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ABSTRACT

Over-parameterization is ubiquitous nowadays in training neural networks to ben-
efit both optimization in seeking global optima and generalization in reducing
prediction error. However, compressive networks are desired in many real world
applications and direct training of small networks may be trapped in local op-
tima. In this paper, instead of pruning or distilling over-parameterized models to
compressive ones, we propose a new approach based on differential inclusions of
inverse scale spaces, that generates a family of models from simple to complex
ones by coupling gradient descent and mirror descent to explore model structural
sparsity. It has a simple discretization, called Split Linearized Bregman Iteration
(SplitLBI), whose global convergence in deep learning is established that from any
initializations, algorithmic iterations converge to a critical point of empirical risks.
Empirically, SplitLBI deomonstrates the state-of-the-art performance in large scale
training on ImageNet dataset etc., and important subnetwork architecture can be
fast learned by SplitLBI with early stopping instead of pruning a well-trained dense
model.

1 INTRODUCTION

The expressive power of deep neural networks comes from the millions of parameters, which are
optimized by Stochastic Gradient Descent (SGD) (Bottou, 2010) and variants like Adam (Kingma &
Ba, 2015). Remarkably, model over-parameterization helps both optimization and generalization. For
optimization, over-parameterization may simplify the landscape of empirical risks toward locating
global optima efficiently by gradient descent method (Mei et al., 2018; 2019; Venturi et al., 2018;
Allen-Zhu et al., 2018; Du et al., 2018). On the other hand, over-parameterization does not necessarily
result in a bad generalization or overfitting (Zhang et al., 2017), especially when some weight-size
dependent complexities are controlled (Bartlett, 1997; Bartlett et al., 2017; Golowich et al., 2018;
Neyshabur et al., 2019).

However, compressive networks are desired in many real world applications, e.g. robotics, self-
driving cars, and augmented reality. Despite that `1 regularization has been applied to deep learning
to enforce the sparsity on the weights toward compact, memory efficient networks, it sacrifices some
prediction performance (Collins & Kohli, 2014). This is because that the weights learned in neural
networks are highly correlated, and `1 regularization on such weights violates the incoherence or
irrepresentable conditions needed for sparse model selection (Donoho & Huo, 2001; Tropp, 2004;
Zhao & Yu, 2006), leading to spurious selections with poor generalization. On the other hand, `2
regularization is often utilized for correlated weights as some low-pass filtering, sometimes in the
form of weight decay (Loshchilov & Hutter, 2019) or early stopping (Yao et al., 2007; Wei et al.,
2017). Furthermore, group sparsity regularization (Yuan & Lin, 2006) has also been applied to neural
networks, such as finding optimal number of neuron groups (Alvarez & Salzmann, 2016) and exerting
good data locality with structured sparsity (Wen et al., 2016; Yoon & Hwang, 2017).

Yet, without the aid of over-parameterization, directly training a compressive model architecture
may meet the obstacle of being trapped in local optima in contemporary experience. Alternatively,
researchers in practice typically start from training a big model using common task datasets like
ImageNet, and then prune or distill such big models to small ones without sacrificing too much of the
performance (Jaderberg et al., 2014; Han et al., 2015; Zhu et al., 2017; Zhou et al., 2017; Zhang et al.,
2016; Li et al., 2017; Abbasi-Asl & Yu, 2017; Yang et al., 2018; Arora et al., 2018). In particular,
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a recent study (Frankle & Carbin, 2019) created the lottery ticket hypothesis based on empirical
observations: “dense, randomly-initialized, feed-forward networks contain subnetworks (winning
tickets) that – when trained in isolation – reach test accuracy comparable to the original network in a
similar number of iterations". How to effectively reduce an over-parameterized model thus becomes
the key to compressive deep learning. Yet, Liu et al. (2019) raised a question, is it necessary to fully
train a dense, over-parameterized model before finding important structural sparsity?

In this paper, we provide a novel answer by exploiting a dynamic approach to deep learning with
structural sparsity. We are able to establish a family of neural networks, from simple to complex,
by following regularization paths as solutions of differential inclusions of inverse scale spaces. Our
key idea is to design some dynamics that simultaneously exploit over-parameterized models and
structural sparsity. To achieve this goal, the original network parameters are lifted to a coupled
pair, with one weight set W of parameters following the standard gradient descend to explore the
over-parameterized model space, while the other set of parameters learning structure sparsity in
an inverse scale space, i.e., structural sparsity set Γ that the large-scale important parameters are
learned at a fast speed while the small unimportant ones are learned at a slow speed. The two sets of
parameters are coupled in an `2 regularization. The dynamics enjoys a simple discretization, the Split
Linearized Bregman Iteration (SplitLBI), with provable global convergence guarantee shown in this
paper. Here, SplitLBI is a natural extension of SGD with structural sparsity exploration: SplitLBI
reduces to the standard gradient descent method when the coupling regularization is weak, and leads
to a sparse mirror descent when the coupling is strong.

Critically, SplitLBI enjoys a nice property that important subnet architecture can be rapidly learned via
the structural sparsity parameter Γ following the iterative regularization path, without fully training a
dense network first. Particularly, the support set of structural sparsity parameter Γ learned in the early
stage of this inverse scale space discloses important sparse subnet architectures, that can be fine-tuned
or retrained to achieve comparable test accuracy as the dense, over-parameterized networks. As a
result, the structural sparsity parameter Γ may enable us to rapidly find “winning tickets” in early
training epochs for the “lottery” of identifying successful subnetworks that bear comparable test
accuracy to the dense ones. This point is empirically validated in our experiments.

Historically, the Linearized Bregman Iteration (LBI) was firstly proposed in applied mathematics as
iterative regularization paths for image reconstruction and compressed sensing (Osher et al., 2005; Yin
et al., 2008), later applied to logistic regression (Shi et al., 2013). The convergence analysis was given
for convex problems (Yin et al., 2008; Cai et al., 2009), yet remaining open for non-convex problems
met in deep learning. Osher et al. (2016) established statistical model selection consistency for high
dimensional linear regression under the same irrepresentable condition as Lasso, later extended to
generalized linear models (Huang & Yao, 2018). To relax such conditions, SplitLBI was proposed
by Huang et al. (2016) to learn structural sparsity under weaker conditions than generalized Lasso,
that was successfully applied in medical image analysis (Sun et al., 2017) and computer vision (Zhao
et al., 2018). In this paper, it is the first time that SplitLBI is exploited to train highly non-convex
neural networks with structural sparsity, together with a global convergence analysis based on the
Kurdyka-Łojasiewicz framework.

Contributions. (1) SplitLBI, as an extension of SGD, is applied to deep learning by exploring both
over-parameterized models and structural sparsity in the inverse scale space. (2) Global convergence
of SplitLBI in such a nonconvex optimization is established based on the Kurdyka-Łojasiewicz
framework, that the whole iterative sequence converges to a critical point of the empirical loss
function from arbitrary initializations. (3) Stochastic variants of SplitLBI demonstrate the state-of-
the-art performance in large scale training such as ImageNet-2012, among other datasets, together
with additional structural sparsity in successful models for interpretability. (4) Structural sparsity
parameters in SplitLBI provide important information about subnetwork architecture with comparable
or even better accuracies than dense models before and after retraining -- SplitLBI with early stopping
can provide fast “winning tickets” without fully training dense, over-parameterized models.

2 METHODOLOGY

The supervised learning task learns a mapping ΦW : X → Y , from input space X to output space
Y , with a parameter W such as weights in neural networks, by minimizing certain loss functions
on training samples L̂n(W ) = 1

n

∑n
i=1 `(yi,ΦW (xi)). For example, a neural network of l-layer is
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Figure 1: Visualization of solution path and filter patterns in the third convolutional layer (i.e., conv.c5) of
LetNet-5, trained on MNIST. The left figure shows the magnitude changes for each filter of the models trained
by SplitLBI and SGD, where x-axis and y-axis indicate the training epochs, and filter magnitudes (`2-norm),
respectively. The SplitLBI path of filters selected in the support of Γ are drawn in blue color, while the red color
curves represent the filters that are not important and outside the support of Γ. We visualize the corresponding
learned filters by Erhan et al. (2009) at 20 (blue), 40 (green), and 80 (black) epochs, which are shown in the right
figure with the corresponding color bounding boxes, i.e., blue, green, and black, respectively. It shows that our
SplitLBI enjoys a sparse selection of filters without sacrificing accuracy (see Table 1).

defined as ΦW (x) = σl(W
lσl−1(W l−1 · · ·σ1(W 1x)), where W = {W i}li=1, σi is the nonlinear

activation function of the i-th layer.

Differential Inclusion of Inverse Scale Space. Consider the following dynamics,

Ẇt

κ
= −∇W L̄ (Wt,Γt) (1a)

V̇t = −∇ΓL̄ (Wt,Γt) (1b)

Γt ∈ ∂Ω̄(Vt) (1c)

where Ω̄(V ) = Ωλ(V ) + 1
2κ‖V ‖

2 for some sparsity-enforced regularization Ωλ(V ) = λΩ1(V )
(λ ∈ R+) such as Lasso or group Lasso penalties for Ω1(V ), and κ > 0 is a damping parameter such
that the solution path is continuous, and the augmented loss function is

L̄ (W,Γ) = L̂n (W ) +
1

2ν
‖W − Γ‖22, (2)

with ν > 0 controlling the gap admitted between W and Γ. Compared to the original loss function
L̂n (W ), the L̄ (W,Γ) additionally adopt the variable splitting strategy, by lifting the original neural
network parameter W to (W,Γ) with Γ modeling the structural sparsity of W . For simplicity, we
assumed L̄ is differentiable with respect to W here, otherwise the gradient in Eq. (1a) is understood
as subgradient and the equation becomes an inclusion.

The differential inclusion system (1), called Split Inverse Scale Space (SplitISS), can be understood
as a gradient descent flow of Wt in the proximity of Γt and a mirror descent flow (Nemirovski &
Yudin, 1983) of Γt associated with a sparsity enforcement penalty Ω̄. For a large enough ν, it reduces
to the gradient descent method for Wt. Yet the solution path of Γt exhibits the following property
in the separation of scales: starting at the zero, important parameters of large scale will be learned
fast, popping up to be nonzeros early, while unimportant parameters of small scale will be learned
slowly, appearing to be nonzeros late. In fact, taking Ωλ(V ) = ‖V ‖1 and κ→∞ for simplicity, Vt
undergoes a gradient descent flow before reaching the `∞-unit box, which implies that Γt = 0 in this
stage and Wt follows the gradient descent with a standard `2-regularization; the earlier a component
in Vt reaching the `∞-unit box, the earlier a corresponding component in Γt becomes nonzero and
rapidly evolves toward a critical point of L̄ under gradient flow, which drives Wt closely following
dynamics of Γt whose important parameters are selected. Such a property is called as the inverse
scale space in applied mathematics (Burger et al., 2006) and recently was shown to achieve statistical
model selection consistency in high dimensional linear regression (Osher et al., 2016) and general
linear models (Huang & Yao, 2018), with a reduction of bias as κ increases. In this paper, we shall
see the inverse scale space property still holds empirically for neural networks trained by Eq. (1).
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For example, Fig. 1 shows a LeNet trained on MNIST by the discretized dynamics, where important
sparse filters are selected in early epochs while the popular SGD returns dense filters.

Compared with directly enforcing a penalty function such as `1 or `2 regularization

min
W
R̂n(W ) := L̂n (W ) +Ωλ (W ) , λ ∈ R+. (3)

SplitISS avoids the parameter correlation problem in over-parameterized models. In fact, a necessary
and sufficient condition for Lasso or `1-type sparse model selection is the incoherence or irrepre-
sentable conditions (Tropp (2004); Zhao & Yu (2006)) that are violated for highly correlated weight
parameters, leading to spurious discoveries. In contrast, Huang et al. (2018) showed that equipped
with such a variable splitting where Γ enjoys an orthogonal design, the SplitISS can achieve model
selection consistency under weaker conditions than generalized Lasso, relaxing the incoherence or
irrepresentable conditions when parameters are highly correlated. For weight parameter W , instead
of directly being imposed with `1-sparsity, it adopts `2-regularization in the proximity of the sparse
path of Γ that admits simultaneously exploring highly correlated parameters in over-parameterized
models and sparsity regularization.

Split Linearized Bregman Iterations. SplitISS admits an extremely simple discrete approximation,
using the Euler forward discretization of dynamics (1):

Wk+1 = Wk − καk · ∇W L̄ (Wk,Γk) , (4a)

Vk+1 = Vk − αk · ∇ΓL̄ (Wk,Γk) , (4b)
Γk+1 = κ · ProxΩλ (Vk+1) , (4c)

where V0 = Γ0 = 0, W0 can be small random numbers such as Gaussian distribution in neural
networks, for some complex networks it can be initialized as common setting.The proximal map in
Eq. (4c) that controls the sparsity of Γ is given by

ProxΩλ(V ) = arg min
Γ

{
1

2
‖Γ− V ‖22 + Ωλ (Γ)

}
, (5)

We shall call such an iterative procedure as Split Linearized Bregman Iteration (SplitLBI), that was
firstly coined in Huang et al. (2016) as an iterative regularization path for sparse modeling in high
dimensional statistics. In the application to neural networks, the loss becomes highly non-convex, the
SplitLBI returns a sequence of sparse models from simple to complex ones whose global convergence
condition to be shown below, while solving Eq. (3) at various levels of λ might not be tractable
except for over-parameterized models.

The sparsity-enforcement penalty used in convolutional neural networks can be chosen as follows. Our
sparsity framework aims at regularizing the groups of weight parameters using group Lasso penalty

(Yuan & Lin, 2006), Ω1(V ) =
∑
g ‖V g‖2, where ‖V g‖2 =

√∑|V g|
i=1 (V gi )

2 and |V g| is the number
of weights in V g. Thus Eq. (4c) has a closed form solution Γg = κ ·max (0, 1− 1/‖V g‖2)V g for
the g-th filter. We treat convolutional and fully connected layers in different ways.

(1) For a convolutional layer, V g = V g(cin, cout, size) denote the convolutional filters where size
denotes the kernel size and cin and cout denote the numbers of input channels and output channels,
respectively. When we regard each group as each convolutional filter, g = cout; otherwise for weight
sparsity, g can be every element in the filter that reduces to the Lasso.

(2) For a fully connected layer, V = V (cin, cout) where cin and cout denote the numbers of inputs
and outputs of the fully connected layer. Each group g corresponds to each element (i, j), and the
group Lasso penalty degenerates to the Lasso penalty.

3 GLOBAL CONVERGENCE OF SPLITLBI FOR NEURAL NETWORKS

We present a theorem that guarantees the global convergence of SplitLBI, i.e. from any intialization,
the SplitLBI sequence converges to a critical point of L̄. Our treatment extends the block coordinate
descent (BCD) studied in Zeng et al. (2019), with a crucial difference being the mirror descent
involved in SplitLBI. Instead of the splitting loss in BCD (Zeng et al., 2019), a new Lyapunov
function is developed here to meet the Kurdyka-Łojasiewicz property. Xue & Xin (2018) studied
convergence of variable splitting method for single hidden layer networks with Gaussian inputs.
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Let P := (W,Γ). Following Huang & Yao (2018), the SplitLBI algorithm in Eq. (4a-4c) can be
rewritten as the following standard Linearized Bregman Iteration,

Pk+1 = arg min
P

{
〈P − Pk, α∇L̄(Pk)〉+BpkΨ (P, Pk)

}
, (6)

where

Ψ(P ) = Ωλ(Γ) +
1

2κ
‖P‖22 = Ωλ(Γ) +

1

2κ
‖W‖22 +

1

2κ
‖Γ‖22, (7)

pk ∈ ∂Ψ(Pk), and BqΨ is the Bregman divergence associated with convex function Ψ, defined by

BqΨ(P,Q) := Ψ(P )−Ψ(Q)− 〈q, P −Q〉, for some q ∈ ∂Ψ(Q). (8)

Without loss of generality, consider λ = 1 in the sequel. One can establish the global convergence of
SplitLBI under the following assumptions.

Assumption 1. Suppose that: (a) L̂n(W ) = 1
n

∑n
i=1 `(yi,ΦW (xi)) is continuous differentiable and

∇L̂n is Lipschitz continuous with a positive constant Lip; (b)L̂n(W ) has bounded level sets; (c)
L̂n(W ) is lower bounded (without loss of generality, we assume that the lower bound is 0); (d) Ω is
a proper lower semi-continuous convex function and has locally bounded subgradients, that is, for
every compact set S ⊂ Rn, there exists a constant C > 0 such that for all Γ ∈ S and all g ∈ ∂Ω(Γ),
there holds ‖g‖ ≤ C; and (e) the Lyapunov function

F (P,G) := αL̄(W,Γ) +Bg̃Ω(Γ, Γ̃), (9)

is a Kurdyka-Łojasiewicz function on any bounded set, whereBg̃Ω(Γ, Γ̃) := Ω(Γ)−Ω(Γ̃)−〈g̃,Γ− Γ̃〉,
Γ̃ ∈ ∂Ω∗(g̃), and Ω∗ is the conjugate of Ω defined as

Ω∗(g) := sup
U∈Rn

{〈U, g〉 − Ω(U)}.

Remark 1. Assumption 1 (a)-(c) are regular in the analysis of nonconvex algorithm (see, Attouch
et al. (2013) for instance), while Assumption 1 (d) is also mild including all Lipschitz continuous
convex function over a compact set. Some typical examples satisfying Assumption 1(d) are the `1
norm, group `1 norm, and every continuously differentiable penalties. By Eq. (9) and the definition
of conjugate, the Lyapunov function F can be rewritten as follows,

F (W,Γ, g) = αL̄(W,Γ) + Ω(Γ) + Ω∗(g)− 〈Γ, g〉. (10)

Now we are ready to present the main theorem.

Theorem 1. [Global Convergence of SplitLBI] Suppose that Assumption 1 holds. Let (Wk,Γk) be
the sequence generated by SplitLBI (Eq. (4a-4c)) with a finite initialization. If

0 < αk = α <
2

κ(Lip+ ν−1)
,

then (Wk,Γk) converges to a critical point of L̄ defined in Eq. (2), and {W k} converges to a critical
point of L̂n(W ).

Applying to the neural networks, typical examples are summarized in the following corollary.

Corollary 1. Let {Wk,Γk, gk} be a sequence generated by SLBI (16a-16c) for neural network
training where (a) ` is any smooth definable loss function, such as the square loss (t2), exponential loss
(et), logistic loss log(1 +e−t), and cross-entropy loss; (b) σi is any smooth definable activation, such
as linear activation (t), sigmoid ( 1

1+e−t ), hyperbolic tangent ( e
t−e−t
et+e−t ), and softplus ( 1

c log(1 + ect)
for some c > 0) as a smooth approximation of ReLU; (c) Ω is the group Lasso. Then the sequence
{Wk} converges to a stationary point of L̂n(W ) under the conditions of Theorem 1.

Proofs of Theorem 1 and Corollary 1 are given in Appendix A.
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4 EXPERIMENTS WITH STOCHASTIC SPLITLBI

We present some stochastic variants of SplitLBI used in the experiments. Note that SplitLBI computes
the structural sparsity parameter Γk by Eq.(4c) for all the experiments.

Batch Split LBI. For neural network training with large datasets, stochastic approximation of the
gradients in Split LBI over the mini-batch (X,Y)batcht

is adopted to update the parameter W ,

∇̃tW = ∇W L̂n (W ) | (X,Y)batcht
. (11)

SplitLBI with momentum (Mom). Inspired by the variants of SGD, the momentum term can be
also incorporated to the standard Split LBI that leads to the following updates of W by replacing Eq
(4a) with,

vt+1 = τvt + ∇̃W L̄ (Wt,Γt) (12a)
Wt+1 = Wt − καvt+1 (12b)

where τ is the momentum factor, empirically setting as 0.9 in default. One immediate application of
such stochastic algorithms of SplitLBI is to “boost networks", i.e. growing a network from the null to
a complex one by sequentially applying our algorithm on subnets with increasing complexities.

SplitLBI with momentum and weight decay (Mom-Wd). The update formulation is,

vt+1 = τvt + ∇̃W L̄ (Wt,Γt) (13)
Wt+1 = Wt − καvt+1 − βWt (14)

where β is set as 1e−4.

Implementation. Various algorithms are evaluated over the various backbones – LeNet (LeCun
et al., 2015), AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2014), and ResNet
(He et al., 2016) etc., respectively. For MNIST and Cifar-10, the default hyper-parameters of Split
LBI are κ = 1, ν = 10 and αk is set as 0.1, decreased by 1/10 every 30 epochs. In ImageNet-2012,
the Split LBI utilizes κ = 1, ν = 1000, and αk is initially set as 0.1, decays 1/10 every 30 epochs.
We set λ = 1 in Eq. (5) by default, unless otherwise specified. On MNIST and Cifar-10, the batch
size is set as 128; and for all methods, the batch size of ImageNet 2012 is 256. The standard data
augmentation implemented in pytorch is applied to Cifar-10 and ImageNet2012 datasets, as He et al.
(2016). The weights of all models are initialized as He et al. (2015). In the following experiments, we
define sparsity as percentage of non-zero parameters, i.e. the number of non-zero weights dividing
the total number of weights in consideration, that equals to one minus the pruning rate of the network.
Reproducible source codes will be released upon requests.

4.1 IMAGE CLASSIFICATION

In SplitLBI, the weight parameter Wt explores over-parameterized models that can achieve the
state-of-the-art performance in large scale training.

Experimental Design. We compare different variants of SGD and Adam in the experiments. By
default, the learning rate of competitors is set as 0.1 for SGD and its variant and 0.001 for Adam and
its variants, and gradually decreased by 1/10 every 30 epochs. In particular, we have,

SGD: (1) Naive SGD: the standard SGD with batch input. (2) SGD with l1 penalty (Lasso). The
l1 norm is applied to penalize the weights of SGD by encouraging the sparsity of learned model,
with the regularization parameter of the l1 penalty term being set as 1e−3 (3) SGD with momentum
(Mom): we utilize momentum 0.9 in SGD. (4) SGD with momentum and weight decay (Mom-Wd):
we set the momentum 0.9 and the standard l2 weight decay with the coefficient weight 1e−4. (5)
SGD with Nesterov (Nesterov): the SGD uses nesterov momentum 0.9.

Adam: (1) Naive Adam: it refers to the standard version of Adam. We report the results of several
recent variants of Adam, including (2) Adabound, (3) Adagrad, (4) Amsgrad, and (5) Radam.

SplitLBI achieves the state-of-the-art performance on ImageNet-2012, etc. Tab. 1 shows the
experimental results on ImageNet-2012, Cifar-10, and MNIST of some classical networks -- LeNet,
AlexNet and ResNet. Our SplitLBI variants may achieve comparable or even better performance than
SGD variants in 100 epochs, indicating the efficacy in learning dense, over-parameterized models.
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Dataset MNIST Cifar-10 ImageNet-2012
Models Variants LeNet ResNet-20 AlexNet ResNet-18

SGD

Naive 98.87 86.46 –/– 60.76/79.18
l1 98.52 67.60 –/– –/–

Mom 99.16 89.44 55.14/78.09 66.98/86.97
Mom-Wd? 99.23 90.31 56.55/79.09 69.76/89.18
Nesterov 99.23 90.18 -/- 70.19/89.30

Adam

Naive 99.19 89.14 –/– 59.66/83.28
Adabound –/– 87.89 –/– –/–
Adagrad –/– 88.17 –/– –/–
Amsgrad –/– 88.68 –/– –/–
Radam –/– 88.44 –/– –/–

SplitLBI
Naive –/– –/– 55.06/77.69 65.26/86.57
Mom 99.19 89.72 56.23/78.48 68.55/87.85

Mom-Wd 99.20 89.95 57.09/79.86 70.55/89.56

Table 1: Top-1/Top-5 accuracy(%) on ImageNet-2012 and test accuracy on MNIST/Cifar-10. ?:
results from the official pytorch website. We use the official pytorch codes to run the competitors.
All models are trained by 100 epochs.

4.2 SPLITLBI LEARNS SPARSE FILTERS FOR IMPROVED INTERPRETATION

Random
Initialization

Input Image

SLBI-1
SLBI-10

SG
D

Figure 2: Visualization of the first convolutional layer filters of ResNet-18 trained on ImageNet-2012.
Given the input image and initial weights visualized in the middle, filter response gradients at 20
(purple), 40 (green), and 60 (black) epochs are visualized by Springenberg et al. (2014).

In SplitLBI, the structural sparsity parameter Γt explores important sub-network architectures that
contributes significantly to the loss or error reduction in early training stages. Through the `2-coupling,
structural sparsity parameter Γt may guide the weight parameter to explore those sparse models
in favour of improved interpretabiity. For example, Fig. 1 visualizes some sparse filters learned
by SplitLBI of LeNet-5 trained on MNIST (with κ = 10 and weight decay every 40 epochs), in
comparison with dense filters learned by SGD. The activation pattern of such sparse filters favours
high order global correlations between pixels of input images. To further reveal the insights of learned
patterns of SplitLBI, we visualize the first convolutional layer of ResNet-18 on ImageNet-2012 along
the training path of our SplitLBI as in Fig. 2. The left figure compares the training and validation
accuracy of SplitLBI and SGD. The right figure compares visualizations of the filters learned by
SplitLBI and SGD using Springenberg et al. (2014).

Implementation. To be specific, denote the weights of an l-layer network as {W 1,W 2, · · · ,W l}.
For the i−th layer weights W i, denote the j−th channel W i

j . Then we compute the gradient of the
sum of the feature map computed from each filter W i

j with respect to the input image (here a snake
image). We further conduct the min-max normalization to the gradient image, and generate the final
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Figure 3: Sparsity and validation accuracy by different κ and ν show that moderate sparse models
may achieve comparable test accuracies to dense models without fine-tuning. Sparsity is obtained as
the percentage of nonzeros in Γt and sparse model at epoch t is obtained by projection of Wt onto the
support set of Γt, i.e. pruning the weights corresponding to zeros in Γt. The best accuracies achieved
are recorded in Tab. 3 and 4 of Appendix for different κ and ν, respectively. X-axis and Y-axis
indicate the training epochs, and sparsity/accuracy. The results are repeated for 5 times. Shaded area
indicates the variance; and in each round, we keep the exactly same initialization for each model.

visualization map. The right figure compares the visualized gradient images of first convolutional
layer of 64 filters with 7× 7 receptive fields. We visualize the models parameters at 20 (purple), 40
(green), and 60 (black) epochs, respectively, which corresponds to the bounding boxes in the right
figure annotated by the corresponding colors, i.e., purple, green, and black. We order the gradient
images produced from 64 filters by the descending order of the magnitude (`2-norm) of filters, i.e.,
images are ordered from the upper left to the bottom right. For comparison, we also provide the
visualized gradient from random initialized weights.

Filters learned by ImageNet prefer to non-semantic texture rather than shape and color. The
filters of high norms mostly focus on the texture and shape information, while color information
is with the filters of small magnitudes. This phenomenon is in accordance with observation of
Abbasi-Asl & Yu (2017) that filters mainly contain color information can be pruned for saving
computational cost. Moreover, among the filters of high magnitudes, most of them capture non-
semantic textures while few pursue shapes. This shows that the first convolutional layer of ResNet-18
trained on ImageNet learned non-semantic textures rather than shape to do image classification
tasks, in accordance with recent studies (Geirhos et al., 2019). How to enhance the semantic shape
invariance learning, is arguably a key to improve the robustness of convolutional neural networks.

4.3 STRUCTURAL SPARSITY LEARNED BY SPLITLBI

To directly evaluate the structural sparsity learned by Γt, we conduct further experiments on Cifar-10
dataset with VGG-16 and ResNet-56, for the test accuracy of sparse models obtained by restricting
Wt onto the support set of Γt (mask). Ablation studies are conducted by varying two key hyper-
parameters κ and ν.

Implementation. We choose SplitLBI with momentum and weight decay, since it achieves very
good performance on large-scale experiments. Specifically, we have two set of experiments, where
each experiment is repeated for 5 times: (1) we fix ν = 100 and vary κ = 1, 2, 5, 10, where sparsity
of Γt and validation accuracies of sparse models are shown in top row of Fig. 3. Note that we keep
κ · αk = 0.1 in Eq (1a), to make comparable learning rate of each variant, and also consistent with
SGD. Thus the learning rate αk will be adjusted by different κ values. (2) we fix κ = 1, and validate
the results of SplitLBI with ν = 10, 20, 50, 100, 200, 500, 1000, 2000 in the second row of Fig. 3
with the learning rate αk = 0.1. Moreover, rather than using sparse models associated with Γt, Fig.
5 in Appendix shows the validation accuracies of dense models learned in Wt.
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(a) VGG-16 (b) ResNet-56 (c) VGG-16 (Lasso) (d) ResNet-50 (Lasso)

Figure 4: SplitLBI with early stopping finds sparse subnets whose test accuracies (stars) after retrain
are comparable or even better than the baselines (Network Slimming, Soft-Filter Pruning, Scratch-B,
Scratch-E, and “Rethinking-Lottery” (Tab. 9a)) as reported in Liu et al. (2019). Sparse filters of
VGG-16 and ResNet-56 are show in (a) and (b), while sparse weights of VGG-16 and ResNet-50 are
shown in (c) and (d).

Sparse subnetworks achieve comparable performance to dense models without fine-tuning or
retraining. From the experiments above, the sparsity of Γ grows as κ and ν increase. While large κ
may cause a small number of important parameters growing rapidly, large ν will decouple Wt and Γt
such that the growth of Wt does not affect Γt that may over-sparsify and deteriorate model accuracies.
Thus a moderate choice of κ and ν is preferred in practice. In all cases, one can see that moderate
sparse models can achieve comparable predictive power to dense models, even without fine-tuning or
retraining. This shows that the structural sparsity parameter Γt can indeed capture important weight
parameter Wt through their coupling.

4.4 SPLITLBI WITH EARLY STOPPING AND RETRAIN FINDS EFFECTIVE SUB-NETWORKS

Equipped with retraining (Frankle & Carbin, 2019; Liu et al., 2019), we show that early stopped
subnetworks associated with Γt in SplitLBI, provide us winning tickets that may achieve comparable
or even better performance than existing pruning strategies in SGD.

Experimental Design. We adopt a comparison baseline as the one-shot pruning strategy in Frankle
& Carbin (2019), which firstly train a dense over-parameterized model by SGD for T = 160 epochs
and find the sparse structure by pruning weights or filters (Liu et al., 2019); and secondly retrain
the structure from the scratch with T epochs from the same initialization as the first step. For
SplitLBI, instead using pruning weights/filters from dense models, we directly utilize the structural
sparsity Γt at different training epochs to define the subnet architecture, followed by retraining from
scratch. Experiments are conducted on Cifar-10 dataset where we still use VGG–16, ResNet-50,
and ResNet-56 as the networks to make the direct comparisons to previous works. SplitLBI uses
the default hyperparameters with momentum and weight decay (see Tab. 10 in Appendix for detail).
In particular, we set λ = 0.1, and 0.05 for VGG-16, and ResNet-56 respectively, since ResNet-56
has less parameters than VGG-16. Furthermore, we introduce another variant of our SplitLBI by
using Lasso (`1) rather than group lasso for Γt to sparsify the weights of convolutional filters; and the
corresponding models are denoted as VGG-16 (Lasso), and ResNet-50 (Lasso). Every experiment is
repeated for five times and the results are shown in Fig. 4 with both sparse filters and weights. Note
that in different runs of SplitLBI, the sparsity of Γt slightly varies.

Sparse subnets found by early stopping of SplitLBI achieve remarkably good accuracy after
retrain from scratch. In Fig.4 (a-b), sparse filters discovered by Γt at different epochs are compared
against the methods of Network Slimming (Liu et al., 2017), Soft Filter Pruning (Yang et al., 2018),
Scratch-B, and Scratch-E, whose results are reported from Liu et al. (2019). At similar sparsity
levels, SplitLBI can achieve comparable or even better accuracy than competitors, even with sparse
architecture learned from very early epochs (e.g. t = 20 or 10). Moreover in Fig.4 (c-d), we can
draw the same conclusion for the sparse weights of VGG-16 (Lasso) and ResNet-50 (Lasso), against
the results reported in Liu et al. (2019). These results shows that the structural sparsity parameter Γt
found by early stopping of SplitLBI already discloses important subnetwork architecture that may
achieve remarkably good accuracy after retrain from scratch. Therefore, it is not necessary to fully
train a dense model to find a successful sparse subnet architecture with comparable performance to
the dense ones -- one can early stop SplitLBI where the structural parameter Γt unveils “winning
tickets” (Frankle & Carbin, 2019).
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APPENDIX TO SplitLBI for deep learning: structural sparsity via differential
inclusion paths

A PROOF OF THEOREM 1

First of all, we reformulate Eq. (6) into an equivalent form. Without loss of generality, consider
Ω = Ω1 in the sequel.

Denote R(P ) := Ω(Γ), then Eq. (6) can be rewritten as,

Pk+1 = ProxκR(Pk + κ(pk − α∇L̄(Pk))), (15a)

pk+1 = pk − κ−1(Pk+1 − Pk + κα∇L̄(Pk)), (15b)

where pk = [0, gk]T ∈ ∂R(Pk) and gk ∈ ∂Ω(Γk). Thus SplitLBI is equivalent to the following
iterations,

Wk+1 = Wk − κα∇W L̄(Wk,Γk), (16a)

Γk+1 = ProxκΩ(Γk + κ(gk − α∇ΓL̄(Wk,Γk))), (16b)

gk+1 = gk − κ−1(Γk+1 − Γk + κα · ∇ΓL̄(Wk,Γk)). (16c)

Exploiting the equivalent reformulation (16a-16c), one can establish the global convergence of
(Wk,Γk, gk) based on the Kurdyka-Łojasiewicz framework. In this section, the following extended
version of Theorem 1 is actually proved.

Theorem 2. [Global Convergence of SplitLBI] Suppose that Assumption 1 holds. Let (Wk,Γk, gk)
be the sequence generated by SplitLBI (Eq. (16a-16c)) with a finite initialization. If

0 < αk = α <
2

κ(Lip+ ν−1)
,

then (Wk,Γk, gk) converges to a critical point of F . Moreover, {(Wk,Γk)} converges to a stationary
point of L̄ defined in Eq. 2, and {W k} converges to a stationary point of L̂n(W ).

A.1 KURDYKA-ŁOJASIEWICZ PROPERTY

To introduce the definition of the Kurdyka-Łojasiewicz (KL) property, we need some notions and
notations from variational analysis, which can be found in Rockafellar & Wets (1998).

The notion of subdifferential plays a central role in the following definitions. For each x ∈ dom(h) :=

{x ∈ Rp : h(x) < +∞}, the Fréchet subdifferential of h at x, written ∂̂h(x), is the set of vectors
v ∈ Rp which satisfy

lim inf
y 6=x,y→x

h(y)− h(x)− 〈v,y − x〉
‖x− y‖

≥ 0.

When x /∈ dom(h), we set ∂̂h(x) = ∅. The limiting-subdifferential (or simply subdifferential) of h
introduced in Mordukhovich (2006), written ∂h(x) at x ∈ dom(h), is defined by

∂h(x) := {v ∈ Rp : ∃xk → x, h(xk)→ h(x), vk ∈ ∂̂h(xk)→ v}. (17)

A necessary (but not sufficient) condition for x ∈ Rp to be a minimizer of h is 0 ∈ ∂h(x). A point
that satisfies this inclusion is called limiting-critical or simply critical. The distance between a point
x to a subset S of Rp, written dist(x,S), is defined by dist(x,S) = inf{‖x− s‖ : s ∈ S}, where
‖ · ‖ represents the Euclidean norm.

Let h : Rp → R ∪ {+∞} be an extended-real-valued function (respectively, h : Rp ⇒ Rq be a
point-to-set mapping), its graph is defined by

Graph(h) := {(x, y) ∈ Rp × R : y = h(x)},
(resp. Graph(h) := {(x,y) ∈ Rp × Rq : y ∈ h(x)}),
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and its domain by dom(h) := {x ∈ Rp : h(x) < +∞} (resp. dom(h) := {x ∈ Rp : h(x) 6= ∅}).
When h is a proper function, i.e., when dom(h) 6= ∅, the set of its global minimizers (possibly
empty) is denoted by

arg minh := {x ∈ Rp : h(x) = inf h}.

The KL property Łojasiewicz (1963; 1993); Kurdyka (1998); Bolte et al. (2007a;b) plays a central
role in the convergence analysis of nonconvex algorithms Attouch et al. (2013); Wang et al. (2019).
The following definition is adopted from Bolte et al. (2007b).
Definition 1. [Kurdyka-Łojasiewicz property] A function h is said to have the Kurdyka-Łojasiewicz
(KL) property at ū ∈ dom(∂h) := {v ∈ Rn|∂h(v) 6= ∅}, if there exists a constant η ∈ (0,∞),
a neighborhood N of ū and a function φ : [0, η) → R+, which is a concave function that is
continuous at 0 and satisfies φ(0) = 0, φ ∈ C1((0, η)), i.e., φ is continuous differentiable on (0, η),
and φ′(s) > 0 for all s ∈ (0, η), such that for all u ∈ N ∩ {u ∈ Rn|h(ū) < h(u) < h(ū) + η}, the
following inequality holds

φ′(h(u)− h(ū)) · dist(0, ∂h(u)) ≥ 1. (18)

If h satisfies the KL property at each point of dom(∂h), h is called a KL function.

KL functions include real analytic functions, semialgebraic functions, tame functions defined in some
o-minimal structures Kurdyka (1998); Bolte et al. (2007b), continuous subanalytic functions Bolte
et al. (2007a) and locally strongly convex functions. In the following, we provide some important
examples that satisfy the Kurdyka-Łojasiewicz property.
Definition 2. [Real analytic] A function h with domain an open set U ⊂ R and range the set of either
all real or complex numbers, is said to be real analytic at u if the function h may be represented by a
convergent power series on some interval of positive radius centered at u: h(x) =

∑∞
j=0 αj(x−u)j ,

for some {αj} ⊂ R. The function is said to be real analytic on V ⊂ U if it is real analytic at each
u ∈ V (Krantz & Parks, 2002, Definition 1.1.5). The real analytic function f over Rp for some
positive integer p > 1 can be defined similarly.

According to Krantz & Parks (2002), typical real analytic functions include polynomials, exponential
functions, and the logarithm, trigonometric and power functions on any open set of their domains.
One can verify whether a multivariable real function h(x) on Rp is analytic by checking the analyticity
of g(t) := h(x + ty) for any x,y ∈ Rp.
Definition 3. [Semialgebraic]

(a) A set D ⊂ Rp is called semialgebraic Bochnak et al. (1998) if it can be represented as

D =

s⋃
i=1

t⋂
j=1

{x ∈ Rp : Pij(x) = 0, Qij(x) > 0} ,

where Pij , Qij are real polynomial functions for 1 ≤ i ≤ s, 1 ≤ j ≤ t.

(b) A function h : Rp → R ∪ {+∞} (resp. a point-to-set mapping h : Rp ⇒ Rq) is called
semialgebraic if its graph Graph(h) is semialgebraic.

According to Łojasiewicz (1965); Bochnak et al. (1998) and (Shiota, 1997, I.2.9, page 52), the class
of semialgebraic sets are stable under the operation of finite union, finite intersection, Cartesian
product or complementation. Some typical examples include polynomial functions, the indicator
function of a semialgebraic set, and the Euclidean norm (Bochnak et al., 1998, page 26).

A.2 KL PROPERTY IN DEEP LEARNING AND PROOF OF COROLLARY 1

In the following, we consider the deep neural network training problem. Consider a l-layer feedfor-
ward neural network including l − 1 hidden layers of the neural network. Particularly, let di be the
number of hidden units in the i-th hidden layer for i = 1, . . . , l − 1. Let d0 and dl be the number of
units of input and output layers, respectively. Let W i ∈ Rdi×di−1 be the weight matrix between the
(i− 1)-th layer and the i-th layer for any i = 1, . . . l1.

1To simplify notations, we regard the input and output layers as the 0-th and the l-th layers, respectively, and
absorb the bias of each layer into W i.
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According to Theorem 2, one major condition is to verify the introduced Lyapunov function F
defined in (9) satisfies the Kurdyka-Łojasiewicz property. For this purpose, we need an extension
of semialgebraic set, called the o-minimal structure (see, for instance Coste (1999), van den Dries
(1986), Kurdyka (1998), Bolte et al. (2007b)). The following definition is from Bolte et al. (2007b).
Definition 4. [o-minimal structure] An o-minimal structure on (R,+, ·) is a sequence of boolean
algebras On of “definable” subsets of Rn, such that for each n ∈ N

(i) if A belongs to On, then A× R and R×A belong to On+1;

(ii) if Π : Rn+1 → Rn is the canonical projection onto Rn, then for any A in On+1, the set
Π(A) belongs to On;

(iii) On contains the family of algebraic subsets of Rn, that is, every set of the form

{x ∈ Rn : p(x) = 0},
where p : Rn → R is a polynomial function.

(iv) the elements of O1 are exactly finite unions of intervals and points.

Based on the definition of o-minimal structure, we can show the definition of the definable function.
Definition 5. [Definable function] Given an o-minimal structure O (over (R,+, ·)), a function
f : Rn → R is said to be definable in O if its graph belongs to On+1.

According to van den Dries & Miller (1996); Bolte et al. (2007b), there are some important facts of
the o-minimal structure, shown as follows.

(i) The collection of semialgebraic sets is an o-minimal structure. Recall the semialgebraic sets
are Bollean combinations of sets of the form

{x ∈ Rn : p(x) = 0, q1(x) < 0, . . . , qm(x) < 0},
where p and qi’s are polynomial functions in Rn.

(ii) There exists an o-minimal structure that contains the sets of the form

{(x, t) ∈ [−1, 1]n × R : f(x) = t}
where f is real-analytic around [−1, 1]n.

(iii) There exists an o-minimal structure that contains simultaneously the graph of the exponential
function R 3 x 7→ exp(x) and all semialgebraic sets.

(iv) The o-minimal structure is stable under the sum, composition, the inf-convolution and
several other classical operations of analysis.

The Kurdyka-Łojasiewicz property for the smooth definable function and non-smooth definable
function were established in (Kurdyka, 1998, Theorem 1) and (Bolte et al., 2007b, Theorem 11),
respectively. Now we are ready to present the proof of Corollary 1.

Proof. [Proof of Corollary 1] To justify this corollary, we only need to verify the associated Lyapunov
function F satisfies Kurdyka-Łojasiewicz inequality. In this case and by (10), F can be rewritten as
follows

F (W,Γ,G) = α

(
L̂n(W,Γ) +

1

2ν
‖W − Γ‖2

)
+ Ω(Γ) + Ω∗(g)− 〈W, g〉.

Because ` and σi’s are definable by assumptions, then L̂n(W,Γ) are definable as compositions of
definable functions. Moreover, according to Krantz & Parks (2002), ‖W − Γ‖2 and 〈W, g〉 are
semi-algebraic and thus definable. Since the group Lasso Ω(Γ) =

∑
g ‖Γ‖2 is the composition of

`2 and `1 norms, and the conjugate of group Lasso penalty is the maximum of group `2-norm, i.e.
Ω∗(Γ) = maxg ‖Γg‖2, where the `2, `1, and `∞ norms are definable, hence the group Lasso and its
conjugate are definable as compositions of definable functions. Therefore, F is definable and hence
satisfies Kurdyka-Łojasiewicz inequality by (Kurdyka, 1998, Theorem 1).

The verifications of other cases listed in assumptions can be found in the proof of (Zeng et al., 2019,
Proposition 1). This finishes the proof of this corollary.
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A.3 PROOF OF THEOREM 2

Our analysis is mainly motivated by a recent paper (Benning et al., 2017), as well as the influential
work (Attouch et al., 2013). According to (Attouch et al., 2013, Lemma 2.6), there are mainly four
ingredients in the analysis, that is, the sufficient descent property, relative error property, continuity
property of the generated sequence and the Kurdyka-Łojasiewicz property of the function. More
specifically, we first establish the sufficient descent property of the generated sequence via exploiting
the Lyapunov function F (see, (9)) in Lemma A.4 in Section A.4, and then show the relative error
property of the sequence in Lemma A.5 in Section A.5. The continuity property is guaranteed by the
continuity of L̄(W,Γ) and the relation limk→∞BgkΩ (Γk+1,Γk) = 0 established in Lemma 1(i) in
Section A.4. Thus, together with the Kurdyka-Łojasiewicz assumption of F , we establish the global
convergence of SLBI following by (Attouch et al., 2013, Lemma 2.6).

Let (W̄ , Γ̄, ḡ) be a critical point of F , then the following holds

∂WF (W̄ , Γ̄, ḡ) = α(∇L̂n(W̄ ) + ν−1(W̄ − Γ̄)) = 0,

∂ΓF (W̄ , Γ̄, ḡ) = αν−1(Γ̄− W̄ ) + ∂Ω(Γ̄)− ḡ 3 0, (19)

∂gF (W̄ , Γ̄, ḡ) = Γ̄− ∂Ω∗(ḡ) 3 0.

By the final inclusion and the convexity of Ω, it implies ḡ ∈ ∂Ω(Γ̄). Plugging this inclusion into the
second inclusion yields αν−1(Γ̄− W̄ ) = 0. Together with the first equality imples

∇L̄(W̄ , Γ̄) = 0, ∇L̂n(W̄ ) = 0.

This finishes the proof of this theorem.

A.4 SUFFICIENT DESCENT PROPERTY ALONG LYAPUNOV FUNCTION

Let Pk := (Wk,Γk), and Qk := (Pk, gk−1), k ∈ N. In the following, we present the sufficient
descent property of Qk along the Lyapunov function F .

Lemma. Suppose that L̂n is continuously differentiable and ∇L̂n is Lipschitz continuous with
a constant Lip > 0. Let {Qk} be a sequence generated by SLBI with a finite initialization. If
0 < α < 2

κ(Lip+ν−1) , then

F (Qk+1) ≤ F (Qk)− ρ‖Qk+1 −Qk‖22,

where ρ := 1
κ −

α(Lip+ν−1)
2 .

Proof. By the optimality condition of (15a) and also the inclusion pk = [0, gk]T ∈ ∂R(Pk), there
holds

κ(α∇L̄(Pk) + pk+1 − pk) + Pk+1 − Pk = 0,

which implies

−〈α∇L̄(Pk), Pk+1 − Pk〉 = κ−1‖Pk+1 − Pk‖22 +D(Γk+1,Γk) (20)

where
D(Γk+1,Γk) := 〈gk+1 − gk,Γk+1 − Γk〉.

Noting that L̄(P ) = L̂n(W ) + 1
2ν ‖W − Γ‖22 and by the Lipschitz continuity of ∇L̂n(W ) with a

constant Lip > 0 implies∇L̄ is Lipschitz continuous with a constant Lip+ ν−1. This implies

L̄(Pk+1) ≤ L̄(Pk) + 〈∇L̄(Pk), Pk+1 − Pk〉+
Lip+ ν−1

2
‖Pk+1 − Pk‖22.

Substituting the above inequality into (20) yields

αL̄(Pk+1) +D(Γk+1,Γk) + ρ‖Pk+1 − Pk‖22 ≤ αL̄(Pk). (21)

Adding some terms in both sides of the above inequality and after some reformulations implies

αL̄(Pk+1) +BgkΩ (Γk+1,Γk) (22)

≤ αL̄(Pk) +B
gk−1

Ω (Γk,Γk−1)− ρ‖Pk+1 − Pk‖22 −
(
D(Γk+1,Γk) +B

gk−1

Ω (Γk,Γk−1)−BgkΩ (Γk+1,Γk)
)

= αL̄(Pk) +B
gk−1

Ω (Γk,Γk−1)− ρ‖Pk+1 − Pk‖22 −B
gk+1

Ω (Γk,Γk−1)−Bgk−1

Ω (Γk,Γk−1),
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where the final equality holds for D(Γk+1,Γk)−BgkΩ (Γk+1,Γk) = B
gk+1

Ω (Γk,Γk−1). That is,

F (Qk+1) ≤ F (Qk)− ρ‖Pk+1 − Pk‖22 −B
gk+1

Ω (Γk,Γk−1)−Bgk−1

Ω (Γk,Γk−1) (23)

≤ F (Qk)− ρ‖Pk+1 − Pk‖22, (24)

where the final inequality holds for Bgk+1

Ω (Γk,Γk−1) ≥ 0 and Bgk−1

Ω (Γk,Γk−1) ≥ 0. Thus, we
finish the proof of this lemma.

Based on Lemma A.4, we directly obtain the following lemma.

Lemma 1. Suppose that assumptions of Lemma A.4 hold. Suppose further that Assumption 1 (b)-(d)
hold. Then

(i) both α{L̄(Pk)} and {F (Qk)} converge to the same finite value, and
limk→∞BgkΩ (Γk+1,Γk) = 0.

(ii) the sequence {(Wk,Γk, gk)} is bounded,

(iii) limk→∞ ‖Pk+1 − Pk‖22 = 0 and limk→∞D(Γk+1,Γk) = 0,

(iv) 1
K

∑K
k=0 ‖Pk+1 − Pk‖22 → 0 at a rate of O(1/K).

Proof. By (21), L̄(Pk) is monotonically decreasing due to D(Γk+1,Γk) ≥ 0. Similarly, by (24),
F (Qk) is also monotonically decreasing. By the lower boundedness assumption of L̂n(W ), both
L̄(P ) and F (Q) are lower bounded by their definitions, i.e., (2) and (9), respectively. Therefore, both
{L̄(Pk)} and {F (Qk)} converge, and it is obvious that limk→∞ F (Qk) ≥ limk→∞ αL̄(Pk). By
(23),

B
gk−1

Ω (Γk,Γk−1) ≤ F (Qk)− F (Qk+1), k = 1, . . . .

By the convergence of F (Qk) and the nonegativeness of Bgk−1

Ω (Γk,Γk−1), there holds

lim
k→∞

B
gk−1

Ω (Γk,Γk−1) = 0.

By the definition of F (Qk) = αL̄(Pk) +B
gk−1

Ω (Γk,Γk−1) and the above equality, it yields

lim
k→∞

F (Qk) = lim
k→∞

αL̄(Pk).

Since L̂n(W ) has bounded level sets, then Wk is bounded. By the definition of L̄(W,Γ) and the
finiteness of L̄(Wk,Γk), Γk is also bounded due to Wk is bounded. The boundedness of gk is due to
gk ∈ ∂Ω(Γk), condition (d), and the boundedness of Γk.

By (24), summing up (24) over k = 0, 1, . . . ,K yields

K∑
k=0

(
ρ‖Pk+1 − Pk‖2 +D(Γk+1,Γk)

)
< αL̄(P0) <∞. (25)

Letting K →∞ and noting that both ‖Pk+1 − Pk‖2 and D(Γk+1,Γk) are nonnegative, thus

lim
k→∞

‖Pk+1 − Pk‖2 = 0, lim
k→∞

D(Γk+1,Γk) = 0.

Again by (25),

1

K

K∑
k=0

(
ρ‖Pk+1 − Pk‖2 +D(Γk+1,Γk)

)
< K−1αL̄(P0),

which implies 1
K

∑K
k=0 ‖Pk+1 − Pk‖2 → 0 at a rate of O(1/K).
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A.5 RELATIVE ERROR PROPERTY

In this subsection, we provide the bound of subgradient by the discrepancy of two successive iterates.
By the definition of F (9),

Hk+1 :=

 α∇W L̄(Wk+1,Γk+1)
α∇ΓL̄(Wk+1,Γk+1) + gk+1 − gk

Γk − Γk+1

 ∈ ∂F (Qk+1), k ∈ N. (26)

Lemma. Under assumptions of Lemma 1, then

‖Hk+1‖ ≤ ρ1‖Qk+1 −Qk‖, for Hk+1 ∈ ∂F (Qk+1), k ∈ N,

where ρ1 := 2κ−1 + 1 + α(Lip+ 2ν−1). Moreover, 1
K

∑K
k=1 ‖Hk‖2 → 0 at a rate of O(1/K).

Proof. Note that

∇W L̄(Wk+1,Γk+1) = (∇W L̄(Wk+1,Γk+1)−∇W L̄(Wk+1,Γk)) (27)

+ (∇W L̄(Wk+1,Γk)−∇W L̄(Wk,Γk)) +∇W L̄(Wk,Γk).

By the definition of L̄ (see (2)),

‖∇W L̄(Wk+1,Γk+1)−∇W L̄(Wk+1,Γk)‖ = ν−1‖Γk − Γk+1‖,
‖∇W L̄(Wk+1,Γk)−∇W L̄(Wk,Γk)‖ = ‖(∇L̂n(Wk+1)−∇L̂n(Wk)) + ν−1(Wk+1 −Wk)‖

≤ (Lip+ ν−1)‖Wk+1 −Wk‖,

where the last inequality holds for the Lipschitz continuity of ∇L̂n with a constant Lip > 0, and by
(16a),

‖∇W L̄(Wk,Γk)‖ = (κα)−1‖Wk+1 −Wk‖.

Substituting the above (in)equalities into (27) yields

‖∇W L̄(Wk+1,Γk+1)‖ ≤
[
(κα)−1 + Lip+ ν−1

]
· ‖Wk+1 −Wk‖+ ν−1‖Γk+1 − Γk‖

Thus,

‖α∇W L̄(Wk+1,Γk+1)‖ ≤
[
κ−1 + α(Lip+ ν−1)

]
· ‖Wk+1 −Wk‖+ αν−1‖Γk+1 − Γk‖. (28)

By (16c), it yields

gk+1 − gk = κ−1(Γk − Γk+1)− α∇ΓL̄(Wk,Γk).

Noting that∇ΓL̄(Wk,Γk) = ν−1(Γk −Wk), and after some simplifications yields

‖α∇ΓL̄(Wk+1,Γk+1) + gk+1 − gk‖ = ‖(κ−1 − αν−1) · (Γk − Γk+1) + αν−1(Wk −Wk+1)‖
≤ αν−1‖Wk −Wk+1‖+ (κ−1 − αν−1)‖Γk − Γk+1‖,

(29)

where the last inequality holds for the triangle inequality and κ−1 > αν−1 by the assumption.

By (28), (29), and the definition of Hk+1 (26), there holds

‖Hk+1‖ ≤
[
κ−1 + α(Lip+ 2ν−1)

]
· ‖Wk+1 −Wk‖+ (κ−1 + 1)‖Γk+1 − Γk‖

≤
[
2κ−1 + 1 + α(Lip+ 2ν−1)

]
· ‖Pk+1 − Pk‖ (30)

≤
[
2κ−1 + 1 + α(Lip+ 2ν−1)

]
· ‖Qk+1 −Qk‖.

By (30) and Lemma 1(iv), 1
K

∑K
k=1 ‖Hk‖2 → 0 at a rate of O(1/K).

This finishes the proof of this lemma.
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Dataset MNIST Cifar-10 ImageNet-2012
Models Variants LeNet ResNet-20 AlexNet ResNet-18

SGD

Naive] 98.87 86.46 –/– 60.76/79.18
l1 98.52 67.60 –/– –/–

Mom 99.16 89.44 –/– –/–
Mom-Wd? 99.23 90.31 56.55/79.09 69.76/89.18
Nesterov 99.23 90.18 -/- 70.19/89.30

Adam

Naive] 99.19 89.14 –/– –/–
Adabound –/– 87.89 –/– –/–
Adagrad –/– 88.17 –/– –/–
Amsgrad –/– 88.68 –/– –/–
Radam –/– 88.44 –/– –/–

SplitLB Mom 99.19 89.72 56.23/78.48 68.55/87.85
Mom-Wd 99.20 89.95 57.09/79.86 70.55/89.56

Table 2: Top-1/Top-5 accuracy(%) comparison between SGD and Split LBI on each dataset. ?:
the results are reproduced from the official pytorch website. ]: results reported from our own
implementation. All models are trained with 100 epochs.

Figure 5: Validation curves of dense models Wt for different κ and ν. For SLBI we find that the
model accuracy is robust to the hyperparameters both in terms of convergence rate and generalization
ability. Here validation accuracy means the accuracy on test set of Cifar10. The first one is the result
for VGG16 ablation study on κ, the second one is the result for ResNet56 ablation study on κ, the
third one is the result for VGG16 ablation study on ν and the forth one is the result for ResNet56
ablation study on ν.

B RESULTS OF IMAGE CLASSIFICATION

B.1 IMAGE CLASSIFICATION ON IMAGENET

In the supervised setting, SGD, Adam and SplitLBI are adopted in optimizing DNNs on these datasets.
The results are shown in Tab. 2. To train ResNet-18 on ImageNet-2012 dataset.

B.2 IMAGE CLASSIFICATION ON CIFAR10

To further study the influence of hyperparameters, we record performance of different combination of
hyperparameters. The experiments is conducted 5 times each, we show the mean in the table, the
standard error can be found in the corresponding figure. We perform experiments on Cifar10 and two
commonly used network VGG16 and ResNet56.

On κ , we keep ν = 100 and try κ = 1, 2, 5, 10, the validation curve Fig. 5 and Table. 3 are show
as follows. These results show that larger kappa leads to slighter lower performance the numerical
results are shown in Table. 3 . We can find that κ = 1 achieves the best test accuracy.

On ν , we keep κ = 1 and try ν = 10, 20, 50, 100, 200, 500, 1000, 2000 the validation curve and
table are show in Fig. 5 and Table. 4. By carefully tunning ν we can achieve similar or even better
results compared to SGD. Different from κ, ν has less effect on the generalization performance. By
tuning it carefully, we can even get a sparse model with slightly better performance than SGD trained
model.
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Type Model κ = 1 κ = 2 κ = 5 κ = 10 SGD

Full Vgg16 93.46 93.27 92.77 92.03 93.57
ResNet56 92.71 92.18 91.50 90.92 93.08

Sparse Vgg16 93.31 93.00 92.36 76.25 -
ResNet56 92.37 91.85 89.48 87.02 -

Table 3: This table shows results for different κ, the results are all the best test accuracy. Here we
test two widely-used models: VGG16 and ResNet56 on Cifar10. For results in this table, we keep
ν = 100. Full means that we use the trained model weights directly, Sparse means the model weights
are combined with mask generated by Γ support. Sparse result has no finetuning process, the result is
comparable to its Full counterpart. For this experiment, we propose that κ = 1 is a good choice. For
all the model, we train for 160 epochs with initial learning rate (lr) of 0. 1 and decrease by 0.1 at
epoch 80 and 120.

Type Model ν = 10 ν = 20 ν = 50 ν = 100 ν = 200 ν = 500 ν = 1000 ν = 2000 SGD

Full
Vgg16 93.66 93.59 93.57 93.39 93.38 93.35 93.43 93.46 93.57

ResNet56 93.12 92.68 92.78 92.45 92.95 93.11 93.16 93.31 93.08

Sparse
Vgg16 93.39 93.42 93.39 93.23 93.21 93.01 92.68 10 -

ResNet56 92.81 92.19 92.40 92.10 92.68 92.81 92.84 88.96 -

Table 4: Results for different ν, the results are all the best test accuracy. Here we test two widely-used
model : VGG16 and ResNet56 on Cifar10. For results in this table, we keep κ = 1. Full means
that we use the trained model weights directly, Sparse means the model weights are combined with
mask generated by Γ support. Sparse result has no finetuning process, the result is comparable to its
Full counterpart. For all the model, we train for 160 epochs with initial learning rate (lr) of 0.1 and
decrease by 0.1 at epoch 80 and 120.

Model Ep20 Ep40 Ep80 Ep160

Vgg16

Term Sparsity Acc Spasity Acc Spasity Acc Spasity Acc

ν = 10 96.64 71.07 96.64 77.70 96.65 79.46 96.65 93.34
ν = 20 96.64 69.11 96.64 77.63 96.65 77.08 96.65 93.42
ν = 50 96.64 74.91 96.65 74.21 96.65 79.15 96.65 93.38
ν = 100 96.64 74.82 96.64 73.22 96.64 78.09 96.64 93.23
ν = 200 91.69 73.67 94.06 74.67 94.15 75.20 94.15 93.21
ν = 500 18.20 10.00 59.94 67.88 82.03 78.69 82.32 93.01
ν = 1000 6.43 10.00 17.88 10.00 49.75 61.31 51.21 92.68
ν = 2000 0.22 10.00 6.89 10.00 18.15 10.00 19.00 10.00

ResNet56

Term Sparsity Acc Spasity Acc Spasity Acc Spasity Acc

ν = 10 99.97 73.37 99.95 71.64 99.74 76.46 99.74 92.81
ν = 20 99.97 72.58 99.84 74.16 99.69 72.37 99.72 92.19
ν = 50 99.96 70.72 99.89 73.96 99.79 74.93 99.77 92.40
ν = 100 96.31 73.63 96.63 75.79 96.55 72.94 96.57 92.10
ν = 200 91.98 75.30 94.38 72.13 94.87 73.75 94.88 92.68
ν = 500 74.44 65.58 90.00 74.12 92.96 71.91 92.99 92.81
ν = 1000 24.32 10.85 75.68 70.23 88.56 79.67 88.80 92.48
ν = 2000 0.65 10.00 26.66 13.30 74.98 70.38 75.92 88.95

Table 5: Sparse Rate and Val acc for different ν. Here we pick the test accuracy for specific epoch. In
this experiment, we keep κ = 1. We pick epoch 20, 40, 80 and 160 to show the growth of sparsity and
sparse model accuracy. Here Sparsity is defined in Sec. 4 as the percentage of nonzero parameters,
and Acc means the test accuracy for sparse model. A sparse model is a model at designated epoch t
combined with mask as the support of Γt.
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Model Ep20 Ep40 Ep80 Ep160

Vgg16

Term Sparsity Acc Spasity Acc Spasity Acc Spasity Acc

κ = 1 96.62 71.51 96.62 76.92 96.63 77.48 96.63 93.31
κ = 2 51.86 72.98 71.99 73.64 75.69 74.54 75.72 93.00
κ = 5 8.19 10.00 17.64 34.25 29.76 69.92 30.03 92.36
κ = 10 0.85 10.00 6.62 10.00 12.95 38.38 13.26 76.25

ResNet56

Term Sparsity Acc Spasity Acc Spasity Acc Spasity Acc

κ = 1 96.79 73.50 96.87 75.27 96.69 77.47 99.68 92.37
κ = 2 76.21 72.85 81.41 74.72 84.17 75.64 84.30 91.85
κ = 5 36.58 60.43 53.07 76.00 57.48 75.67 57.74 89.48
κ = 10 3.12 10.20 29.43 53.36 41.18 74.56 41.14 87.02

Table 6: Sparse Rate and Val acc for different κ. Here we pick the test accuracy for specific epoch. In
this experiment, we keep ν = 100. We pick epoch 20, 40, 80 and 160 to show the growth of sparsity
and sparse model accuracy. Here Sparsity is defined in Sec. 4, and Acc means the test accuracy
for sparse model. A sparse model is a model at designated epoch t combined with the mask as the
support of Γt.

Layer FC1 FC2 FC3
Sparsity 0.049 0.087 0.398

Number of Weights 235200 30000 1000

Table 7: This table shows the sparsity for every layer of Lenet-3. Here sparsity is defined in Sec. 4,
number of weights denotes the total number of parameters in the designated layer. It is interesting
that the Γ tends to put lower sparsity on layer with more parameters.

C FINE-TUNING OF SPARSE SUBNETWORKS

We design the experiment on MNIST, inspired by Frankle & Carbin (2019). Here, we explore the
subnet obtained by ΓT after T = 100 epochs of training. As in Frankle et al. (2019), we adopt
the “rewind” trick: re-loading the subnet mask of Γ100 at different epochs, followed by fine-tuning.
In particular, along the training paths, we reload the subnet models at Epoch 0, Epoch 30, 60, 90,
and 100, and further fine-tune these models by SplitLBI (Mom-Wd). All the models use the same
initialization and hence the subnet model at Epoch 0 gives the retraining with the same random
initialization as proposed to find winning tickets of lottery in Frankle & Carbin (2019). We will
denote the rewinded fine-tuned model at epoch 0 as (Lottery), and those at epoch 30, 60, 90, and
100, as F-epoch30, F-epoch60, F-epoch90, and F-epoch100, respectively. Three networks are studied
here – LeNet-3, Conv-2, and Conv-4. LeNet-3 removes one convolutional layer of LeNet-5; and it is
thus less over-parameterized than the other two networks. Conv-2 and Conv-4, as the scaled-down
variants of VGG family as done in Frankle & Carbin (2019), have two and four fully-connected
layers, respectively, followed by max-pooling after every two convolutional layer.

The whole sparsity for Lenet-3 is 0.055, Conv-2 is 0.0185, and Conv-4 is 0.1378. Detailed sparsity for
every layer of the model is shown in Table 7, 8, 9. We find that fc-layers are sparser than conv-layers.

We compare SplitLBI variants to the SGD (Mom-Wd) and SGD (Lottery) (Frankle & Carbin, 2019)
in the same structural sparsity and the results are shown in Fig. 6. In this exploratory experiment, one
can see that for overparameterized networks – Conv-2 and Conv-4, fine-tuned rewinding subnets –
F-epoch30, F-epoch60, F-epoch90, and F-epoch100, can produce better results than the full models;
while for the less over-parameterized model LeNet-3, fine-tuned subnets may achieve less yet

Layer Conv1 Conv2 FC1 FC2 FC3
Sparsity 0.9375 1 0.0067 0.0284 0.1551

Number of Weights 576 36864 3211264 65536 2560

Table 8: This table shows the sparsity for every layer of Conv-2. Here sparsity is defined in Sec. 4,
number of weights denotes the total number of parameters in the designated layer. The sparsity is
more significant in fully connected (FC) layers than convolutional layers.
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Layer Conv1 Conv2 Conv3 Conv4 FC1 FC2 FC3
Sparsity 0.921875 1 1 1 0.0040 0.0094 0.1004

Number of Weights 576 36864 73728 147456 1605632 65536 2560

Table 9: This table shows the sparsity for every layer of Conv-4. Here sparsity is defined in Sec.
4, number of weights denotes the total number of parameters in the designated layer. Most of the
convolutional layers are kept while the FC layers are very sparse.
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Figure 6: Fine-tuning of sparse subnets learned by SplitLBI may achieve comparable or better
performance than dense models. F-epochk indicates the fine-tuned model comes from the Epoch
k. SplitLBI (Lottery) and SGD (Lottery) use the same sparsity rate for each layer and the same
initialization for retrain.

still comparable performance to the dense models and remarkably better than the retrained sparse
subnets from beginning (i.e. SplitLBI/SGD (Lottery)). These phenomena suggest that the subnet
architecture disclosed by structural sparsity parameter ΓT is valuable, for fine-tuning sparse models
with comparable or even better performance than the dense models of WT .

D RETRAINING OF SPARSE SUBNETS FOUND BY SPLITLBI (LOTTERY)

Here we provide more details on the experiments in Fig. 4. Table 10 gives the details on hyper-
parameter setting. Moreover, Figure 7 provides the sparsity changing during SplitLBI training in Fig.
4.

E COMPUTATIONAL COST OF SPLITLBI

We further compare the computational cost of different optimizers: SGD (Mom), SplitLBI (Mom)
and Adam (Naive). We test each optimizer on one GPU, and all the experiments are done on one
GTX2080. For computational cost, we judge them from two aspects : GPU memory usage and time
needed for one batch. The batch size here is 64, experiment is performed on VGG-16 as shown in
Table 11.

Network Penalty Optimizer α ν κ λ Momentum Nesterov
VGG-16 Group Lasso SLBI 0.1 100 1 0.1 0.9 Yes
ResNet-56 Group Lasso SLBI 0.1 100 1 0.05 0.9 Yes
VGG-16(Lasso) Lasso SLBI 0.1 500 1 0.05 0.9 Yes
ResNet-50(Lasso) Lasso SLBI 0.1 200 1 0.03 0.9 Yes

Table 10: Hyperparameter setting for the experiments in Figure 4.
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Figure 7: Sparsity changing during training process of SplitLBI (Lottery) for VGG and ResNets
(corresponding to Fig. 4). We calculate the sparsity in every epoch and repeat five times. The black
curve represents the mean of the sparsity and shaded area shows the standard deviation of sparsity.
The vertical blue line shows the epochs that we choose to early stop. We choose the log-scale epochs
for achieve larger range of sparsity.

optimizer SGD SLBI Adam
Mean Batch Time 0.0031 0.0087 0.0062

GPU Memory 1161MB 1459MB 1267MB

Table 11: Computational and Memory Costs.
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