
Under review as a conference paper at ICLR 2020

GRAPHMIX: REGULARIZED TRAINING OF GRAPH
NEURAL NETWORKS FOR SEMI-SUPERVISED LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present GraphMix, a regularization technique for Graph Neural Network based
semi-supervised object classification, leveraging the recent advances in the reg-
ularization of classical deep neural networks. Specifically, we propose a unified
approach in which we train a fully-connected network jointly with the graph
neural network via parameter sharing, interpolation-based regularization and self-
predicted-targets. Our proposed method is architecture agnostic in the sense that
it can be applied to any variant of graph neural networks which applies a para-
metric transformation to the features of the graph nodes. Despite its simplicity,
with GraphMix we can consistently improve results and achieve or closely match
state-of-the-art performance using even simpler architectures such as Graph Convo-
lutional Networks, across three established graph benchmarks: the Cora, Citeseer
and Pubmed citation network datasets, as well as three newly proposed datasets :
Cora-Full, Co-author-CS and Co-author-Physics.

1 INTRODUCTION

Due to the presence of graph structured data across a wide variety of domains, such as biological
networks, social networks and telecommunication networks, there have been several attempts to
design neural networks that can process arbitrarily structured graphs. Early work includes (Gori
et al.; Scarselli et al., 2009) which propose a neural network that can directly process most type of
graphs e.g., acyclic, cyclic, directed, and undirected graphs. More recent approaches include (Bruna
et al., 2013; Henaff et al., 2015; Defferrard et al., 2016; Kipf & Welling, 2016; Gilmer et al., 2017;
Hamilton et al., 2017; Veličković et al., 2018; 2019; Qu et al., 2019; Gao & Ji, 2019; Ma et al.,
2019), among others. Many of these approaches are designed for addressing the important problem
of Semi-supervised learning over graph structured data (Zhou et al., 2018). However, much of this
research effort has been dedicated to developing novel architectures.

Unlike many existing works which try to come up with the new architectures, we focus on architecture-
agnostic regularization techniques for graph neural networks based semi-supervised object classifica-
tion. Data Augmentation based regularization has been shown to be very effective in other types of
neural networks but how to apply these techniques in graph neural networks is still under-explored.
Our proposed method GraphMix 1is inspired by interpolation based data augmentation techniques
(Zhang et al., 2018; Verma et al., 2019a) but is changed appropriately to make it suitable for graph
structured data. Furthermore, GraphMix also utilizes the self-target-prediction (Laine & Aila, 2016;
Tarvainen & Valpola, 2017; Verma et al., 2019b; Berthelot et al., 2019) based data-augmentation. We
show that with our proposed regularization techniques, we can achieve state-of-the-art performance
even when using simpler graph neural network architectures such as Graph Convolutional Networks
(Kipf & Welling, 2017) and without incurring any significant additional computation cost.

1code available at https://github.com/anon777000/GraphMix

1

Under review as a conference paper at ICLR 2020

2 PROBLEM DEFINITION AND PRELIMINARIES

2.1 PROBLEM SETUP

We are interested in the problem of semi-supervised object classification using graph structured data.
We can formally define such graph structured data as G = (V, E), where V represents the set of
nodes {v1, . . . , vn}, and E is the set of edges between the nodes of V .

Each node vi in the graph has a corresponding d-dimensional feature vector xi ∈ Rd. The feature
vectors of all the nodes X = [x1, . . . ,xn]

> are stacked together to form the entire feature matrix
X ∈ Rn×d. Each node belongs to one out of C classes and can be labeled with a C-dimensional
one-hot vector yi ∈ {0, 1}C . Given the labels of YL for few of the labeled nodes VL ⊂ V , the task
is to predict the labels YU of the remaining nodes VU = V \ VL.

2.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNN) learn the lth layer representations of a sample i by leveraging the
representations of the samplesNB(i) in the neighbourhood of i. This is done by using an aggregation
function that takes as an input the representations of all the samples and the graph structure and
outputs the aggregated representation. The aggregation function can be defined using the Graph
Convolution layer (Kipf & Welling, 2017), Graph Attention Layer (Veličković et al., 2018), or any
general message passing layer (Gilmer et al., 2017). Formally, let Hl ∈ Rn×k be a matrix containing
the k-dimensional representation of n nodes in the lth layer, then:

Hl+1 = a(HlW, E) (1)

where W ∈ Rk×k′ is a linear transformation matrix, k′ is the dimension of (l + 1)th layer and a is
the aggregation function that utilizes the graph structure.

2.3 INTERPOLATION BASED REGULARIZATION TECHNIQUES

Recently, interpolation-based techniques have been proposed for regularizing neural networks. We
briefly describe some of these techniques here. Mixup (Zhang et al., 2018) trains a neural network on
the convex combination of input and targets, whereas Manifold Mixup (Verma et al., 2019a) trains a
neural network on the convex combination of the hidden states of a randomly chosen hidden layer and
the targets. While Mixup regularizes a neural network by enforcing a constraint that the model output
should change linearly in between the examples in the input space, Manifold Mixup regularizes the
neural network by learning better (more discriminative) hidden states.

Suppose g : x −→ h is a function that maps input samples to hidden states, f : h −→ ŷ is a function that
maps hidden states to predicted output, λ is a random variable drawn from Beta(α, α) distribution,
Mixλ(a,b) = λ ∗ a+ (1− λ) ∗ b is an interpolation function, D is the data distribution and ` be a
loss function such as cross-entropy loss, then the Manifold Mixup Loss is defined as:

L = E
(x,y)∼D

E
(x′,y′)∼D

E
λ∼Beta(α,α)

`(f(Mixλ(g(x), g(x′))),Mixλ(y,y′)). (2)

3 GRAPHMIX

3.1 MOTIVATION

Data Augmentation is arguably the simplest and most efficient technique for regularizing a neural
network. In some domains, such as computer vision, speech and text, there exist efficient data
augmentation techniques, for example, random cropping, translation or Cutout (Devries & Taylor,
2017) for computer vision, Ko et al. (2015) and Park et al. (2019) for speech and Xie et al. (2017)
for text domain. However, data augmentation for the graph-structured data remains under-explored.
There exists some recent work along these lines but the prohibitive additional computation cost (see
Section 5.3) introduced by these methods make them impractical for real-world large graph datasets.

2

Under review as a conference paper at ICLR 2020

Figure 1: The procedure for training with GraphMix . The Fully-Connected Network (FCN) and
the Graph Neural Network (GNN) share linear transformation matrix (W) applied on the node
features. The FCN is trained using Manifold Mixup by interpolating the hidden states HFCN and the
corresponding labels Y . This leads to better features in the GNN as a result of the parameter sharing.
The predicted targets generated by the GNN for unlabeled data are used to augment the input data for
the FCN. The FCN and the GNN losses are minimized jointly by alternate minimization.

Based on these limitations, our main objective is to propose an efficient data augmentation technique
for graph datasets.

Recent work based on interpolation-based data augmentation (Zhang et al., 2018; Verma et al., 2019a)
has seen sizable improvements in regularization performance across a number of tasks. However,
these techniques are not directly applicable to graphs for an important reason: Although we can create
additional nodes by interpolating the features and corresponding labels, it remains unclear how these
new nodes must be connected to the original nodes via synthetic edges such that the structure of the
whole graph is preserved. In this work, we explore how this limitation can be addressed. Furthermore,
drawing inspiration from the success of self-supervised semi-supervised learning algorithms (self-
predicted-targets based algorithms which can be also interpreted as a form of data-augmentation
techniques) (Verma et al., 2019b; Berthelot et al., 2019), we explore self-supervision in the training
of GNNs. We note that self-supervision has already been explored for unsupervised representation
learning from graph structured data (Veličković et al., 2019), but not for semi-supervised object
classification over graph structured data. Based on these challenges and motivations we present our
proposed approach GraphMix for training Graph Neural Networks in the following Section.

3.2 METHOD

GraphMix augments the vanilla GNN with a Fully Connected Network (FCN) via parameter sharing.
The FCN loss is computed using the Manifold Mixup as discussed in Section 2.3 and the GNN loss is
computed in the standard way. Both of these losses are optimized in an alternating fashion during
training. Manifold Mixup has been shown to learn better features. The use of Manifold Mixup for
FCN training facilitates learning better features, which are used in the GNN training via parameter
sharing. The predicted targets from the GNN are used to augment the training set of the FCN. In this
way, both FCN and GNN facilitate each other’s learning process. At inference time, the predictions
are made using only GNN. The diagrammatic representation of GraphMix is presented in Figure 1
and the full algorithm is presented in Algorithm 1.

Some implementation considerations. For Manifold Mixup training of FCN, we apply mixup only in
the hidden layer. Note that in Verma et al. (2019a), the authors recommended applying mixing in a
randomly chosen layer (which also includes the input layer) at each training update. However, we
observed under-fitting when applying mixup randomly at the input layer or hidden layer. Applying
mixup only in the input layer also resulted in underfitting and did not improve test accuracy.

3

Under review as a conference paper at ICLR 2020

Algorithm 1 GraphMix : A procedure for improved training of Graph Neural Networks (GNN)

1: Input: A GCN: g(X,A, θ), a FCN: f(X, θ, λ) which shares parameters with the GCN. Beta distribution
parameter α for Manifold Mixup . Number of random perturbations K, Sharpening temperature T .
Consistency parameter γ. Number of epochs N . γ(t): rampup function for increasing the importance of
consistency regularization. (XL, YL) represents labeled samples and XU represents unlabeled samples.

2: for t = 1 to N do
3: i = random(0,1) // generate randomly 0 or 1
4: if i=0 then
5: λ ∼ Beta(α, α) // Sample a mixing coefficient from Beta distribution
6: Lsup = L

(
f(XL, θ, λ), YL

)
// supervised loss from FCN using the Manifold Mixup

7: for k = 1 to K do
8: X̂U,k = RandomPerturbations(XU) // Apply kth round of random perturbation to XU

9: end for
10: ȲU = 1

K

∑
k g(Y | X̂U,k; θ,A) // Compute average predictions across K perturbations of XU

using the GCN
11: YU = Sharpen(ȲU , T) // Apply temperature sharpening to the average prediction
12: Lusup = L

(
f(XU , θ, λ), YU

)
// unsupervised loss from FCN using the Manifold Mixup

13: L = Lsup + γ(t) ∗ Lusup // Total loss is the weighted sum of supervised and unsupervised FCN
loss

14: else
15: L = L

(
g(XL, θ, A), YL

)
// Loss using the vanilla GCN

16: end if
17: end for
18: return L

The GraphMix framework can be applied to any underlying GNN as long as the underlying GNN ap-
plies parametric transformations to the node features. In our experiments, we show the improvements
over GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2018) using the GraphMix , however,
this framework can also be applied to more recent GNNs such as Graph U-Net (Gao & Ji, 2019) and
DisenGCN (Ma et al., 2019), which may facilitate in improving the state-of-the-art even further.

The performance of self-supervision based algorithms such as GraphMix is greatly affected by the
accuracy of the predicted targets. To improve the accuracy of the predicted targets, we applied
the average of the model prediction on K random perturbations of an input sample as discussed
in Section 3.2.1 and sharpening as described in Section 3.2.2. Further, we draw similarities and
difference of GraphMix w.r.t. Co-training framework in the Section 3.2.3.

3.2.1 ACCURATE TARGET PREDICTION FOR UNLABELED DATA

Recent state-of-the-art semi-supervised learning methods use a teacher model to accurately predict
targets for the unlabeled data. These predicted targets on the unlabeled data are used as "true labels"
for further training of the model. The teacher model can be realized as a temporal ensemble of the
student model (the model being trained) (Laine & Aila, 2016) or by using an Exponential Moving
Average (EMA) of the parameters of the student model (Tarvainen & Valpola, 2017). Another
recently proposed method for accurate target predictions for unlabeled data is to use the average of
the predicted targets across K random augmentations of the input sample (Berthelot et al., 2019).
Along these lines, in this work, we compute the predicted target as the average of predictions on K
drop-out versions of the input sample. We also used the EMA of the student model but it did not
improve test accuracy across all the datasets (see Section 4.4 for details).

3.2.2 ENTROPY MINIMIZATION

Many recent semi-supervised learning algorithms (Laine & Aila, 2016; Miyato et al., 2018; Tarvainen
& Valpola, 2017; Verma et al., 2019b) are based on the cluster assumption (Chapelle et al., 2010),
which posits that the class boundary should pass through the low-density regions of the marginal
data distribution. One way to enforce this assumption is to explicitly minimize the entropy of the
model’s predictions p(y|x, θ) on unlabeled data by adding an extra loss term to the original loss
term (Grandvalet & Bengio, 2005). The entropy minimization can be also achieved implicitly by
modifying the model’s prediction on the unlabeled data such that the prediction has low entropy
and using these low-entropy predictions as targets for the further training of the model. Examples

4

Under review as a conference paper at ICLR 2020

include "Pseudolabels" (Lee, 2013) and "Sharpening" (Berthelot et al., 2019). In this work, we use
Sharpening for entropy minimization. The Sharpening function over the model prediction p(y|x, θ)
can be formally defined as follows (Berthelot et al., 2019), where T is the temperature hyperparameter
and C is the number of classes:

Sharpen(pi, T) := p
1
T
i

/ C∑
j=1

p
1
T
j (3)

3.2.3 CONNECTION TO CO-TRAINING

The GraphMix approach can be seen as a special instance of the Co-training framework (Blum &
Mitchell, 1998). Co-training assumes that the description of an example can be partitioned into two
distinct views and either of these views would be sufficient for learning if we had enough labeled
data. In this framework, two learning algorithms are trained separately on each view and then the
prediction of each learning algorithm on the unlabeled data is used to enlarge the training set of the
other. Our method has some important differences and similarities to the Co-training framework.
Similar to Co-training, we train two neural networks and the predictions from the GNN are used
to enlarge the training set of FCN. The important difference is that instead of using the predictions
from the FCN to enlarge the training set for the GNN, we employ parameter sharing for passing the
learned information from FCN to GNN. In our experiments, directly using the predictions of the FCN
for GNN training resulted in reduced accuracy. This is due to the fact that the number of labeled
samples for training the FCN is sufficiently low and hence the FCN does not make accurate enough
predictions. Another important difference is that unlike the co-training framework, FCN and GNN
do not use completely distinct views of the data: the FCN uses feature vectors X and the GNN uses
the feature vector and edge connectivity (X, E).

4 EXPERIMENTS

We present results for the GraphMix algorithm using standard benchmark datasets and the standard
architecture in Section 4.2 and 4.3. We also conduct an ablation study on GraphMix in Section 4.4 to
understand the contribution of various components to its performance. Refer to Appendix A.3 for
implementation and hyperparameter details.

4.1 DATASETS

We use three standard benchmark citation network datasets for semi-supervised node classification,
namely Cora, Citeseer and Pubmed. In all these datasets, nodes correspond to documents and edges
correspond to citations. Node features correspond to the bag-of-words representation of the document.
Each node belongs to one of C classes. During training, the algorithm has access to the feature
vectors and edge connectivity of all the nodes but has access to the class labels of only a few of the
nodes.

For semi-supervised link classification, we use two datasets Bitcoin Alpha and Bitcoin OTC from
(Kumar et al., 2016; 2018). The nodes in these datasets correspond to the bitcoin users and the edge
weights between them correspond to the degree of trust between users. Following (Qu et al., 2019),
we treat edges with weights greater than 3 as positive instances, and edges with weights less than
-3 are treated as negative ones. Given a few labeled edges, the task is to predict the labels of the
remaining edges. The statistics of these datasets as well as the number of training/validation/test
nodes is presented in Appendix A.1.

4.2 SEMI-SUPERVISED NODE CLASSIFICATION

For baselines, we choose GCN (Kipf & Welling, 2017), and the recent state-of-the-art methods
GAT (Veličković et al., 2018), GMNN (Qu et al., 2019) and Graph U-Net (Gao & Ji, 2019). To
underline the importance of the shared parameters between FCN and GCN in GraphMix , we used
two additional baselines: in the first one, we trained the GCN with self-generated predicted targets,
and in the second one, we trained the FCN with self-generated predicted targets, named “GCN (with
predicted-targets)” and “FCN (with predicted-targets)” respectively in Table 1. GraphMix(GCN) and

5

Under review as a conference paper at ICLR 2020

GraphMix(GAT) refer to the methods where underlying GNNs are GCN and GAT respectively. Refer
to Appendix Section A.3 for implementation and hyperparameter details.

We observe that for Cora, GraphMix(GCN) performs closely to the current state-of-the-art method,
Graph U-Net. For Citeseer, GraphMix(GCN) achieves the-state-of-the-art performance. For Pubmed,
GraphMix improved upon GCN and GAT but was worse than GMNN. More interestingly, we obtained
the best results for Pubmed by just using the GCN(with predicted targets). Importantly, GraphMix
always improves the performance of underlying GNN (GCN or GAT) across all the datasets. We
further present results using random partitioning of data, results with fewer labeled samples and
results on larger datasets (Cora-Full, Co-author-CS and Co-author-Physics) in Section 4.2.1, Section
4.2.2 and Section A.7 respectively.

4.2.1 RANDOM PARTITIONING OF THE DATASETS

Shchur et al. (2018) has demonstrated that the performance of the current state-of-the-art Graph
Neural Network approaches on the standard train/validation/test split of the popular benchmark
datasets (such as Cora, Citeseer, Pubmed, etc) is significantly different from their performance on the
random splits. For fair evaluation, they recommend using multiple random partitions of the datasets.
Along these lines, we created 10 random splits of the Cora, Citeseer and Pubmed with the same train/
validation/test number of samples as in the standard split. Our results in Table 2 show that GraphMix
significantly outperforms GCN across all the datasets.

4.2.2 RESULTS WITH FEWER LABELED SAMPLES

We further evaluate the effectiveness of GraphMix in the learning regimes where fewer labeled
samples exist. For each class, we randomly sampled K ∈ {5, 10} samples for training and the same
number of samples for the validation. We used all the remaining labeled samples as the test set. We
repeated this process for 10 times. The results in Table 3 show that GraphMix achieves even better
improvements when the labeled samples are fewer (Refer to Table 1 for results with 20 training
samples per class).

Table 1: Results of node classification (% test accuracy). [*] means the results are taken from the
corresponding papers. We conduct 100 trials and report mean and standard deviation over the trials
(refer to Table 7 in the Appendix for comparison with other methods).

Algorithm Cora Citeseer Pubmed
GCN * (Kipf & Welling, 2016) 81.5 70.3 79.0
GAT * (Veličković et al., 2018) 83.0 72.5 79.0

GMNN * (Qu et al., 2019) 83.7 73.1 81.8
Graph U-Net * (Gao & Ji, 2019) 84.4 73.2 79.6

GCN 81.30±0.66 70.61±0.22 79.86±0.34
GAT 82.70±0.21 70.40±0.35 79.05±0.64

GCN (with predicted-targets) 82.03±0.43 73.38±0.35 82.42±0.36
FCN (with predicted-targets) 80.30±0.75 71.50±0.80 77.40±0.37

GraphMix (GCN) 83.94±0.57 74.52±0.59 80.98±0.55
GraphMix (GAT) 83.32±0.18 73.08±0.23 81.10±0.78

Table 2: Results using the random partitioning of the data (% test accuracy)

Algorithm Cora Citeseer Pubmed
GCN 77.84±1.45 72.56±2.46 78.74±0.99

GraphMix (GCN) 82.07±1.17 76.45±1.57 80.72±1.08

6

Under review as a conference paper at ICLR 2020

Table 3: Results using less labeled samples (% test accuracy). K referes to the number of labeled
samples per class.

Algorithm Cora Citeseer Pubmed
K = 5 K = 10 K = 5 K = 10 K = 5 K = 10

GCN 66.39±4.26 72.91±3.10 55.61±5.75 64.19±3.89 66.06±3.85 75.57±1.58
GraphMix (GCN) 71.99±6.46 79.30±1.36 58.55±2.26 70.78±1.41 67.66±3.90 77.13±3.60

4.3 SEMI-SUPERVISED LINK CLASSIFICATION

In the Semi-supervised Link Classification problem, the task is to predict the labels of the remaining
links, given a graph and labels of a few links. Following (Taskar et al., 2004), we can formulate the
link classification problem as a node classification problem. Specifically, given an original graph
G, we construct a dual Graph G′. The node set V ′ of the dual graph corresponds to the link set E′
of the original graph. The nodes in the dual graph G′ are connected if their corresponding links in
the graph G share a node. The attributes of a node in the dual graph are defined as the index of the
nodes of the corresponding link in the original graph. Using this formulation, we present results on
link classification on Bit OTC and Bit Alpha benchmark datasets in the Table 4. As the numbers
of the positive and negative edges are strongly imbalanced, we report the F1 score. Our results
show that GraphMix(GCN) improves the performance over the baseline GCN method for both the
datasets. Furthermore, the results of GraphMix(GCN) are comparable with the recently proposed
state-of-the-art method GMNN (Qu et al., 2019).

Table 4: Results on Link Classification (%F1 score). [*] means the results are taken from the
corresponding papers

Algorithm Bit OTC Bit Alpha
DeepWalk (Perozzi et al., 2014) 63.20 62.71

GMNN*(Qu et al., 2019) 66.93 65.86
GCN 65.72±0.38 64.00±0.19

GraphMix (GCN) 66.35±0.41 65.34±0.19

4.4 ABLATION STUDY

Since GraphMix consists of various components, some of which are common with the existing
literature of semi-supervised learning, we set out to study the effect of various components by
systematically removing or adding a component from GraphMix . We measure the effect of the
following:

• Removing the Manifold Mixup and predicted targets from the FCN training.

• Removing the predicted targets from the FCN training.

• Removing the Manifold Mixup from the FCN training.

• Removing the Sharpening of the predicted targets.

• Removing the Average of predictions for K random perturbations of the input sample

• Using the EMA (Tarvainen & Valpola, 2017) of GNN for target prediction.

The results for semi-supervised node classification are presented in Table 5. We did not do any
hyperparameter tuning for the ablation study and used the best performing hyperparameters found for
the results presented in Table 1. We observe that all the components of GraphMix contribute to its
performance. Furthermore, since EMA is an ensemble model, it is expected to produce more accurate
predicted- targets and hence, improve the test accuracy over all the datasets. However, we observe
that using the EMA model (Tarvainen & Valpola, 2017) for computing the predicted- targets results

7

Under review as a conference paper at ICLR 2020

Table 5: Ablation study results (% test accuracy). We report mean and standard deviation over ten
trials.

Ablation Cora Citeseer Pubmed
GraphMix 83.94±0.57 74.52±0.59 80.98±0.55

-without Manifold Mixup, without predicted targets 79.98±0.27 70.80±0.46 79.05±0.26
-without predicted-targets 81.86±0.41 71.30±0.14 79.66±0.14
-without Manifold Mixup 83.57±0.79 73.96±0.76 80.90±0.45
-no Sharpening 80.20±0.23 71.30±0.27 80.06±0.18
-no Averaging of predictions 83.32±0.27 73.47±0.33 80.52±0.59
-with EMA 83.82±0.76 74.92±0.57 80.38±0.59

in improved performance for Citeseer but decreased performance for Cora and Pubmed. It can be the
effect of not doing the hyperparameter search when adding the EMA to the GraphMix . We leave this
exploration for future work.

4.5 VISUALIZATION OF THE LEARNED FEATURES

In this section, we present the analysis of the features learned by GraphMix for Cora dataset.
Specifically, we present the 2D visualization of the hidden states using the t-SNE (van der Maaten
& Hinton, 2008) in Figure 2a and 2b. We observe that GraphMix learns hidden states which are
better separated and condensed. We further evaluate the Soft-rank (refer to Appendix A.5) of the
class-specific hidden states to demonstrate that GraphMix(GCN) makes the class-specific hidden
states more concentrated as shown in 2c. Refer to Appendix A.6 for 2D representation of other
datasets.

(a) GCN (b) GraphMix(GCN) (c) Class-specific Soft-Rank

Figure 2: 2D representation of the hidden states of Cora dataset using (a)GCN and (b)GraphMix, and
Soft-Rank of Class-specific hidden states (lower Soft-Rank reflects more concentrated class-specific
hidden states)

5 RELATED WORK

5.1 SEMI-SUPERVISED LEARNING OVER GRAPH DATA

There exists a long line of work for Semi-supervised learning over Graph Data. Earlier work included
using Graph Laplacian Regularizer for enforcing local smoothness over the predicted targets for
the nodes (Zhu & Ghahramani, 2002; Zhu et al., 2003; Belkin et al., 2006). Another line of work
learns node embedding in an unsupervised way (Perozzi et al., 2014) which can then be used as an
input to any classifier, or learns the node embedding and target prediction jointly (Yang et al., 2016).
Many of the recent Graph Neural Network based approaches (refer to Zhou et al. (2018) for a review
of these methods) are inspired by the success of Convolutional Neural Networks in image and text
domains, defines the convolutional operators using the neighbourhood information of the nodes (Kipf
& Welling, 2017; Veličković et al., 2018; Defferrard et al., 2016). hese convolution operator based
method exhibit state-of-the-results for semi-supervised learning over graph data, hence much of the
recent attention is dedicated to proposing architectural changes to these methods (Qu et al., 2019;
Gao & Ji, 2019; Ma et al., 2019). Unlike these methods, we propose a regularization technique that

8

Under review as a conference paper at ICLR 2020

can be applied to any of these Graph Neural Networks which uses a parameterized transformation on
the node features.

5.2 DATA AUGMENTATION

It is well known that the generalization of a learning algorithm can be improved by enlarging the
training data size. Because labeling more samples is labour-intensive and costly, Data-augmentation
has become de facto technique for enlarging the training data size, especially in the computer vision
applications such as image classification. Some of the notable Data Augmentation techniques include
Cutout (Devries & Taylor, 2017) and DropBlock (Ghiasi et al., 2018). In Cutout, a contiguous part
of the input is zeroed out. DropBlock further extends Cutout to the hidden states. In another line of
research, such as Mixup and BC-learning (Zhang et al., 2018; Tokozume et al., 2017), additional
training samples are generated by interpolating the samples and their corresponding targets. Manifold
Mixup (Verma et al., 2019a) proposes to augment the data in the hidden states and shows that it
learns more discriminative features for supervised learning. Furthermore, ICT (Verma et al., 2019b)
and MixMatch (Berthelot et al., 2019) extend the Mixup technique to semi-supervised learning, by
computing the predicted targets for the unlabeled data and applying the Mixup on the unlabeled data
and their corresponding predicted targets. Even further, for unsupervised learning, ACAI (Berthelot*
et al., 2019) and AMR (Beckham et al., 2019) explore the interpolation techniques for autoencoders.
ACAI interpolates the hidden states of an autoencoder and uses a critic network to constrain the
reconstruction of these interpolated states to be realistic. AMR explores different ways of combining
the hidden states of an autoencoder other than the convex combinations of the hidden states. Unlike,
all of these techniques which have been proposed for the fixed topology datasets, in this work, we
propose interpolation based data-augmentation techniques for graph structured data.

5.3 REGULARIZING GRAPH NEURAL NETWORKS

Regularizing Graph Neural Networks has drawn some attention recently. GraphSGAN (Ding et al.,
2018) first uses an embedding method such as DeepWalk (Perozzi et al., 2014) and then trains
generator-classifier networks in the adversarial learning setting to generate fake samples in the
low-density region between sub-graphs. BVAT (Deng et al., 2019) and Feng et al. (2019) generate
adversarial perturbations to the features of the graph nodes while taking graph structure into account.
While these methods improve generalization in graph-structured data, they introduce significant
additional computation cost: GraphScan requires computing node embedding as a preprocessing
step, BVAT and Feng et al. (2019) require additional gradient computation for computing adversar-
ial perturbations. Unlike these methods, GraphMix does not introduce any significant additional
computation since it is based on interpolation-based techniques and self-generated predicted targets.

6 DISCUSSION

We presented GraphMix , a simple and efficient regularization technique for the graph neural net-
works. GraphMix is a general technique that can be applied to any graph neural network that uses a
parameterized transformation on the feature vector of the graph nodes. Through extensive experi-
ments, we demonstrated state-of-the-art performances or close to state-of-the-art performance using
this simple regularization technique on various benchmark datasets, more importantly, GraphMix
improves test accuracy over vanilla GNN across all the datasets, even without doing any extensive
hyperparameter search. Further, we conduct a systematic ablation study to understand the effect of
different components in the performance of GraphMix . This suggests that in parallel to designing
new architectures, exploring better regularization for graph structured data is a promising avenue for
research.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Christopher Beckham, Sina Honari, Vikas Verma, Alex Lamb, Farnoosh Ghadiri, R Devon Hjelm,
Yoshua Bengio, and Christopher Pal. On Adversarial Mixup Resynthesis. arXiv e-prints, art.
arXiv:1903.02709, Mar 2019.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399–2434, Decem-
ber 2006. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1248547.
1248632.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin
Raffel. MixMatch: A Holistic Approach to Semi-Supervised Learning. arXiv e-prints, art.
arXiv:1905.02249, May 2019.

David Berthelot*, Colin Raffel*, Aurko Roy, and Ian Goodfellow. Understanding and improving in-
terpolation in autoencoders via an adversarial regularizer. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=S1fQSiCcYm.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Pro-
ceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT’ 98, pp.
92–100, New York, NY, USA, 1998. ACM. ISBN 1-58113-057-0. doi: 10.1145/279943.279962.
URL http://doi.acm.org/10.1145/279943.279962.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=r1ZdKJ-0W.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. CoRR, abs/1312.6203, 2013.

Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised Learning. The MIT
Press, 1st edition, 2010. ISBN 0262514125, 9780262514125.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 3844–3852.
2016.

Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph convolutional
networks. CoRR, abs/1902.09192, 2019. URL http://arxiv.org/abs/1902.09192.

Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. CoRR, abs/1708.04552, 2017. URL http://arxiv.org/abs/1708.04552.

Ming Ding, Jie Tang, and Jie Zhang. Semi-supervised learning on graphs with generative adversarial
nets. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, CIKM ’18, pp. 913–922, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-6014-
2. doi: 10.1145/3269206.3271768. URL http://doi.acm.org/10.1145/3269206.
3271768.

Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial training: Dynamically
regularizing based on graph structure. CoRR, abs/1902.08226, 2019. URL http://arxiv.
org/abs/1902.08226.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2083–2092, Long Beach, California, USA, 09–15
Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/gao19a.html.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for
convolutional networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp.

10

http://dl.acm.org/citation.cfm?id=1248547.1248632
http://dl.acm.org/citation.cfm?id=1248547.1248632
https://openreview.net/forum?id=S1fQSiCcYm
http://doi.acm.org/10.1145/279943.279962
https://openreview.net/forum?id=r1ZdKJ-0W
http://arxiv.org/abs/1902.09192
http://arxiv.org/abs/1708.04552
http://doi.acm.org/10.1145/3269206.3271768
http://doi.acm.org/10.1145/3269206.3271768
http://arxiv.org/abs/1902.08226
http://arxiv.org/abs/1902.08226
http://proceedings.mlr.press/v97/gao19a.html

Under review as a conference paper at ICLR 2020

10727–10737. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8271-dropblock-a-regularization-method-for-convolutional-networks.
pdf.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

Marco Gori, Gabriele Monfardini, and Scarselli Franco. A new model for learning in graph domains.
IEEE International Joint Conference on Neural Networks.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In
L. K. Saul, Y. Weiss, and L. Bottou (eds.), Advances in Neural Information Processing
Systems 17, pp. 529–536. MIT Press, 2005. URL http://papers.nips.cc/paper/
2740-semi-supervised-learning-by-entropy-minimization.pdf.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, 2017.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data.
ArXiv, abs/1506.05163, 2015.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. Audio augmentation for
speech recognition. In INTERSPEECH, 2015.

Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. Edge weight predic-
tion in weighted signed networks. In ICDM, 2016.

Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Subrahmanian.
Rev2: Fraudulent user prediction in rating platforms. In WSDM, 2018.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. CoRR,
abs/1610.02242, 2016. URL http://arxiv.org/abs/1610.02242.

Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised learning method for deep
neural networks. 2013.

Qing Lu and Lise Getoor. Link-based classification. In Proceedings of the Twentieth International
Conference on International Conference on Machine Learning, ICML’03, pp. 496–503. AAAI
Press, 2003. ISBN 1-57735-189-4. URL http://dl.acm.org/citation.cfm?id=
3041838.3041901.

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. Disentangled graph convolutional
networks. In ICML, 2019.

Takeru Miyato, Shin ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 2018.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M.
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. CoRR,
abs/1611.08402, 2016. URL http://arxiv.org/abs/1611.08402.

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and
Quoc V. Le. SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recogni-
tion. arXiv e-prints, art. arXiv:1904.08779, Apr 2019.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In KDD, 2014.

11

http://papers.nips.cc/paper/8271-dropblock-a-regularization-method-for-convolutional-networks.pdf
http://papers.nips.cc/paper/8271-dropblock-a-regularization-method-for-convolutional-networks.pdf
http://papers.nips.cc/paper/8271-dropblock-a-regularization-method-for-convolutional-networks.pdf
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf
http://arxiv.org/abs/1610.02242
http://dl.acm.org/citation.cfm?id=3041838.3041901
http://dl.acm.org/citation.cfm?id=3041838.3041901
http://arxiv.org/abs/1611.08402

Under review as a conference paper at ICLR 2020

Meng Qu, Yoshua Bengio, and Jian Tang. GMNN: Graph Markov neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5241–5250,
Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. Trans. Neur. Netw., 20(1):61–80, January 2009. ISSN
1045-9227. doi: 10.1109/TNN.2008.2005605. URL http://dx.doi.org/10.1109/TNN.
2008.2005605.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. CoRR, abs/1811.05868, 2018. URL http://arxiv.org/
abs/1811.05868.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. In Advances in Neural Information
Processing Systems 30, pp. 1195–1204, 2017.

Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. Link prediction in relational data. In
NIPS, 2004.

Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada. Between-class learning for image classifica-
tion. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5486–5494,
2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Ma-
chine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/v9/
vandermaaten08a.html.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden
states. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 6438–6447, Long Beach, California, USA, 09–15 Jun 2019a. PMLR. URL
http://proceedings.mlr.press/v97/verma19a.html.

Vikas Verma, Alex Lamb, Kannala Juho, Yoshua Bengio, and David Lopez-Paz. Interpolation
consistency training for semi-supervised learning. In Sarit Kraus (ed.), Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019. ijcai.org, 2019b. doi: 10.24963/ijcai.2019. URL https://doi.org/10.
24963/ijcai.2019.

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semi-
supervised embedding. In Grégoire Montavon, Geneviève Orr, and K. R. Müller (eds.), In Neural
Networks: Tricks of the Trade. Springer, second edition, 2012.

Ziang Xie, Sida I. Wang, Jiwei Li, Daniel Lévy, Aiming Nie, Daniel Jurafsky, and Andrew Y. Ng.
Data noising as smoothing in neural network language models. ArXiv, abs/1703.02573, 2017.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In ICML, 2016.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb.

12

http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://proceedings.mlr.press/v97/verma19a.html
https://doi.org/10.24963/ijcai.2019
https://doi.org/10.24963/ijcai.2019
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

Under review as a conference paper at ICLR 2020

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
neural networks: A review of methods and applications. CoRR, abs/1812.08434, 2018. URL
http://arxiv.org/abs/1812.08434.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. Technical report, 2002.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In ICML, 2003.

A APPENDIX

A.1 DATASETS

The statistics of these datasets as well as the number of training/validation/test nodes is presented in
Table 6.

Table 6: Dataset statistics.

Dataset # Nodes # Edges # Features # Classes # Training # Validation # Test
Cora 2,708 5,429 1,433 7 140 500 1,000

Citeseer 3,327 4,732 3,703 6 120 500 1,000
Pubmed 19,717 44,338 500 3 60 500 1,000

Bitcoin Alpha 3,783 24,186 3,783 2 100 500 3,221
Bitcoin OTC 5,881 35,592 5,881 2 100 500 5,947

A.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We present the comparion of GraphMix with the recent state-of-the-art methods as well as earlier
methods is presented in Table 7.

Table 7: Comparison of GraphMix with other methods (% test accuracy), for Cora, Citeseer and
Pubmed.

Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%
LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
MoNet (Monti et al., 2016) 81.7 ± 0.5% — 78.8 ± 0.3%
GAT (Veličković et al., 2018) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%
GraphScan (Ding et al., 2018) 83.3 ±1.3 73.1±1.8 —
GMNN (Qu et al., 2019) 83.7% 73.1% 81.8%
DisenGCN (Ma et al., 2019) 83.7% 73.4% 80.5%
Graph U-Net (Gao & Ji, 2019) 84.4% 73.2% 79.6%
BVAT (Deng et al., 2019) 83.6±0.5 74.0±0.6 79.9±0.4

GraphMix (GCN) 83.94±0.57% 74.52±0.59% 80.98±0.55%
GraphMix (GAT) 83.32±0.18% 73.08±0.23% 81.10±0.78

13

http://arxiv.org/abs/1812.08434

Under review as a conference paper at ICLR 2020

A.3 IMPLEMENTATION AND HYPERPARAMETER DETAILS

We use the standard benchmark architecture as used in GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018) and GMNN (Qu et al., 2019), among others. This architecture has one hidden layer and
the graph convolution is applied twice : on the input layer and on the output of the hidden layer. The
FCN in GraphMix shares the parameters with the GCN.

GraphMix introduces four additional hyperparameters, namely the α parameter of Beta distribution
used in Manifold Mixup training of the FCN, the max-consistency coefficient γmax which controls the
trade-off between the supervised loss and the unsupervised loss (loss computed using the pseudolables)
of FCN, the temparature T in sharpening and the number of random perturbations K applied to the
input data for the averaging of the predictions.

We conducted minimal hyperparameter seach over only α and γmax and fixed the hyperparameters
T and K to 0.1 and 10 respectively. The other hyperparameters were set to the best values for
underlying GNN (GCN or GAT), including the learning rate, the L2 decay rate, number of units in
the hidden layer etc. We observed that GraphMix is not very sensitive to the values of α and γmax
and similar values of these hyperparameters work well across all the benchmark datasets. Refer to
Appendix A.3 and A.4 for the details about the hyperparameter values and the procedure used for the
best hyperparameters selection.

A.3.1 FOR RESULTS REPORTED IN SECTION 4.2 AND 4.2.1

For GCN and GraphMix(GCN), we used Adam optimizer with learning rate 0.01 and L2-decay 5e-4,
the number of units in the hidden layer 16 , dropout rate in the input layer and hidden layer was set to
0.5 and 0.0, respectively. For GAT and GraphMix(GAT), we used Adam optimizer with learning rate
0.005 and L2-decay 5e-4, the number of units in the hidden layer 8 , and the dropout rate in the input
layer and hidden layer was searched from the values {0.2, 0.5, 0.8}.
For α and γmax of GraphMix(GCN) and GraphMix(GAT) , we searched over the values in the set
[0.0, 0.1, 1.0, 2.0] and [0.1, 1.0, 10.0, 20.0] respectively.

For GraphMix(GCN) : α = 1.0 works best across all the datasets. γmax = 1.0 works best for Cora
and Citeseer and γmax = 10.0 works best for Pubmed.

For GraphMix(GAT) : α = 1.0 works best for Cora and Citeseer and α = 0.1 works best for Pubmed.
γmax = 1.0 works best for Cora and Citeseer and γmax = 10.0 works best for Pubmed. Input
droputrate=0.5 and hidden dropout rate=0.5 work best for Cora and Citeseer and Input droputrate=0.2
and hidden dropout rate =0.2 work best for Pubmed.

We conducted all the experiments for 2000 epochs. The value of consistency coefficient γ (line 13
in Algorithm 1) is increased from 0 to its maximum value γmax from epoch 500 to 1000 using the
sigmoid ramp-up of Mean-Teacher (Tarvainen & Valpola, 2017).

A.3.2 FOR RESULTS REPORTED IN SECTION 4.2.2

For α of GraphMix(GCN) , we searched over the values in the set [0.0, 0.1, 0.5, 1.0] and found that
0.1 works best across all the datasets. For γmax, we searched over the values in the set [0.1, 1.0, 10.0]
and found that 0.1 and 1.0 works best across all the datasets. Rest of the details for GraphMix(GCN)
and GCN are same as Section A.3.1.

A.3.3 FOR RESULTS REPORTED IN SECTION 4.3

For α of GraphMix(GCN) , we searched over the values in the set [0.0, 0.1, 0.5, 1.0] and found that
0.1 works best for both the datasets. For γmax, we searched over the values in the set [0.1, 1.0, 10.0]
and found that 0.1 works best for both the datasets. We conducted all the experiments for 150 epochs.
The value of consistency coefficient γ (line 13 in Algorithm 1) is increased from 0 to its maximum
value γmax from epoch 75 to 125 using the sigmoid ramp-up of Mean-Teacher (Tarvainen & Valpola,
2017).

Both for GraphMix(GCN) and GCN, we use Adam optimizer with learning rate 0.01 and L2-decay
0.0, the number of units in the hidden layer 128 , dropout rate in the input layer was set to 0.5.

14

Under review as a conference paper at ICLR 2020

A.4 HYPERPARAMETER SELECTION

For each configuration of hyperparameters, we run the experiments with 100 random seeds. We
select the hyperparameter configuration which has the best validation accuracy averaged over these
100 trials. With this best hyperparameter configuration, for 100 random seeds, we train the model
again and use the validataion set for model selection (i.e. we report the test accuracy at the epoch
which has best validation accuracy.)

A.5 SOFT-RANK

Let H be a matrix containing the hidden states of all the samples from a particular class. The
Soft-Rank of matrix H is defined by the sum of the singular values of the matrix divided by the
largest singular value. A lower Soft-Rank implies fewer dimensions with substantial variability and it
provides a continuous analogue to the notion of rank from matrix algebra. This provides evidence
that the concentration of class-specific states observed when using GraphMix in Figure 3 can be
measured directly from the hidden states and is not an artifact of the T-SNE visualization.

A.6 FEATURE VISUALIZATION

We present the 2D visualization of the hidden states learned using GCN and GraphMix(GCN) for
Cora, Pubmed and Citeseer datasets in Figure 3. We observe that for Cora and Citeseer, GraphMix
learns substantially better hidden states than GCN. For Pubmed, we observe that although there is
no clear separation between classes, "Green" and "Red" classes overlap less using the GraphMix,
resulting in better hidden states.

Figure 3: T-SNE of first layer hidden states for all our three major datasets: Cora (left), Pubmed
(middle), and Citeseer (right). Top row is GCN baseline, bottom row is GraphMix.

A.7 RESULTS ON LARGER DATASETS

In this section, we provide results on three recently proposed datasets which are relatively larger than
standard benchmark datasets (Cora/Citeseer/Pubmed). Specifically we use Cora-Full dataset proposed
in Bojchevski & Günnemann (2018) and Coauthor-CS and Coauthor-Physics datasets proposed in
Shchur et al. (2018). We took processed versions of these dataset available here 2. The statistics of
these datasets are given in Table 9. We did 10 random splits of the the data into train/validation/test
split. For the classes which had more than 100 samples. We choose 20 samples per class for training,
30 samples per class for validation and the remaining samples as test data. For the classes which had
less than 100 samples, we chose 20% samples, per class for training, 30% samples for validation and

2https://github.com/shchur/gnn-benchmark

15

Under review as a conference paper at ICLR 2020

the remaining for testing. For each split we run experiments using 100 random seeds. The statistics
of these datasets in presented in Table 9 and the results are presented in Table 8. We observe that
GraphMix(GCN) improves the results over GCN for all the three datasets. We note that we did
minimal hyperparameter search for GraphMix(GCN) as mentioned in Section A.7.1, and doing more
rigorous hyperparameter search can further improve the performance of GraphMix .

Table 8: Comparison of GraphMix with other methods (% test accuracy), for Cora-Full, Coauthor-CS,
Coauthor-Physics. ∗ refers to the results reported in Shchur et al. (2018).

Method Cora-Full Coauthor-CS Coauthor-Physics
GCN* 62.2±0.6 91.1±0.5 92.8±1.0
GAT* 51.9±1.5 90.5±0.6 92.5±0.9
MoNet* 59.8±0.8 90.8±0.6 92.5±0.9
GS-Mean* 58.6±1.6 91.3±2.8 93.0±0.8

GCN 60.13±0.57 91.27±0.56 92.90±0.92
GraphMix (GCN) 61.80±0.54 91.83±0.51 94.49±0.84

Table 9: Dataset statistics

Datasets Classes Features Nodes Edges
Cora-Full 67 8710 18703 62421
Coauthor-CS 15 6805 18333 81894
Coauthor-Physics 5 8415 34493 247962

A.7.1 HYPERPARAMETER DETAILS FOR RESULTS IN TABLE 8

For all the experiments we use the standard architecture mentioned in Section A.3 and used Adam
optimizer with learning rate 0.001 and 64 hidden units in the hidden layer. For Coauthor-CS and
Coauthor-Physics, we trained the network for 2000 epochs. For Cora-Full, we trained the network for
5000 epochs because we observed the training loss of Cora-Full dataset takes longer to converge.

For Coauthor-CS and Coauthor-Physics: We set the input layer dropout rate to 0.5 and weight-decay
to 0.0005, both for GCN and GraphMix(GCN) . We did not conduct any hyperparameter search over
the GraphMix hyperparameters α, λmax, temparature T and number of random permutations K
applied to the input data for GraphMix(GCN) for these two datasets, and set these values to 1.0, 1.0,
0.1 and 10 respectively.

For Cora-Full dataset: We found input layer dropout rate to 0.2 and weight-decay to 0.0 to be
best for both GCN and GraphMix(GCN) . For GraphMix(GCN) we fixed α, temparature T and
number of random permutations K to 1.0 0.1 and 10 respectively. For λmax, we did search over
{1.0, 10.0, 20.0} and found that 10.0 works best.

For all the GraphMix(GCN) experiments, the value of consistency coefficient γ (line 13 in Algorithm
1) is increased from 0 to its maximum value γmax from epoch 500 to 1000 using the sigmoid ramp-up
of Mean-Teacher (Tarvainen & Valpola, 2017).

16

	Introduction
	Problem Definition and Preliminaries
	Problem Setup
	Graph Neural Networks
	Interpolation Based Regularization Techniques

	GraphMix
	Motivation
	Method
	Accurate Target Prediction for Unlabeled data
	Entropy Minimization
	Connection to Co-training

	Experiments
	Datasets
	Semi-supervised Node Classification
	Random Partitioning of the datasets
	Results with fewer labeled samples

	Semi-supervised Link Classification
	Ablation Study
	Visualization of the Learned Features

	Related Work
	Semi-supervised Learning over Graph Data
	Data Augmentation
	Regularizing Graph Neural Networks

	Discussion
	Appendix
	Datasets
	Comparison with State-of-the-art Methods
	Implementation and Hyperparameter Details
	For results reported in Section 4.2 and 4.2.1
	For results reported in Section 4.2.2
	For results reported in Section 4.3

	Hyperparameter Selection
	Soft-Rank
	Feature Visualization
	Results on Larger Datasets
	Hyperparameter Details for Results in Table 8

