
Under review as a conference paper at ICLR 2020

Filter redistribution templates for iteration-less
convolutional model reduction

Anonymous authors
Paper under double-blind review

ABSTRACT

Automatic neural network discovery methods face an enormous challenge caused
for the size of the search space. A common practice is to split this space at dif-
ferent levels and to explore only a part of it. Neural architecture search methods
look for how to combine a subset of layers, which are the most promising, to cre-
ate an architecture while keeping a predefined number of filters in each layer. On
the other hand, pruning techniques take a well known architecture and look for the
appropriate number of filters per layer. In both cases the exploration is made itera-
tively, training models several times during the search. Inspired by the advantages
of the two previous approaches, we proposed a fast option to find models with
improved characteristics. We apply a small set of templates, which are considered
promising, for make a redistribution of the number of filters in an already existing
neural network. When compared to the initial base models, we found that the re-
sulting architectures, trained from scratch, surpass the original accuracy even after
been reduced to fit the same amount of resources.

1 INTRODUCTION

Convolutional neural networks are built by stacking layers of neurons following the principle ex-
plained by Fukushima’s Neocognitron model (Fukushima, 1980). The Neocognitron design made
neural networks invariant to shift in feature locations by arranging cells locally connected in a hier-
archical architecture.

ResNet50 VGG19

Inception MobileNet

4 8 12 16 4 8 12 16

0

250

500

750

1000

1250

0

250

500

750

1000

1250

Layer

N
um

be
r 

of
 F

ilt
er

s

Figure 1: Increasing filters per layer is a common
design in convolutional models. We apply tem-
plates to existing models to change filters distri-
bution. (ResNet shows filters per sets of residual
blocks. The number is keep fixed inside them).

Instead of connecting every neuron of the pre-
vious layer to all the neurons in the next layer,
convolutional networks connections are only
made to a small region. Given that different
regions share the same weights, the layer can
be implemented as a convolution operation us-
ing the set of shared weights known as kernel.
The complete input is processed by shifting the
kernel at uniform steps, normally overlapping
parts of the input. To improve shift invariance,
convolutional networks needs to rely less in the
exact position of a feature and a simple solution
is to have a lower resolution performed by av-
eraging the values of neighbouring points in the
image in a operation known as spatial subsam-
pling.

An important consideration to create a convo-
lutional network model is the number of filters,
required at every layer. The Neocognitron im-
plementation for example, keeps a fixed num-
ber of filters for each layer in the model. A
very common practice has been to use a by-
pyramidal architecture. The number of filters
across the different layers is usually increased

1



Under review as a conference paper at ICLR 2020

as the size of the feature maps decrease. This pattern was first proposed by LeCun et al. (1998) with
the introduction of LeNet and can be observed in a diverse set of models such as VGG, ResNet and
MobileNet (Figure 1. Even models obtained from automatic model discovery, like NASNet, follow
this principle inasmuch as neural network methods are mainly formulated to search for layers and
connections.

It can be found in (LeCun et al., 1998) that the reason behind this progressive increase in the number
of kernels is to compensated a possible loss of the representation caused by the spatial resolution
reduction. In recent models, what seems to be the real reason is a practical issue (Chu & Krzyżak,
2014), to improve performance by keeping a constant number of operations en each layer.

The Pyramidal distribution of filters has perpetuated over two areas of model discovery. The methods
in Automatic Neural Architecture Search (Liu et al., 2018a; Tan et al., 2019) explore the models built
by combining a predefined set of layers, commonly with a pyramidal distribution of filters. On the
other side, Network Pruning aims to reduce a model computational resources demands by selecting
and removing weights that match some rule, commonly the closest to zero values, but starting from
models that present this pyramidal distribution.

To the best of our knowledge, it remains unknown if this pyramidal distribution of filters is also
beneficial to different aspects of model performances other than the number of operations (such as
accuracy, memory footprint, inference time and model compression level).

This paper explores on the topic by comparing models against versions of themselves with the same
general structures but with the distribution of filters across the layers changed. We present a fast
to implement method for model discovery, that take the goal of structured pruning methods, that
is finding the lowest number of filters for a model while maintaining accuracy. Our exploration
technique only tests over a small subset of diverse filter distributions, called templates, and then
reduces the model proportionally to match some resource budget. Our experiments show that by
using our proposed templates, the resulting models keep comparable accuracy as original models in
classification tasks but they present reductions in the number of parameters and memory footprint.

The contributions of this paper are the following: 1) it provides evidence that pyramidal distribution
of filters in convolutional network models is usually optimised for a distributed GPU operation
across layers, and simple changes to that distribution leads to improvements in metrics such as
number of parameters or memory footprint; 2) it highlights that most recent models, which have
had a more detailed tuning in the filter distribution, presents resiliency in accuracy to changes in
the filter distribution, a phenomena that requires further research and explanation; 3) it shows that
redistributing filters in a model and then applying a width multiplier operation can be seen as a
pruning technique which produces smaller models than just applying the width multiplier to the
original models; 4) it gives to classical models a repositioning of their value when measuring others
resources equally important for practical implementation.

The rest of the paper is structured as follows: chapter 2 explores the most recent methods to
reduce the size of neural network architectures. Chapter 3 describes the set of templates for filter
distribution and how to implement this change in a convolutional network model. Chapter 4
compares dissimilar allocations of filters and their effect in model performances. Finally, chapter 5
briefly explains the findings derived from experiments.

2 RELATED WORK

The process of designing a Neural Networks is a task mainly based on experience and experi-
mentation that consumes a lot of time and computational resources. With the increase in the use
of Neural Networks, and particularly Convolutional Networks for computer vision problems, a
mechanism to automatically find the best architecture has become a requirement in the field of
Deep Learning. Although some works have been published several years ago (Pinto et al., 2009;
Kuri-Morales, 2014) trying to solve the topic of automatic architecture generation, they had not
provided competitive results compared to hand-crafted architectures. However, current works start
to lead the state of the art models (Elsken et al., 2018).

2



Under review as a conference paper at ICLR 2020

But even in this automatic methods, one key feature that constantly has been adopted is the selection
of the number of filters in each layer in the final model. The filters are set in such a way to have
an increasing number as the layers go deeper. Pruning methods have done some work in this field
but with the belief that the weights obtained at the end of the training process are important to the
pruning method.

One common characteristic of many model discovery methods is that the search process is very
time consuming, normally in the order of thousands of GPU days. In this sense, a remarkable
improvement is presented by Liu et al. (2018b). The method uses a relaxation condition to transform
the selection of layers in the architecture to a continuous space using a softmax function. The
relaxation allows to perform simultaneous search of weights and architecture using gradient descent.
The method converges after one day of GPU time.

On the side of Pruning methods the search also involves training models for several iterations to
select the correct weights to remove (Frankle & Carbin, 2018; He et al., 2019), or at least increasing
the computation during the training when doing jointly training and search (Leclerc et al., 2018).
Recently, Liu et al. (2018c) suggest that accuracy obtained by pruning techniques can be reached by
training from scratch.

Our work relates to (Gordon et al., 2018) in the sense that their method it is not restricted to reducing
filters but also to increase them to see if the increment is beneficial. Ours differs because it does not
requires to train the model other that in the final stage, after making some predefined changes to the
number of filters using templates.

3 FILTER DISTRIBUTION TEMPLATES

Recent pruning methods have shown different filter distribution patterns emerging when reducing
VGG models that defied the pyramidal design as the best distribution for a model. Instead of finding
the adequate number of filters with automatic pruning techniques, we propose to adjust the filters of
a convolutional network model with a small number of templates depicted in figure 2 that could be
beneficial for model performances other than the number of operations (such as accuracy, memory
footprint and inference time and model compression level). In particular, we test a fixed number
of filters as the original Neocognitron design, but also, inspired by the patterns found by the actual
pruning methods, we test also a quadratic distribution.

We define a convolutional neural network base model as a set of layers L = 1, ..., D + 1 each of
them containing a number of filters fl and a total number of filters F =

∑D
l=1 fl. We want to test

if the common heuristic of distributing F having fl+1 = 2fl each time the feature map is halved,
is advantageous to the model over other distributions of fl when evaluating performance, memory
footprint and inference time.

It should be noticed that that final layer D + 1 remains with the same number of filters according
to the classification task under evaluation, therefore it is not taken into account in the equations.
Another important consideration is that, in architectures composed for modules or blocks (ResNet
and Inception), it is easier to change the number of filters in the module as a whole than to change the
filters in each particular layer inside the module and then to ensure that concatenations and additions
from the previous layers match the correct number of filters. We have adopted then, this assumption
of taking blocks as single layers to set the values of fl.

Uniform Template. The most immediate distribution to evaluate is, as the original Neocognitron,
an uniform distribution of filters. Computing the number of filters in an uniform distribution is
straightforward. Adding up the filters in each layer from the base model and divide them by the
number of layers give the number of filters to be set in each of them. Formally, we compute the new
number in each layer as f ′l = F/D ∀l ∈ {1, ..., D}.
In this way, changing the distribution for a VGG19 model built exclusively with sixteen convolu-
tional layers, one final unchangeable fully connected layer and a total number of filters of F = 5504
produces a model with f ′l = 5504/16 = 344 filters in each layer.

Reverse Template. Another naive transformation for the filter distribution adopted in this paper
is reversing the filters in every layer. Our final model with this template is defined by the filters
f ′l = fD−l+1.

3



Under review as a conference paper at ICLR 2020

Base

4 8 12 16

100

200

300

400

500

Layer

N
um

be
r 

of
 F

ilt
er

s

Reverse−Base

4 8 12 16

100

200

300

400

500

Layer

N
um

be
r 

of
 F

ilt
er

s

Uniform

4 8 12 16
343.950

343.975

344.000

344.025

Layer

N
um

be
r 

of
 F

ilt
er

s

Quadratic

4 8 12 16

300

400

500

Layer

N
um

be
r 

of
 F

ilt
er

s

Negative−Quadratic

4 8 12 16

100

200

300

400

500

Layer

N
um

be
r 

of
 F

ilt
er

s

Figure 2: Filters per layer using the proposed templates for filter redistribution in the VGG 19 model.
Base distribution, which is the original distribution, shows the common design of growing the filters
when resolution of feature maps decreases in deeper layers.

Quadratic Template. The third distribution we evaluated is characterised by a quadratic equation
f ′l = al2 + bl + c and consequently, has a parabolic shape with the vertex in the middle layer. We
set this layer to the minimal number of filters in the base model fmin = min (fl) l ∈ {1, ..., D}
so, the number of filters is described by f ′D/2 = fmin. Also, we find the maximum value in both the
initial and final convolutional layers , thus f ′1 = f ′D.

To compute the new number of filters in each layer we solve the system of linear equations given by
i) the restriction of the total number of filters in

∑D
l=1 (f

′
l ) =

∑D
l=1

(
al2 + bl + c

)
= F , that can

be reduced to
(

D3

3 + D2

2 + D
6

)
a+

(
D2

2 + D
2

)
b+Dc = F , ii) the equation produced by the value

in the vertex f ′D/2 = D
2

2
a+ D

2 b+ c = fmin and iii) the equality from the maximum values which
reduces to (D2 − 1)a+ (D − 1)b = 0.

Negative Quadratic Template. The final template is also a parabola but with the vertex in a max-
imum, that is, a negative quadratic curve. The equation is still the same quadratic equation that
the previous template but the restrictions change. Instead of defining a value in the vertex, f ′l at
the initial and final convolutional layers are set to the minimal number of filters in the base model
f ′l = fmin l ∈ {1, D}. The number of filters in each layer is computed again with a system of
equations specified by i) the restriction of the total number of filters as in the quadratic template, and
the two points already known in the first and last convolutional layers defined by ii) a+b+c = fmin

and iii) D2a+Db+ c = fmin.

Once the model has been readjusted with the new number of filters per layer we use a width mul-
tiplier to test different levels of model compression to make comparable evaluations given that the
change in the distributions of kernels modifies the number of parameters, memory consumption and
speed. The with multiplier only reduces or increases the set of new filters f ′l proportionally in every
layer.

DATASETS

We trained over two datasets traditionally used for convolutional network evaluation: CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009). Both datasets contain a train set of 50,000 images and a test
set of 10,000 images with a resolution of 32x32 and three colour channels. They were published for
classification tasks for ten and one hundred classes respectively.

CONVOLUTIONAL NETWORK MODELS

The state-of-the-art networks evaluated represent some of the highest performing CNNs on the
ImageNet challenge in the previous years (Russakovsky et al., 2015). They have been primarily
tested on classification tasks and also have demonstrated a strong ability to generalise to images
outside the ImageNet dataset. Therefore, it is expected they perform well in the CIFAR datasets.

The VGG network architecture (Simonyan & Zisserman, 2014) is recognised by its simplicity. It is
composed by sequential convolutional layers followed by max-pooling reduction layers. The final
classification is managed by fully-connected layer and a Softmax classifier. The main disadvantage

4



Under review as a conference paper at ICLR 2020

of these networks is the size of their parameters. In theses paper we use the version of the model
with just one fully connected layer in the final classification section.

ResNet (He et al., 2016) succeeds on the problem of training very deep CNNs by reformulating the
assumption that the network blocks are modelling a function closer to an identity mapping than to a
zero mapping. Therefore, it should be easier to find differences with reference to an identity rather
than to a zero mapping. This assumption is carry out by adding additional references at the end of
building blocks.

The Inception/GoogleNet architecture (Szegedy et al., 2015) make use of the Inception module
conceived as a multi-level feature extractor allowing simultaneous extraction features of several
sizes within the same module of the network.

The MobileNet network (Howard et al., 2017) is built on depthwise separable convolutions except
for the first layer which is a full convolution. All layers are followed by a batch normalisation and
ReLU nonlinearity with the exception of the final fully connected layer which consist of a softmax
layer for classification.

4 MODELS COMPARISON UNDER SIZE, MEMORY FOOTPRINT AND SPEED

In this section we first investigate the effects of applying different templates to the global distribu-
tion of kernels in well known convolutional neural network models (VGG, ResNet, Inception and
MobileNet). We compare models under the basis of size, memory and speed in two of the popular
datasets for classification tasks.

All experiments have models fed with images with the common augmentation techniques of
padding, random cropping and horizontal flipping. Our experiments were run in a NVidia Titan
X Pascal 12GB GPU adjusting the batch size to 64 to fit in GPU Memory at the maximum model
scaling.

TEMPLATE EFFECT OVER THE BASELINE MODELS

We conducted a first experiment to test our proposed templates on the selected architectures. All
convolutional models, with and without templates, were trained for 160 epochs using the same
conditions: stochastic gradient descent (SGD) with a scheduled learning rate starting in 0.1 for the
first 80 epochs, 0.01 for the next 40 epochs and finally 0.001 for the remaining epochs.

Redistribution Templates
Model Base Reverse-

Base
Uniform Quadratic Negative-

Quadratic
VGG-19 93.7 94.59 94.57 94.64 94.15

CIFAR-10 ResNet-50 94.6 95.37 95.32 94.44 95.42
Inception 94.92 94.63 94.82 94.82 94.63

MobileNet 91.35 93.26 93.2 90.92 92.33
VGG-19 72.38 75.05 74.44 74.05 74.46

CIFAR-100 ResNet-50 76.96 75.01 77.44 75.37 76.84
Inception 78.76 77.61 78.52 78.49 76.73

MobileNet 67.98 70.54 72.04 66.41 71.18

Table 1: Model performances with the original distribution and four templates for the same number
of filters evaluated on CIFAR-10 and CIFAR-100 datasets. After filter redistribution, most models
surpass the base accuracy.

The results are presented in Table 1. It is shown that for VGG, ResNet and MobileNet, the model
accuracy improves when the template is applied excepting the Inception architecture, which presents
the highest accuracy of all base models in both datasets. Even though, templates are only able to
change Inception accuracy in less than 1%. This is surprising given the drastic modifications that
the model is suffering after the change of filter distribution. Models that share a sequential classical
architecture such as VGG and MobileNet, show a better improvement when using templates.

5



Under review as a conference paper at ICLR 2020

Model Base Reverse-
Base

Uniform Quadratic Negative-
Quadratic

VGG-19 20.0 20.0 16.0 15.8 20.0
Parameters ResNet-50 23.5 23.1 12.9 19.0 33.0
(Millions) Inception 6.2 6.7 6.9 7.2 3.2

MobileNet 3.2 2.2 2.9 3.2 3.6
Memory VGG-19 1.7 10.7 5.2 9.3 1.9
Footprint ResNet-50 10.2 23.0 9.6 19.4 8.7
(GB/batch) Inception 5.7 10.8 7.0 8.0 3.7

MobileNet 2.9 6.8 3.3 7.7 2.0
VGG-19 73.8 432.8 102.9 366.6 95.2

Inference ResNet-50 645.4 1,968.6 1,263.1 1,350.0 1,324.0
Time (µs) Inception 707.8 1,422.7 1,093.9 1,187.5 486.8

MobileNet 74.5 488.2 560.1 492.0 89.0

Table 2: Parameters, memory and inference time for selected models when applying our templates
keeping the same number of filters evaluated on the CIFAR-10 dataset. Models are normally opti-
mised to fast GPU operation, therefore the original base distribution has a good effect in speed but
the redistribution of filters induced by our templates makes models capabilities improve on the other
metrics.

When evaluated under other metrics (Table 2), models are affected differently with each template and
model. The Reverse-Base, Uniform and Quadratic templates show some reductions in the number
of parameters while Negative Quadratic template reduces the memory usage for all models except
VGG. Inference Time is affected negatively for the templates. This is an expected result as orig-
inal models are designed to perform well in the GPU. The Inception model, which accuracy only
decreases with templates, shows a remarkable improvement in speed with a reduction of 30% over
inference time respect to the base model. It is important to notice that a reduced number of param-
eters does not correspond to a low consumption of memory, not even a small inference time. Some
of the causes are the difference in feature map resolution for filters in different layers, the need to
keep early feature maps in memory for late layers and the restrictions for improving parallelisation
in the computational graph of the model.

TEMPLATE EFFECT WITH SIMILAR RESOURCES

It can be argued that models obtained with templates make use of more resources such as memory or
number of operations in the GPU (reflected in the low inference speed). So, we formulated a second
experiment that makes proportional changes in the models after applying the templates. We not only
apply reductions to the models but also increments in order to observe if the actual total number of
filters is adequate for the task the model is performing or if the model accuracy could improve by
adding more filters. Thus, we create curves for each template applying an uniform reduction using a
width multiplier with values of 1,6, 1,3, 1.0, 0.8, 0.5, 0.25, 0.1 and 0.05. These curves of reduction
allow comparison under the same amount of resources as well as compares the use of resources
under the same accuracy. The experiment also shows the level of reduction that our models can
tolerate without a significant loss in accuracy.

We add dashed lines to every plot to be used as a reference for the model with the original distribution
and no reductions which is the point where both vertical and horizontal dashed lines cross. In
general, any arbitrary vertical line in the plot compares accuracy between models with amount of
resources (parameters, memory or speed). On the other side, any arbitrary horizontal line compares
the resources taken for each model under each template to produce similar accuracy.

Evaluating a model performance using accuracy and parameters is by far the default approach. We
show models performances with these metrics in figure 3. VGG and MobileNet models improve in
accuracy almost with any template in CIFAR-10 and CIFAR-100. Under reductions, their original
accuracy can be reached with less than 25% of the original parameters in the two models. ResNet
shows more small improvement when compare similar resource consumption but it can be seen that
templates make the model able to being reduced more before a drop in accuracy. Inception behavior

6



Under review as a conference paper at ICLR 2020

considering the same resources remains similar no matter the template used. In general, the uniform
template seems to get the best parameter eficiency for all the models.

85.0

87.5

90.0

92.5

95.0

0 20 40
Parameters (millions)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform 87

90

93

0 20 40 60 80
Parameters (millions)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

85.0

87.5

90.0

92.5

95.0

0 5 10 15
Parameters (millions)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

86

88

90

92

94

0.0 2.5 5.0 7.5
Parameters (millions)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

75

0 20 40
Parameters (millions)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

75

0 20 40 60 80
Parameters (millions)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

75

80

0 5 10 15
Parameters (millions)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

0.0 2.5 5.0 7.5
Parameters (millions)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

Figure 3: Accuracy versus Parameters in CIFAR-10 (top row) and CIFAR-100 (bottom row) datasets
using templates with VGG, ResNet, Inception and MobileNet. Curves are created by reducing
models using width multiplier scaling. An arbitrary vertical line in the plot compares templates
effects using the same amount of parameters. An arbitrary horizontal line compares parameters for
reaching the same accuracy.

Figure 4 presents an evaluation considering memory footprint and accuracy. We are convinced
that for practical implementations, comparing parameters is not a good option. Table 2 has shown
that models with a small number of parameters are not necessary related with a small memory
footprint or bigger speed. We observe again that VGG and MobileNet accuracy is enhanced by
templates. More than 50% of memory comsumption can be reduced in both models while producing
the same accuracy. With this metric, ResNet and Inception improve slightly in CIFAR-10 with the
Negative-Quadratic template but they perform lower with the rest of templates. We attribute the
lower efficiency in memory to the fact that in all the templates but Negative-Quadratic, we are
increasing the number of higher resolution feature maps, those more memory costly, that are kept at
the initial layers.

One final comparison also important for practical issues is inference time. We present our results in
figure 5 where it is observed the patter of improvement for VGG and MobileNet and a degradation
of inference time when adopting templates in ResNet and Inception. In particular Inception shows
an improvement with the Negative-Quadratic template in CIFAR-10.

By looking results in inference time it can look unpromising to apply templates. However we can
take a different perspective, by sacrificing inference speed it is possible to obtain models with a
better accuracy. This could be an unwanted decistion but it is frequently taken. It is clearly stated in
the inference time between different original models. For example by using ResNet the accuracy has
improve compared to the obtained by VGG in the two datasets tested, but at the cost of increasing
the time for inference. On the contrary, looking for speed enhancement MobilNet has sacrificed
accuracy. In these sense, our templates are still competitive when compared to searching for a
totally different model in order to improve accuracy.

5 CONCLUSIONS

The most common design of convolutional neural networks when choosing the distribution of the
number of filters is to start with a few and then to increase the number in deeper layers. We chal-
lenged this design by evaluating some architectures with a variate set of distributions on the CIFAR

7



Under review as a conference paper at ICLR 2020

85.0

87.5

90.0

92.5

95.0

0.0 2.5 5.0 7.5
Memory footprint (Gb)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform 87

90

93

0 3 6 9 12
Memory footprint (Gb)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

85.0

87.5

90.0

92.5

95.0

0 3 6 9
Memory footprint (Gb)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

86

88

90

92

94

0 2 4 6 8
Memory footprint (Gb)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

75

0.0 2.5 5.0 7.5
Memory footprint (Gb)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

75

0.0 2.5 5.0 7.5 10.0 12.5
Memory footprint (Gb)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

75

80

0 3 6 9
Memory footprint (Gb)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

0 2 4 6 8
Memory footprint (Gb)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

Figure 4: Accuracy versus Memory Footprint (batch size = 64) in CIFAR-10 (top row) and CIFAR-
100 (bottom row) datasets using templates with VGG, ResNet, Inception and MobileNet. Curves
are created by reducing models using width multiplier scaling. An arbitrary vertical line in the plot
compares templates effects in accuracy using the same amount of memory. An arbitrary horizontal
line compares memory consumption for reaching the same accuracy. Dashed lines crosses in the
original model with no reduction.

85.0

87.5

90.0

92.5

95.0

0.00 0.05 0.10 0.15 0.20 0.25
Inference Time (seconds/batch)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform 87

90

93

0.025 0.050 0.075 0.100
Inference Time (seconds/batch)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

85.0

87.5

90.0

92.5

95.0

0.025 0.050 0.075 0.100 0.125
Inference Time (seconds/batch)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

86

88

90

92

94

0.000 0.025 0.050 0.075 0.100
Inference Time (seconds/batch)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

75

0.00 0.05 0.10 0.15 0.20
Inference Time (seconds/batch)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

75

0.05 0.10
Inference Time (seconds/batch)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

75

80

0.03 0.06 0.09 0.12
Inference Time (seconds/batch)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

60

65

70

0.000 0.025 0.050 0.075
Inference Time (seconds/batch)

A
cc

ur
ac

y

Base
Negative−Quadratic
Quadratic
Reverse−Base
Uniform

Figure 5: Accuracy versus Inference Time (batch size = 64) in CIFAR-10 (top row) and CIFAR-100
(bottom row) datasets using templates with VGG, ResNet, Inception and MobileNet. Curves are
created by reducing models using width multiplier scaling. An arbitrary vertical line in the plot
compares templates effects in accuracy between models with same inference speed. An arbitrary
horizontal line compares inference time of models with the same accuracy.

8



Under review as a conference paper at ICLR 2020

datasets. Our results suggest that this pyramidal distribution of filters could not be a good option for
obtaining the highest accuracy or even the highest parameter efficiency.

The method presented applies a set of templates for redistributing the number of filters originally
assigned to each layer in existent convolutional network models and then trains the models from
scratch. This redesign and the following proportional reduction can be achieved without any previ-
ous training process to select particular weights.

Our experiments show that the models, with the same amount of filters but a different distribution
produced by our templates, improves significantly in accuracy. After being pruned uniformly, they
can obtain the same accuracy than the original models using less resources such as number of pa-
rameters and memory footprint.

Results also reveals an interesting behaviour in the evaluated models: a strong resilience to changes
in filter distribution. The variation in accuracy for all models after administering templates is less
than 5% despite the modifications in the distributions are considerable. This finding strengthen our
belief that it is not worth exploring the whole space of filter distributions to find the best solution at
the cost of training models for a large number of iterations, as this solution possibly won’t be too
distant of the baseline performance. However, it is possible to explore just some distinct distributions
such as those represented by our templates, that produces benefits depending on the resource to be
optimised.

ACKNOWLEDGMENTS

Removed for blind review

REFERENCES

Joseph Lin Chu and Adam Krzyżak. Analysis of feature maps selection in supervised learning using
convolutional neural networks. In Canadian Conference on Artificial Intelligence, pp. 59–70.
Springer, 2014.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. arXiv
preprint arXiv:1808.05377, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. Mor-
phnet: Fast & simple resource-constrained structure learning of deep networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1586–1595, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4340–4349, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Angel Fernando Kuri-Morales. The best neural network architecture. In Mexican International
Conference on Artificial Intelligence, pp. 72–84. Springer, 2014.

9



Under review as a conference paper at ICLR 2020

Guillaume Leclerc, Manasi Vartak, Raul Castro Fernandez, Tim Kraska, and Samuel Madden.
Smallify: Learning network size while training. arXiv preprint arXiv:1806.03723, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018c.

Nicolas Pinto, David Doukhan, James J DiCarlo, and David D Cox. A high-throughput screening
approach to discovering good forms of biologically inspired visual representation. PLoS compu-
tational biology, 5(11):e1000579, 2009.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

10


	INTRODUCTION
	RELATED WORK
	Filter distribution templates
	Models comparison under size, memory footprint and speed
	CONCLUSIONS

