), semantic segmentation (Li et al., 2018; Kirillov
et al., 2019), human pose estimation (Sun et al., 2019), etc. However, most learning algorithms need
supervision and rely on labels which are often expensive to acquire. Moreover, supervising interest
point detection is unnatural, as a human annotator cannot readily identify salient regions in images
as well as key signatures or descriptors, which would allow their re-identification. Self-supervised
learning methods have gained in popularity recently, being used for tasks such as depth regres-
sion (Guizilini et al., 2019), tracking (Vondrick et al., 2018) representation learning (Wang et al.,
2019; Kolesnikov et al., 2019). Following DeTone et al. (2018b) and Christiansen et al. (2019), we
propose a self-supervised methodology for jointly training a keypoint detector as well as its associ-
ated descriptor. Furthermore, we introduce a novel neural outlier rejection scheme (Brachmann &
Rother, 2019), in the form of an additional discriminative network that learns to generate optimal
inlier sets from possible corresponding point-pairs. Even though trained in a self-supervised man-
ner without any direct supervision, this network can effectively learn distinguishable features for
homography estimation, leading to a better gradient flow between consistent point-pairs.

Our main contributions are: (i) a baseline architecture that achieves better performance than ex-
isting self-supervised/unsupervised keypoint detection and description methods; (ii) a novel self-
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supervised learning scheme which cascades an additional outlier rejection network to improve train-
ing performance; and (iii) we show that the combination of both establishes a new state-of-the-art
performance for the task of self-supervised keypoint detection and descriptor learning.

2 RELATED WORK

The recent success of deep learning-based methods in many computer vision applications, espe-
cially feature descriptors, has motivated general research in the direction of image feature detection
beyond handcrafted methods. Such state-of-the-art learned keypoint detectors and descriptors have
recently demonstrated improved performance on challenging benchmarks (DeTone et al., 2018b;
Christiansen et al., 2019; Sarlin et al., 2019).

Rosten & Drummond (2006) (extended in Rosten et al. (2010)) pioneered an attempt leveraging
learning to detect corner type features in the image by creating a decision tree that encodes rules for
correctly classifying corners present in training samples. Recent advances in Convolutional Neural
Networks (CNNs) have also dramatically shifted the technical direction of learning-based keypoint
methods. In TILDE (Verdie et al., 2015), the authors introduced multiple piece-wise linear regres-
sion models to detect features under severe changes in weather and lighting conditions. To train
the regressors, they generate pseudo ground truth interest points by using a Difference-of-Gaussian
(DoG) detector (Lowe, 2004) from an image sequence captured at different times of day and sea-
sons. The limitation is, however, that the detector is not rotation and scale invariant, as it is trained
on static viewpoint images. LIFT (Yi et al., 2016) is able to estimate features which are robust to
significant viewpoint and illumination differences using an end-to-end learning pipeline consisting
of three modules: interest point detection, orientation estimation and descriptor computation. They
use an off-the-shelf SfM algorithm to generate more realistic training samples under different view-
points and lighting conditions. However, this method is too slow for real-time applications as each
module in the pipeline does not share the same computation, and the model does not train on whole
images but small patches in multiple steps. In LF-Net (Ono et al., 2018a), the authors introduced
an end-to-end differentiable network which estimates position, scale and orientation of features by
jointly optimizing the detector and descriptor in a single module. This model has demonstrated
state-of-the-art performance for SfM image matching, but it also does not share computations be-
tween the detector and descriptor, and its use of patches restricts the area from which the network
can learn descriptors.

Quad-networks (Savinov et al., 2017) introduced an unsupervised learning scheme for training a
shallow 2-layer network to predict feature points. The model is trained to learn a ranking of in-
variant interest points under various image transformations. Interest points are then extracted from
top/bottom quantiles of this ranking. It is however still a patch-based network, and does not provide
descriptors for each patch. SuperPoint (DeTone et al., 2018b) is a self-supervised framework that is
trained on whole images and is able to predict both interest points and descriptors. Its architecture
shares most of the computation in the detection and description modules, making it fast enough for
real-time operation, but it requires multiple stages of training which is not desirable in practice. First,
a base detector model is trained on online-generated synthetic images of simple geometrical shapes
with annotated ground truth interest points defined as corners, junctions, blobs and line segments.
The model is then trained on natural images to generate pseudo ground truth points by aggregating
predicted points of different homography transformations per image. Finally, a siamese network
model is trained to estimate both points and descriptors. Most recently, UnsuperPoint (Christiansen
et al., 2019) presented a fast deep-learning based keypoint detector and descriptor which requires
only one round of training in a self-supervised manner. Inspired by SuperPoint, it also shares most
of the computation in the detection and description modules, and uses a siamese network to learn
descriptors. They also employ simple homography adaptation along with non-spatial image aug-
mentations to create the 2D synthetic views required to train their self-supervised keypoint estima-
tion model, which is advantageous because it trivially solves data association between these views.
Another interesting work is the Self-Improving Visual Odometry algorithm (DeTone et al., 2018a),
where the authors first estimate 2D keypoints and descriptors for each image in a monocular se-
quence using a convolutional network, and then use a bundle adjustment method to classify the
stability of those keypoints based on re-projection error, which serves as supervisory signal to re-
train the model. Their method, however, is not fully differentiable, so it cannot be trained in an
end-to-end manner.
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Figure 1: Our proposed framework for self-supervised keypoint detector and descriptor learning
with neural outlier rejection. The outlier rejection model produces an indirect supervisory signal to
the KeyPointNet, while the other losses provide direct supervisory signals. The additional gradient
propagated from our proxy network, InlierOutlierNet (IONet), regularizes the keypoints to have
distinguishable inlier and outlier sets.

3 SELF-SUPERVISED KEYPOINT AND DESCRIPTOR LEARNING

In this work, we aim to regress a function which takes as input an image and outputs keypoints,
descriptors, and scores. Specifically, we define K : I → {p, f , s}, with input image I ∈ R3×H×W ,
and output keypoints p = {[u, v]} ∈ R2×N , descriptors f ∈ R256×N and keypoint scores s ∈ RN ;
N represents the total number of keypoints extracted and it varies according to an input image
resolution, as defined in the following sections. We note that throughout this paper we use p to refer
to the set of keypoints extracted from an image, while p is used to refer to a single keypoint.

Following the work of DeTone et al. (2018b), we train the proposed learning framework in a self-
supervised fashion by receiving as input a source image Is such that K(Is) = {ps, fs, ss} and
a target image It such that K(It) = {pt, ft, st}. Images Is and It are related through a known
homography transformation H which warps a pixel from the source image and maps it into the
target image. We define p∗t = {[u∗i , v∗i ]} = H(ps), with i ∈ I - e.g. the corresponding locations of
source keypoints ps after being warped into the target frame.

Inspired by recent advances in Neural Guided Sample Consensus methods (Brachmann & Rother,
2019), we define a second function C which takes as input point-pairs along with associated weights
according to a distance metric and outputs the likelihood that each point-pair belongs to an inlier
set of matches. Formally, we define C : {ps,p

∗
t , d(fs, f

∗
t )} ∈ R5×N → RN as a mapping which

computes the probability that a point-pair belongs to an inlier set. We note that C is only used at
training time to choose an optimal set of consistent inliers from possible corresponding point pairs
and to encourage the gradient flow through consistent point-pairs.

An overview of our method is presented in Figure 1. We define the model K parametrized by
θK as an encoder-decoder style network. The encoder consists of 4 VGG-style blocks stacked to
reduce the resolution of the image H ×W to Hc ×Wc = H/8 ×W/8. This allows an efficient
prediction for keypoint location and descriptors. In this low resolution embedding space, each pixel
corresponds to an 8× 8 cell in the original image. The decoder consists of 3 separate heads for the
keypoints, descriptors and scores respectively. Thus for an image of input size H ×W , the total
number of keypoints regressed is (H ×W ) /64, each with a corresponding score and descriptor.
For every convolutioanl layer except the final one, batch normalzation is applied with activation
funcion leakyReLU. A detailed description of our network architecture can be seen in Fig. 2. The
Inlier-Outlier model IO is a 1D CNN parametrized by θIO, for which we follow closely the structure
from Brachmann & Rother (2019) with 4 default setting residual blocks and the original activation
function for final layer is removed.

3.1 KEYPOINT LEARNING

Following Christiansen et al. (2019), the keypoint head outputs a location relative to the 8 × 8 grid
in which it operates for each pixel in the encoder embedding: [u′i, v

′
i]. The corresponding input
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Figure 2: The KeyPointNet architecture. The encoder part consists of 4 VGG-style blocks, and the
decoder part consists of 3 separate heads for keypoint locations, scores and descriptors respectively.

image resolution coordinates [ui, vi] are computed taking into account the grid’s position in the
encoder embedding. We compute the corresponding keypoint location [u∗i , v

∗
i ] in the target frame

after warping via the known homography H. For each warped keypoint, the closest corresponding
keypoint in the target frame is associated based on Euclidean distance. We discard keypoint pairs
for which the distance is larger than a threshold εuv . The associated keypoints in the target frame
are denoted by p̂t = {[ût, v̂t]}. We optimize keypoint locations using the following self-supervised
loss formulation, which enforces keypoint location consistency across different views of the same
scene:

Lloc =
∑
i

||p∗t − p̂t||2 . (1)

While Christiansen et al. (2019) predict keypoints which are evenly distributed within the cells, they
enforce that the predicted keypoint locations do not cross cell boundaries (i.e. each cell predicts a
keypoint inside it). However, this leads to suboptimal performance when stable keypoints appear
near cell borders. As illustrated in Figure 3, while keypoint association is done via 2D Euclidean
distance, Christiansen et al. (2019) force keypoint locations to “stay” inside cells, while they may
be naturally pushed outside towards salient points which lie on the boundary of adjacent cells. We
propose a novel formulation which allows us to effectively aggregate keypoints across cell bound-
aries. Specifically, we map the relative cell coordinates [u′s, v

′
s] to input image coordinates via the

following function:

[vi, ui] = ([rowcenteri , colcenteri ] + ([v′i, u
′
i]))

σ1(σ2 − 1)

2
v′i, u

′
i ∈ (−1, 1)

, (2)

with σ2 = 8, i.e. the cell size, and σ1 is a ratio relative to the cell size. By setting σ1 larger than
1, we allow the network to predict keypoint locations across cell borders. Our formulation predicts
keypoint locations with respect to the cell center, and allows the predicted keypoints to drift across
cell boundaries. In the ablation study (Section 4.3), we quantify the effect of this contribution and
show that it significantly improves the performance of our keypoint detector.

3.2 DESCRIPTOR LEARNING

As recently shown by Pillai et al. (2018) and Guizilini et al. (2019), subpixel convolutions via pixel-
shuffle operations (Shi et al., 2016) can greatly improve the quality of dense predictions, especially
in the self-supervised regime. In this work, we include a fast upsampling step before regressing the
descriptor, which promotes the capture of finer details in a higher resolution grid. The architectural
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(a) (b)

Figure 3: Illustrative example of cross border detection. We show as example how a warped point (in
red) can be associated to multiple predicted points (in blue) based on a distance threshold. In this
case, forcing a keypoint prediction in the same cell can cause converging issues, since these points
can only be pulled to the border, as shown in (a). In our method, we design the network to predict
the localization from the cell center, which allows keypoints to be outside the border for better
aggregation, as shown in (b).

diagram of the descriptor head is show in Figure 2. In the ablative analysis (Section 4.3), we show
that the addition of this step greatly improves the quality of our descriptors.

We employ metric learning for training the descriptors. While the contrastive loss (Hadsell et al.,
2006) is commonly used in the literature for this task, we propose to use a per-pixel triplet
loss (Schroff et al., 2015) with nested hardest sample mining as described in Tang et al. (2018)
to train the descriptor. Recall that each keypoint pi ∈ ps in the source image has associated de-
scriptor fs, which we obtain by sampling the appropriate location in the dense descriptor map fs
as described in DeTone et al. (2018b). The associated descriptor f∗i,+ = f∗i in the target frame is
obtained by sampling the appropriate location in the target descriptor map ft based on the warped
keypoint position p∗i . The nested triplet loss is defined as:

Ldesc =
∑
i

max(0, ‖f i, f∗i,+‖2 − ‖f i, f
∗
i,−‖2 +m) , (3)

where + and − indicate positive and negative samples relative to the anchor descriptor, while m
denotes the distance margin.

3.3 SCORE LEARNING

The third head of the decoder is responsible for outputting the score associated with each descriptor.
At test time this value will indicate the most reliable keypoints from which a subset will be selected.
Thus the score is trained to self-calibrate the quality of predicted keypoints while maintaining con-
sistency across frames. Following the work of Christiansen et al. (2019), we define the score loss as
the following:

Lscore =
∑
i

[
(si + ŝi)

2
· (d(pi, p̂i)− d̄) + (si − ŝi)2

]
, (4)

where d̄ is the average reprojection error of associated points in the current frame, d̄ =
∑L
i
d(pi,p̂i)

L ,
with d being the feature distance in 2D Euclidean space and L is that total number of feature pairs.
We note that the aim of Lscore is two-fold: (i) we want to ensure that feature-pairs have consistent
scores and (ii) the network should learn that good keypoints are the ones with low feature point
distance d.
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3.4 OUTLIER REJECTION

Keypoint and descriptor learning is a task which is tightly coupled with outlier rejection. In this
work, we propose to use the latter as a proxy task to supervise the former. Specifically, we associate
keypoints from the source and target images based on descriptor distance: {ps,p

∗
t , x(fs, f

∗
t )}. In

addition, only keypoints with the lowest K predicted scores are used for training. Similar to the
hardest sample mining, this approach accelerates the converging rate and encourages the generation
of a richer supervisory signal from the outlier rejection loss. To disambiguate the earlier association
of keypoint pairs based on reprojected distance defined in Section 3.1, we denote the distance metric
by x and specify that we refer to Euclidean distance in descriptor space. The resulting keypoint pairs
along with the computed distance are passed through our proposed Inlier-Outlier(IO)-Net which
outputs the probability that each pair is an inlier or outlier. Formally, we define the loss at this step
as:

LIO =
∑
i

1

2
(ri − sign(||p∗i − p̂i||2 − εuv))2 , (5)

where r is the output of the IO-Net, while εuv is the same Euclidean distance threshold used in
Section 3. Different from a normal classifier, we also back propagate the gradients back to the input
sample, i.e., {ps,p

∗
t , d(fs, f

∗
t )}, thus allowing us to optimize both the location and descriptor for

these associated point-pairs in an end-to-end differentiable manner.

The outlier rejection task is related to the neural network based RANSAC (Brachmann & Rother,
2019) in terms of the final goal. In our case, since the ground truth homography transform H is
known, the random sampling and consensus steps are not required. Intuitively, this can be seen as
a special case where only one hypothesis is sampled, i.e. the ground truth. Therefore, the task is
simplified to directly classifying the outliers from the input point-pairs. Moreover, a second different
with respect to existing neural RANSAC methods arises from the way the outlier network is used.
Specifically, we use the outlier network to explicitly generate an additional proxy supervisory signal
for the input point-pairs, as opposed to rejecting outliers.

The final training objective we optimize is defined as:
L = αLloc + βLdesc + λLscore + LIO , (6)

where [α, β, λ] are weights balancing different losses.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We train our method using the COCO dataset (Lin et al., 2014), specifically the 2017 version which
contains 118k training images. Note that we solely use the images, without any training labels,
as our method is completely self-supervised. Training on COCO allows us to compare against
SuperPoint (DeTone et al., 2018b) and UnsuperPoint (Christiansen et al., 2019), which use the same
data for training.

We evaluate our method on the HPatches dataset (Balntas et al., 2017), which contains of 57 illu-
mination scenes and 59 viewpoint scenes. Each scene consists of a reference image and 5 target
images with varying photometric and geometric changes for a total of 580 image pairs. In Table 2
and Table 3 we report results averaged over the whole dataset. And for fair comparison, we evaluate
results generated without applying Non-Maxima Suppression (NMS).

To evaluate our method and compare with the state-of-the-art, we follow the same procedure as
described in (DeTone et al., 2018b; Christiansen et al., 2019) and report the following metrics:
Repeatability, Localization Error, Matching Score (M.Score) and Homography Accuracy. For the
Homography accuracy we use thresholds of 1, 3 and 5 pixels respectively (denoted as Cor-1, Cor-3
and Cor-5 in Table 3). The details of the definition of these metrics can be found in the appendix.

4.2 IMPLEMENTATION DETAILS

We implement our networks in PyTorch (Paszke et al., 2017) and we use the ADAM (Kingma & Ba,
2014) optimizer. We set the learning rate to 10−3 and train for 50 epochs with a batch size of 8; we
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Repeat. ↑ Loc. Error ↓ Cor-1 ↑ Cor-3 ↑ Cor-5 ↑ M.Score ↑
V0-Baseline 0.633 1.044 0.503 0.796 0.868 0.491
V1-Cross 0.689 0.935 0.491 0.805 0.874 0.537
V2-CrossUpsampling 0.686 0.918 0.579 0.866 0.916 0.544
V3-IONet 0.685 0.885 0.602 0.836 0.886 0.520
V4 - Proposed 0.686 0.890 0.591 0.867 0.912 0.544

Table 1: Ablative comparison for 5 different configurations where V0: baseline, V1: V0 + cross
border detection, V2: V1 + descriptor upsampling, V3: V2 + LIO, and finally the Proposed method
: V3 + Ldesc.

halve the learning rate once after 40 epochs of training. The weights of both networks are randomly
initialized.

We set the weights for the total training loss as defined Equation (6) to α = 1, β = 2, λ = 1. These
weights are selected to balance the scales of different terms. We set σ1 = 2 in order to avoid border
effects while maintaining distributed keypoints over image, as described in Sec. 3.1. The triplet loss
marginm is set to 0.2. The relaxation criteria c for negative sample mining is set to 8. When training
the outlier rejection network described in Sec. 3.4 we set K = 300, i.e. we choose the lowest 300
scoring pairs to train on.

We perform the same types of homography adaptation as in DeTone et al. (2018b) which consists
of crop, translation, scale, rotation, and symmetric perspective transform. After cropping the image
with 0.7 (relative to the original image resolution), the amplitudes for other transforms are sampled
uniformly from a pre-defined range: scale [0.8, 1.2], rotation [0, π4 ] and perspective [0, 0.2]. Fol-
lowing Christiansen et al. (2019), we then apply non-spatial augmentation separately on the source
and target frames to allow the network to learn illumination invariance. We add random per-pixel
Gaussian noise with magnitude 0.02 (for image intensity normalized to [0, 1]) and Gaussian blur with
kernel sizes[1, 3, 5] together with color augmentation in brightness [0.5, 1.5], contrast [0.5, 1.5], satu-
ration [0.8, 1.2] and hue [−0.2, 0.2]. In addition, we randomly shuffle the color channels and convert
color image to gray with probability 0.5.

4.3 ABLATIVE STUDY

In this section, we evaluate five different variants of our method. All experiments described in this
section are performed on images of resolution 240x320. We first define V0-V2 as (i) V0: baseline
version with cross border detection and descriptor upsampling disabled; (ii) V1: V0 with cross
border detection enabled; (iii) V2: V1 with descriptor upsampling enabled. These three variants are
trained without neural outlier rejection, while the other two variants are (iv) V3: V2 with descriptor
trained using only LIO and without Ldesc and finally (v) V4 - proposed: V3 together with Ldesc
loss. The evaluation of these methods is shown in Table 1.

We notice that by avoiding the border effect described in Sec. 3.1, V1 achieves an obvious im-
provement in Repeatablity as well as the Matching Score. Adding the descriptor upsampling step
improves the matching performance greatly without degrading the Repeatability, as can be seen by
the numbers reported under V2. Importantly, even though V3 is trained without the descriptor loss
Ldesc defined in Sec. 3.2, we note further improvements in matching performance. This validates
our hypothesis that the proxy task of inlier-outlier prediction can generate supervision for the origi-
nal task of keypoint and descriptor learning. Finally, by adding the tripled loss, our model reported
under V4 - Proposed achieves good performance which is well balanced across all the metrics we
compute.

To quantify our runtime performance, we evaluated our model on a desktop with an Nvidia Titan
Xp GPU on images of 240x320 resolution. We recorded 174.5 FPS and 194.9 FPS when running
our model with and without the descriptor upsampling step.

4.4 PERFORMANCE EVALUATION

In this section, we compare the performance of our method with the state-of-the-art, as well as with
traditional methods on images of resolutions 240× 320 and 480× 640 respectively. For the results
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Repeat. ↑ Loc. Error ↓
Method 240x320 480x640 240x320 480x640
ORB 0.532 0.525 1.429 1.430
SURF 0.491 0.468 1.150 1.244
BRISK 0.566 0.505 1.077 1.207
SIFT 0.451 0.421 0.855 1.011
LF-Net(indoor) (Ono et al., 2018b) 0.486 0.467 1.341 1.385
LF-Net(outdoor) (Ono et al., 2018b) 0.538 0.523 1.084 1.183
SuperPoint (DeTone et al., 2018b) 0.631 0.593 1.109 1.212
UnsuperPoint (Christiansen et al., 2019) 0.645 0.612 0.832 0.991
Proposed 0.686 0.684 0.890 0.970

Table 2: Keypoint detector performance.

240x320, 300 points 480 x 680, 1000 points
Method Cor-1 Cor-3 Cor-5 M.Score Cor-1 Cor-3 Cor-5 M.Score
ORB 0.131 0.422 0.540 0.218 0.286 0.607 0.71 0.204
SURF 0.397 0.702 0.762 0.255 0.421 0.745 0.812 0.230
BRISK 0.414 0.767 0.826 0.258 0.300 0.653 0.746 0.211
SIFT 0.622 0.845 0.878 0.304 0.602 0.833 0.876 0.265
LF-Net(indoor) 0.183 0.628 0.779 0.326 0.231 0.679 0.803 0.287
LF-Net(outdoor) 0.347 0.728 0.831 0.296 0.400 0.745 0.834 0.241
SuperPoint 0.491 0.833 0.893 0.318 0.509 0.834 0.900 0.281
UnsuperPoint 0.579 0.855 0.903 0.424 0.493 0.843 0.905 0.383
Proposed 0.591 0.867 0.912 0.544 0.564 0.851 0.907 0.510

Table 3: Homography estimation performance.

obtained using traditional features as well as for LF-Net (Ono et al., 2018b) and SuperPoint (DeTone
et al., 2018b) we report the same numbers as computed by (Christiansen et al., 2019). During testing,
keypoints are extracted in each view keeping the top 300 points for the lower resolution and 1000
points for the higher resolution from the score map. The evaluation of keypoint detection is shown
in Table 2. For Repeatibility, our method notably outperforms other methods and is not significantly
affected when evaluated with different image resolutions. For the localization error, UnsuperPoint
performs better in lower resolution image while our method performs better for higher resolution.

The homography estimation and matching performance results are shown in Table 3. In general,
self-supervised learning methods provide keypoints with higher matching score and better homog-
raphy estimation for the Cor-3 and Cor-5 metrics, as compared to traditional handcrafted features
(e.g. SIFT). For the more stringent threshold Cor-1, SIFT performs the best, however, our method
outperforms all other learning based methods. As shown in Table 1, our best performing model for
this metric is trained using only supervision from the outlier rejection network, without the triplet
loss. This indicates that, even though fully self-supervised, this auxiliary task can generate high
quality supervisory signals for descriptor training. In addition, we show qualitative results of our
method in the appendix.

5 CONCLUSION

In this paper, we proposed a new learning scheme for training a keypoint detector and associated
descriptor in a self-supervised fashion. Different with existing methods, we used a proxy network to
the generate extra supervisory signal from a task tightly connected to keypoint extraction: the out-
lier rejection. We show that even without an explicit loss for the descriptor, the supervisory signal
from the auxiliary task can be effectively propagated back to the keypoint network to generate dis-
tinguishable descriptors. Using the combination of proposed method as well as improved structure,
we achieved competitive results in the homography estimation benchmark.
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A HOMOGRAPHY ESTIMATION EVALUATION METRIC

We evaluated our results using metric same as DeTone et al. (2018b). The Repeatability, Localization
Error and Matching Score are generated with correct distance threshold 3. All the four metrics are
evaluated from both view points for each image pair.

Repeatability. The repeatability is the ratio of correctly associated points after warping into target
frame. The association is performed by selecting closest in-view point and compare the distance
with correct distance threshold.

Localization Error. The localization error is the calculated by averaging the distance of points and
their associated points.

Matching Score (M.Score). The matching score is the success rate of retrieve correct associated
points by performance nearest neighbour matching using descriptors.

Homography Accuracy. The homography accuracy is the success rate of correctly estimating the
homographies. The mean distance between four corners of the image planes and the warped image
planes using estimated and groundtruth homography matrices are compared with distance 1, 3, 5.

B QUALITATIVE RESULTS

In this section, we show qualitative results of our best model. Figure 4 to 6 denoting examples of
successful matching under strong illumination, rotation and perspective transformation.

Figure 4: Qualitative results of our proposed methods for illumination cases.
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Figure 5: Qualitative results of our proposed methods for rotation cases.
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Figure 6: Qualitative results of our proposed methods for perspective cases.
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