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ABSTRACT

State-of-the-art deep learning methods for outlier detection make the assumption
that anomalies will appear far away from inlier data in the latent space produced by
distribution mapping deep networks. However, this assumption fails in practice, be-
cause the divergence penalty adopted for this purpose encourages mapping outliers
into the same high-probability regions as inliers. To overcome this shortcoming, we
introduce a novel deep learning outlier detection method, called Outlier Preserving
Distribution Mapping Autoencoder (OP-DMA), which succeeds to map outliers to
low probability regions in the latent space of an autoencoder. For this we leverage
the insight that outliers are likely to have a higher reconstruction error than inliers.
We thus achieve outlier-preserving distribution mapping through weighting the
reconstruction error of individual points by the value of a multivariate Gaussian
probability density function evaluated at those points. This weighting implies that
outliers will result overall penalty if they are mapped to low-probability regions. We
show that if the global minimum of our newly proposed loss function is achieved,
then our OP-DMA maps inliers to regions with a Mahalanobis distance less than δ,
and outliers to regions past this δ, δ being the inverse Chi Squared CDF evaluated
at 1− α with α the percentage of outliers in the dataset. Our experiments confirm
that OP-DMA consistently outperforms the state-of-art methods on a rich variety
of outlier detection benchmark datasets.

1 INTRODUCTION

Background and Motivation. Anomaly detection, the task of discovering rare or abnormal instances
in a dataset, is critical for many applications from fraud detection, error identification in measurements,
to fault detection in systems (2). Which points are anomalous is often unknown in practice, and thus
labeling for which points are outliers versus inliers is scarce or even completely unavailable. For this
reason, in this work we focus on unsupervised methods for anomaly detection (1).

In the ideal case in which inliers follow a simple unimodal distribution and outliers occur “far away”
from the mean compared to the inliers, anomaly detection has a simple solution. In this special case,
anomalies can be found by simply hardcoding some fixed distance as the cutoff between which points
are classified as inlier or as outlier, such as is done by EllipticEnvelope (7). Unfortunately, in practice
data is often not distributed in such a convenient manner (13). Rather, inliers are distributed in a
complex, unknown fashion potentially with multiple clusters of inliers in the feature space (6).

Other methods with not quite as strict assumptions on the distribution of the data can work on
arbitrary distributions, such as One-Class methods (4) and IsolationForest (3) to name just a few.
These methods typically use a density-based approach (3; 4; 23). However, these methods are known
to become infeasible in high dimensional data sets, because in sufficiently high dimensional spaces,
all data points are known to be roughly equidistant and the space around all points will be sparse (5).

State-of-Art Deep Learning Methods for Outlier Detection. Deep learning methods for outlier
detection not only overcome the limitations of density and distance based methods, but they can also
leverage the inherent featurization capabilities of deep networks. Recently, deep learning methods use
the reconstruction error of an autoencoder-based model for anomaly detection, either by considering
the reconstruction error itself as an anomaly score (18; 20) or by leveraging the reconstruction error
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Figure 1: Ratio of average reconstruction error of outliers/inliers for an autoencoder trained on trained
on Gaussian data with cluster outliers (a) or uniform noise outliers (b)

in a more sophisticated way (10; 19; 9). However, it has been shown that the usage of the mere
reconstruction error can be a suboptimal choice for an anomaly score because anomalies tend to
converge to an average reconstruction error that is indistinguishable from that of inliers as the network
converges (19). This is a greater issue for the case where outliers occur in clusters as opposed to
uniform noise, as shown in Figure 1. The cluster outlier case is is likely to arise when the outliers
represent a small minority class or when they are caused by a systematic error.
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Figure 2: a) Standard deep distribution mapping methods that enforce a certain prior distribution on
the latent space (VAEs, WAEs) in practice map both outliers and inliers to high probability regions.
b) The erroneous assumption of many methods is that outliers are mapped to regions far from the
high probability region of the prior distribution.

To go beyond this problem of the pure reconstruction error, recent works have leveraged the
distribution-mapping capabilities of generative models such as Variational Autoencdoers (VAEs)
that encourage the data in the latent space to follow a prior distribution (19; 21). These methods
assume that due to their anomalous nature outlier points will not be mapped to the encouraged prior
distribution while the inliers will be, and consequently outliers will occur in low-probability regions
of the prior distribution (19; 21) [Figure 1 (b)]. However, it was observed that this widely held
assumption is faulty in practice (21), with the distribution mapping continuing to map both inliers
and outliers to high probability regions of the prior distribution for a wide variety of applications
[Figure 1 (a)].

OP-DMA: Our Approach. In this work, we propose a method which leverages the distribution
mapping capabilities of generative models, but unlike other distribution mapping outlier detection
methods we no longer conveniently assume that outliers are not well mapped to the enforced prior
distribution. Our core idea instead is to design a novel prior probability-weighted loss function that
actively encourages outliers to be mapped to low probability regions in the latent space. Our method
is an autoencoder architecture that we henceforth refer to as the Outlier Preserving Distribution
Mapping Autoencoder (OP-DMA). The network is trained to minimize both the Maximum Mean
Discrepancy (MMD) distance between the distribution of the data in the latent space and a multivariate
Gaussian distribution, and what we call a prior-weighted L2 distance between the input and the
reconstruction of the input. This prior-weighted distance weights each input datapoint point by the
corresponding value of the multivariate Gaussian PDF evaluated at that point’s latent representation.
The prior-weighted L2 distance encourages points with a high reconstruction error, as we assume
anomalies have, to be placed in low-probability regions in the latent space. This corresponds to the
important observation that anomalies will be mapped far from the mean of the data. The beauty of
this mapping is that it thus allows us to use a simple off-the-shelf distance-based metric to identify
outliers post-transformation. As the original distribution of the data in the feature space is arbitrary
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and no distance or density assumptions are placed on the data, OP-DMA thus corresponds to a highly
versatile anomaly detection strategy. Our key contributions are summarized as follows:

1. Introduce OP-DMA, a novel distribution-mapping autoencoder that preserves ourliers in the
latent space without making asumptions on the distribution of the data in the feature space.

2. Prove that the optimal solution for OP-DMA places outliers further than√∫ 1−α
0

t−n/2−1e
1
2t

2
n
2 Γ( n

2 )
dt according to the Mahalanobis distance, where α is the proba-

bility that draw from a given dataset is an outlier. This allows us to use a distance-based
anomaly detection classifier

3. Show experimentally that OP-DMA routinely outperforms standard distribution-mapping
autoencoders for anomaly detection on a variety of real-world benchmark datasets

2 RELATED WORK

Outlier Detection Using Autoencoders Coupled with Classical Anomaly Detectors. Erfani et
al. (11) used autoencoders for dimension reduction before classifying the projected data with a One
Class SVM. Raghavendra et al. (12) introduce a One Class Neural Network (OC-NN), a feed-forward
neural network inspired by One Class SVMs for the anomaly-detection. The OC-NN method first
pretrains an autoencoder before introducing a OC-NN layer after the encoder. Unlike our method
(OP-DMA) these methods do not encourage outliers in the feature space to remain outliers in the
latent space, making the strong and in practice often incorrect assumption that outliers in the feature
space remain outliers in the latent space.

Recreation Error Methods. Zhou and Paffenroth (10) introduced Robust Deep Autoencoders
(RDA), a deep network version of Robust Principal Component Analysis. It separates a given data
matrix D into a low-rank matrix L and a sparse matrix S, where anomalous datapoints are isolated in
S. This forces the network to reconstruct the instances in L, and punishes the network for putting
instances into S. Chen et al. (9) introduced RandNet, an ensemble of autoencoders for anomaly
detection with anomaly score corresponding to the average recreation error among the networks.
However, as shown in (19), for autoencoders the reconstruction error of outliers often converges to
that of inliers. This negatively impacts the performance of such reconstruction error methods.

Distribution Mapping Outlier Detection Methods. Perera et. al. (21) proposed adversarial autoen-
coders with two discriminator networks for anomaly detection. The first discriminator encourages
the representation of the data in the latent space to be uniform, while the second encourages the
output of the decoder conditioned on random samples from the uniform distribution to match real
data samples. Vu et. al. (20) used an adversarial autoencoder to map the latent representation of
their data to a standard normal distribution. They then combine the anomaly score from a One Class
SVM on the latent data with the One Class score on the reconstructed data as the final anomaly
score. These distribution mapping methods rely on the assumption that unlike the inliers, the outliers
will be mapped to low-orobability regions of the prior distribution. However, as we discussed in
Section 1, in practice both inliers and outliers are often well mapped to the prior distribution. This is
because outliers that are mapped to low-probability regions will generally incur a higher cost from
the divergence term which matches the latent distribution to the prior, and unlike in our OP-DMA
approach there is not a corresponding term to counteract this cost.

3 PROPOSED METHOD: OUTLIER PRESERVING DISTRIBUTION MAPPING

The goal of OP-DMA is to find a latent representation of a dataset X such that anomalies in X can be
easily isolated from inliers in the latent representation of X. That is, we find a transformation f that we
can apply to a given dataset X with a distribution PX such that f(X) ∼ PZ , where PX is an arbitrary
and unknown distribution of our input dataset X and PZ is the target distribution. Further, if a ∈ X is
an outlier, then f(a) should be an outlier in f(X) as well. That is, pZ(f(a)) should be small. For the
purpose of anomaly detection, we chose PZ to be a Gaussian distribution as low probability regions
would then simply be values far from the mean. We chose an autoencoder architecture to accomplish
this distribution mapping, where f is selected to be the encoder Q parameterized by weights θ that
are learned through stochastic backpropagation.
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OP-DMA accomplishes the goal of mapping outliers to low probability regions on PZ by weighing
the autoencoder’s reconstruction error by the likelihood of the latent data in the latent space with
distribution PZ . In order to accomplish this, we need a one-to-one correspondence between each
original datapoint, the latent representation of that datapoint, and the reconstructed point. Additionally,
while we want the distribution of the latent data to follow PZ on the whole, we do not want all
points to be mapped to high-probability regions of the prior. Rather, we must develop a solution that
encourages some datapoints (i.e. outliers) to have a low likelihood in the prior distribution. For these
reasons, a Wasserstein Autoencoder (WAE) is a more appropriate choice than the more common
Variational Autoencoder (VAE). We chose WAEs, instead of the more commonly used VAEs, because
the WAEs encourages the latent representations as a whole to match the prior, whereas the loss
function of a VAE encourages each individual latent point to represent a distribution that matches the
prior (15). This is counter to the goal of OP-DMA, which is to have some points (i.e., the outliers)
mapped away from the prior distribution. Additionally, by formulating the reconstruction process
as a Wassertein distance we can leverage the distribution mapping capabilities of the generative
model while still operating with both a deterministic encoder and decoder. This is important as this
allows us to maintain a one-to-one correspondence between a given point in the original space and
its corresponding mapped point in the latent space so we can weight the reconstruction error by the
value of the prior PDF evaluated in the latent space.

3.1 WASSERSTEIN AUTOENCODERS

As OP-DMA is an extension of WAE, we first briefly describe the structure of WAEs. WAEs are
distribution-mapping autoencoders which minimize the Wasserstein distance between original data
and its reconstruction. For original data X and reconstruction Y, it is defined as:

Wc(PX , PY ) := inf
γ∈Γ

∫ ∫
c(x, y)γ(x, y)dxdy (1)

where Γ denotes the set of all joint distributions of X and Y , such that the marginal distributions
Γ(X|Y ) and Γ(Y |X) are distributed according to PX and PY respectively, and c is a Wasserstein-
divergence cost function. That is, the c-Wasserstein distance is the expectation of the cost function c
taken with respect to the joint distribution γ with marginals equal to the two priors, such that γ is a
joint distribution that produces the minimum expectation of Equation 1.

Simply finding the Wasserstein distance, which is the distance that a WAE is trained to minimize, is
itself an optimization problem. However, it is shown in (17) that when the encoded dataQ(X) ∼ PZ ,
where Q is the encoder network and PZ is the prior, then the search over all joint distributions
previously required to compute the Wasserstein distance can be replaced with a search over all
random encoders, infγ∈Γ E(X,Y )∼γ [c(X,G(Z))] = infQ:PQ=PZ

EPX
EQ(Z|X)[c(X,G(Z))]. This

means we can minimize the c-Wasserstein distance by finding the weights of the encoder that produce
the minimum expectation of cost c. As is done in (16) where WAE is defined, we can relax the
constraint that PQ ∼ PZ by adding a penalty term D(PQ, PZ), where D is some function that
measures the divergence between PQ and PZ . Thus,

Wλ
c (X,Y ) = inf

Q
EPX

EQ(Z|X)[c(X,G(Z))] + λD(PQ, PZ), (2)

where λ is a constant weight term that determines how much the divergence of PQ from the prior
PZ is penalized. In the case of the optimal solution for Q, Wλ

c (X,Y ) = Wc(X,Y ). In that case the
Wasserstein objective will equal the true c-Wasserstein distance. While the WAE objective function
encourages the distribution of the latent data as a whole to match the prior distribution, WAEs do
not encourage outliers in the feature space to remain outliers in the latent space. Even though the
divergence term does not explicitly encourage every point to occur in a high probability region, in
practice this is what happens. Consider when D is a discriminator network. The discriminator is
likely to learn a boundary around the high probably region of the prior distribution, and the encoder
network will be penalized for mapping an outlier to a low probablity region outside of the boundary
as the discriminator would correctly identify it as a generated point. On the other hand, as described
below, our proposed Outlier-Perserving Distribution Mapping Autoencoders actively encourages
outliers to be mapped to low probability region in the latent space.
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3.2 OUTLIER-PRESERVING DISTRIBUTION MAPPING AUTOENCODERS (OP-DMA)

So far, we have formulated the distribution mapping process in terms of random encoders and
decoders Q and G. However, we can deterministically produce Q(X) and G(Q(X)|X) by
requiring Q(X) = δµ(X), where µ is some function mapping X to Q(X). This allows us
to have a one-to-one correspondence between input points X and output G(Q(X)) points, so
that EPX

EQ(X)[c(X,G(Q(X)))] can define a proper reconstruction error between each point
x ∈ X and its corresponding output y ∈ Y . This reconstruction error can be used to deter-
mine which points should be mapped to low probability regions in the latent space. Let us define
c′ := c(x,G(Q(x))) · pZ(Q(X)). We can thus define the OP-DMA objective function, Wλ

c′ , as:

Wλ
c′ = inf

Q:PQ=PZ

EPX
EQ(Z|X)[c

′(X,G(Z))] + λD(PQ, PZ) (3)

We can think of pZ(Q(X)) as a weight on the reconstruction term. Thus, high-reconstruction error
points that are mapped to high-probability regions will be penalized more than high-reconstruction
error points which are mapped to low probability regions. Since anomalies are assumed to result in a
high reconstruction error (at least during early epochs of training), by lessening the penalty to the
network for poorly reconstructed points that have been mapped to low-probability regions of the prior
we encourage the network to map anomalies to these low-probability regions. However, the encoder
isn’t encouraged to map every point (that is, both inliers and outliers) to low probability regions, as
the D term makes it so that the distribution of all the encoded points on the whole should well match
the prior.

Although we have made a significant modification to the Wasserstein loss function, as Theorem
1 states minimizing this cost function also corresponds to minimizing a lower bound on the non-
prior-weighted Wasserstein divergence:. The proofs of all theorems below are provided in the
appendix for space reasons.
Theorem 1. Let PZ = N (µ,Σ). Then Wc′(X,G(Q(X))) ≤Wc(X,G(Q(X))) 1

(2πn/2)|Σ|1/2 . Ad-

ditionally, if |Σ| ≤ 1
(4πn) then Wλ

c′(X,G(Q(X))) ≤Wλ
c (X,G(Q(X))) 1

(2πn/2)|Σ|1/2 .

Additionally, not only is the cost function of OP-DMA a lower bound on the c-Wasserstein divergence,
but also itself is a Wasserstein divergence (the c′-Wasserstein divergence):
Theorem 2. Let Wc be a Wasserstein divergence. Then Wc′ is a Wasserstein divergence, with c’ the
prior-weighted c.

As stated previously, our ideal mapping would place all inliers within regions where the probability
was greater than some value, and all outliers into some regions where the probability is less than that
value. Theorem 3 shows that this scenario is the optimal solution for the loss function of OP-DMA.
Theorem 3. Let Q be an encoder such that D(PQ, PZ ,F) = 0, where D(A,B,F) is the Maximum
Mean Discrepancy between A an B, F is the set of unbounded continuous functions and PZ =
N (0,Σ). Let X : Ω → Rn be a centered random variable, X ∼ PX . Let X(A), A ⊂ Ω, be
outliers where

∫
X(A)

pX(x)dx = α. Furthermore, let c′(a,G(Q(a)) > c′(h,G(Q(h)) ∀ a ∈ X(A),
h ∈ X(H). Then, the optimal solution of OP-DMA is to map such that ‖Q(X(A))‖m ≥ δ and

‖Q(X(H))‖m < δ, where δ =

√∫ 1−α
0

t−n/2−1e
1
2t

2
n
2 Γ( n

2 )
dt and ‖ · ‖m is the Mahalanobis distance.

Thus, the optimal solution for OP-DMA’s cost function is one that maps outliers to regions with
a larger Mahalanobis distance than that of inliers. This has the important implication that after
transformation with OP-DMA, outliers can be separated from inliers with a simple distance metric.
This motivates out outlier detection scheme outlined in Section 3.3, where due to Theorem 1 we use
the EllipticEnvelope method to identify outliers.

3.3 UNSUPERVISED ANOMALY DETECTION WITH OP-DMA

Lastly, we descrive our end-to-end solution of anomaly detection using OP-DMA. First, we transform
the distribution of the dataset X to match a Gaussian distribution using OP-DMA. That is, the
input dataset is transformed to match a prior distribution in the latent space of our autoencoder by
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Figure 3: An overview of OP-DMA. a) Input data is encoded into latent space. b) The divergence
between the latent distribution PQ and the prior distribution PZ is calculated and added to the loss
term. c) The latent data is reconstructed, and the reconstruction error of each datapoint is weighted by
the likelihood of observing the latent point according to the prior distribution PZ . d) After training
the network, anomaly detection is performed by calculating the Mahalanobis distance of each point
in the latent space

a divergence term in the network’s loss function that penalizes the divergence between the latent
distribution and the prior distribution. For the purpose of anomaly detection, we chose this prior to be
a multivariate Gaussian distribution with 0 mean and identity covariance. Then, EllipticEnvelope (7)
is used to determine outliers by fitting a Gaussian to the transformed data. Theorem 3 tells us
that EllipticEnvelope is an appropriate choice for the anomaly detection step, as it determines
anomalies based on Mahalanobis distance. However, other anomaly detection methods such as
IsolationForest (3) or OneClassSVM (4) could equally be leveraged. We use the empirical rather
than the theoretical mean and covariance for the EllipticEnvelope as it is unrealistic to expect any
such deep distribution mapping model to exactly match the prior. The anomaly detection process is
outlined in Algorithm 1 and in Figure 2. As seen in Algorithm 1, we use the unbiased estimator of
the MMD from Gretton et. al. (22). For the kernel k of the MMD we use the inverse multiquadratics
kernel as is used in (16), and Mean Squared Error (MSE) for c.

Algorithm 1: Unsupervised Anomaly Detection with OP-DMA
Require :Regularization coefficient λ
Contamination parameter α
Initialized encoder network QΦ and decoder network GΘ with random weights Φ and Θ
Dataset X
while Θ, Φ not converged do

Sample {x1, x1, ..., xn} from X
Sample {z1, z1, ..., zn} from N (0, I)
Sample {z̃1, z̃1, ..., z̃n} from QΦ(Z|X)
Update weights Φ and Θ by descending

1

n

n∑
i=1

c(xi, GΘ(z̃i))·λ·pz(z̃i)+
1

n(n− 1)

∑
h 6=j

k(zh, zj)+
1

n(n− 1)

∑
h6=j

k(z̃h, z̃j)−
2

n2

∑
h,j

k(zh, z̃j)

end
Find Dmin = {QΦ(xi), QΦ(xj), ..., QΦ(xk)}, ‖Dmin‖ = (1− α)‖D‖ with Minimum Covariance
Determinant estimator, infΣ̃Det{Σ̃}.

Find estimated mean µ̃ from Dmin

return ‖QΦ(xi)‖m = (QΦ(xi)− µ̃)′Σ̃(QΦ(xi)− µ̃) for xi ∈ D as anomaly scores
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4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENTAL METHODOLOGY

Synthetic Data Sets. We determine possible failure cases for our method OP-DMA versus a standard
autoencoder (AE). We use two synthetic datasets: (D1) Multimodal distribution in R4 with one
cluster mean at (0,0,0,0) and another at (5,5,5,5) both with standard covariance and uniform noise
added as outliers, and (D2) same multimodal distribution for inliers with a small cluster of outliers
with a uniform probability in a small region between (-5,-5,-5,-5) and (-3,-3, -3, -3). In both cases,
inliers account for 2.4% of the data.

Benchmark Data Sets. We compared OP-DMA to state-of-the-art methods from the ODDs
database (8), a commonly used benchmark database of anomaly detection datasets. Since we
perform unsupervised anomaly detection, we do not split each dataset into a training set and testing
set. Instead, anomaly detection is performed in an unsupervised manner on the entire dataset. In each
dataset all points are labeled as either inlier or outlier. We use these labels to calculate the weighted
F1 score, but no method we test is trained on the labels. The datasets were chosen such that we could
test our methods on datasets with a wide range of dimensionality in the feature space and with a
wide range of outlier contamination percentage. Table 3 (in Appendix B) breaks doen the number of
featurs, datapoints, and percentage of outliers in each dataset.

Alternative Methods. In order to determine the validity of our OP-DMA, we compare it to several
state-of-the-art distribution mapping anomaly detection methods. These include methods that perform
anomaly detection on the latent space of a Wasserstein and a Variational Autoencoder both with a
Gaussian prior, here denoted as WAE and VAE, respectively.

Parameter Configurations of Methods. The encoders and decoders of all methods consist of 3-
layer neural networks, where the decoder in each encoder-decoder pair mirrors the structure of the
encoder. The number of nodes in the hidden layer of each network is a hyperparameter chosen from
{5, 6, 9, 15, 18, 100}. The number of nodes in the output/latent layer is chosen from {2, 3, 6, 9, 15}.
The value of the regularization parameter λ is chosen such that the reconstruction error is on the same
order of magnitude as the MMD error for the first epoch.

4.2 EXPERIMENTAL RESULTS

Synthetic Experiments. Figure 4 A shows the ratio of the recreation error for outliers/inliers for
OP-DMA versus an autoencoder (AE) for each synthetic dataset. For uniform noise (D1), both
OP-DMA and AE feature a high ratio for the error of outlier/inliers. In this case, a standard AE would
be adequate to find the outliers. However, for data where outliers are a small cluster (D2), the ratio
between outliers to inliers goes quickly to 1 for AE whereas it levels off to ~10 for OP-DMA. In this
case, our OP-DMA succeeds to identify the outliers, while AE cannot. We also verify that OP-DMA
maps outliers to low-probability regions of the latent space. Figure 4 B shows the latent space of
OP-DMA for the uniform outlier dataset. The outliers occur far from the mean in low-probability
regions. The average probability in the prior for outliers after transformation was 0.02, whereas the
average probability of the inliers according to the prior was 0.08

Outlier Detection Accuracy. The results reported in Table 2 are the maximum weighted F1-scores
of each method over all contamination rates from 0.1 to 1.0 with a step size of 0.1.

OP-DMA WAE VAE AAE
Running Time (seconds) 827.14 723.51 857.46 971.51

Table 2: Running time for methods tested

Running Time. In order to determine the feasibility of using OP-DMA instead of one of the leading
methods in practice, we ran an experiment to determine the running times of each method. This
consisted of performing 5 runs of OP-DMA, WAE, VAE, and AAE on the Satellite dataset (24). The
average running time of each method over the 5 iterations is shown in the following table. Each
method was run on a machine with 32GB of DDR4 RAM and a Intel Xeon Platinum 8160 CPU.
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Figure 4: A: Reconstruction error vs. epoch for OP-DMA and a standard autoencoder for both noise
outliers and cluster outliers. B: Latent representation of data in OP-DMA for uniform outliers.

Dataset OP-DMA WAE VAE AAE
Satellite 0.735 ±0.012 0.554 ±0.009 0.310 ±0.007 0.480 ±0.008
Pima 0.625 ±0.018 0.520 ±0.020 0.23 ±0.019 0.497 ±0.007
WBC 0.590 ±0.011 0.448 ±0.013 0.268 ±0.011 0.19 ±0.018
Arrythmia 0.531 ±0.017 0.601 ±0.015 0.201 ±0.010 0.294 ±0.010
Breastw 0.951 ±0.014 0.950 ±0.011 0.368 ±0.009 0.479 ±0.007
Letter 0.182 ±0.001 0.091 ±0.003 0.048 ±0.005 0.10 ±0.002
Cardio 0.590 ±0.013 0.290 ±0.012 0.221 ±0.008 0.204 ±0.009
Lympho 0.585 ±0.012 0.443 ±0.008 0.341 ±0.011 0.310 ±0.018
Musk 0.32 ±0.007 0.330 ±0.010 0.243 ±0.009 0.228 ±0.025
Thyroid 0.29 ±0.019 0.173 ±0.021 0.130 ±0.019 0.170 ±0.023
Satimage-2 0.860 ±0.039 0.176 ±0.013 0.148 ±0.007 0.535 ±0.015

Table 1: Weighted F1 scores for OP-DMA vs state-of-the-art methods on datasets from the ODDs
outlier detection database with 95% confidence interval.

5 DISCUSSION

OP-DMA outperforms the state-of-the-art methods on the majority of the outlier detection datasets.
This is because unlike the state-of-the-art methods, OP-DMA actively encourages outliers to be
mapped to low probability regions instead of relying on outliers to be poorly mapped to the prior.
While in this work, we focused on unsupervised anomaly detection, OP-DMA could be extended to
supervised anomaly detection by making the following change to the objective function:

L = inf
Q:PQ=PZ

EPXin
EQ(Z|X)[c(Xin, G(Q(Xin)))]

+ EPXout
EQ(Z|X)[c(Xin, G(Q(Xout))) · pZ(Q(Xout))] + λD(PQ, PZ),

where Xin corresponds to the set of labeled inlier points and Xout is the set of outliers. OP-DMA can
also be modified for semisupervised OP-DMA by pretraining on labeled inliers without weighting the
reconstruction error by the likelihood, and then performing OP-DMA as is done in the unsupervised
version on the remaining unlabeled datapoints.

6 CONCLUSION

We have introduced OP-DMA, an autoencoder-based distribution mapping method for anomaly
detection that maps outliers in the feature space to low probability regions in the latent space in which
a multivariate standard normal Gaussian prior distribution is enforced. Anomalies are consequently
easily identifiable in the latent space. Our experimental study comparing OP-DMA to state-of-the-art
methods on a collection of different benchmark outlier detection datasets shows that it outperforms
WAE, VAE, and AAE on the majority of the datasets. We have also demonstrated that there is not a
significant increase in running time between our method and state-of-the-art methods.
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Appendices
A
PROOFS

Theorem 1. Let PZ = N (µ,Σ). Then Wc′(X,G(Q(X))) ≤Wc(X,G(Q(X))) 1
(2πn/2)|Σ|1/2 . Ad-

ditionally, if |Σ| ≤ 1
(4πn) then Wλ

c′(X,G(Q(X))) ≤Wλ
c (X,G(Q(X))) 1

(2πn/2)|Σ|1/2 .

Proof. We will first show that Wc′(X,G(Q(X))) ≤Wc(X,G(Q(X))) 1
(2πn/2)|Σ|1/2 , and then show

that Wλ
c′(X,G(Q(X))) ≤Wλ

c (X,G(Q(X))) 1
(2πn/2)|Σ|1/2 .

The maximum value of pZ(z) will occur at z = µ. Then, sup pZ = 1
(2πn/2)|Σ|1/2 . Thus

Wc′(X,G(Q(X))) = inf
Q:PQ=PZ

EPX
EQ(Z|X)[c(X,G(Q(X))) · pZ(Q(X))]

≤
(

1

(2πn/2)|Σ|1/2

)
( inf
Q:PQ=PZ

EPX
EQ(Z|X)[c(X,G(Q(X)))])

=
1

(2πn/2)|Σ|1/2
WC(X,G(Q(X)))

Similarly, to show that the prior-weighted c-Wasserstein divergence is a constant multiple of the true
Wasserstein divergence:

Wλ
c′(X,G(Q(X))) = inf

Q:PQ=PZ

EPX
EQ(Z|X)[c(X,G(Q(X))) · pZ(Q(X))] + λD(PQ, PZ)

≤
(

1

(2πn/2)|Σ|1/2

)
( inf
Q:PQ=PZ

EPX
EQ(Z|X)[c(X,G(Q(X)))] + λD(PQ, PZ))

=
1

(2πn/2)|Σ|1/2
Wλ
C(X,G(Q(X)))

Theorem 2. Let Wc be a Wasserstein divergence. Then Wc′ is a Wasserstein divergence, with c’ the
prior-weighted c.

Proof. Since c is a Wasserstein divergence, we know that c(x1, x2) ≥ 0 ∀ x1, x2 ∈ supp(P ),
c(x, x) = 0 ∀ x ∈ supp(P ), and Eγ [c(x1, x2)] ≥ 0 ∀ γ ∈ Γ[P, Pz]. Since PZ(z) ≥ 0 ∀ z, c′ will
also fulfill the three aforementioned properties of c. Thus, Wc′ is a Wasserstein divergence.

Theorem 3. Let Q be an encoder such that D(PQ, PZ ,F) = 0, where D(A,B,F) is the Maximum
Mean Discrepancy between A an B, F is the set of unbounded continuous functions and PZ =
N (0,Σ). Let X : Ω → Rn be a centered random variable, X ∼ PX . Let X(A), A ⊂ Ω, be
outliers where

∫
X(A)

pX(x)dx = α. Furthermore, let c′(a,G(Q(a)) > c′(h,G(Q(h)) ∀ a ∈ X(A),
h ∈ X(H). Then, the optimal solution of OP-DMA is to map such that ‖Q(X(A))‖m ≥ δ and

‖Q(X(H))‖m < δ, where δ =

√∫ 1−α
0

t−n/2−1e
1
2t

2
n
2 Γ( n

2 )
dt and ‖ · ‖m is the Mahalanobis distance.

Proof. The Mahalanobis distance of Q(X) can itself be expressed as a random variable, δ =√
Q(X)Σ−1Q(X)T . Let Φδ be the CDF of δ. Then, Φδ(1 − α) = P (δ ≤ 1 − α) = P (δ2 ≤

(1− α)2) = Φδ2((1− α)2).

Let Y = Q(X)M−1, where MTM = Σ is the Choleski decomposition of the covariance Σ. Since
D(PQ, PZ ,F) = 0, andD(A,B,F) = 0 iffA = B, we thus know thatQ(X) ∼ N (0,Σ). Thus since
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Q(X) is normally distributed and centered, Y thus is normally distributed with identity covariance.
Since δ2 = Q(X)Σ−1Q(X)T = Y Y T , Φδ2 is the CDF of of the sum of squares of n normally
distributed variables with mean 0 and σ = 1. Thus, Φδ2 is the Chi Squared distribution. The inverse
Chi Squared CDF will therefore give us the distance δ such that 1−α percent of the points are within
δ:

δ =

√∫ 1−α

0

t−n/2−1e
1
2t

2
n
2 Γ(n2 )

dt

Now, let us assume that for some parameter choice Θ′ for Q that αP (Q(X(A)|Θ′) ≤ δ) =
β, β > 0. Consequently, (1 − α)P (Q(X(H)|Θ′) > δ) = β, since P (Q(X) > δ) = α and∫
X(A)

pX(x)dx = α. Conversely, let us assume that there is a parameter configuration Θ such that
αP (Q(X(A)|Θ) ≤ δ) = 0 and so (1− α)P (Q(X(H)|Θ) > δ) = 0.

Since PZ ∼ N (0,Σ), pZ(d1) < pZ(d2) for ‖d1‖m > ‖d2‖m. Thus, since we assume
c(a,G(Q(a)) > c(h,G(Q(h)) ∀ a ∈ X(A), h ∈ X(H), then EPX

EQ(Z|X)c
′(xp, G(Q(xp|Θ′)))

= EPX
EQ(Z|X)c(xp, G(Q(xp|Θ′)))pz(xp) > EPX

EQ(Z|X)c(xp, G(Q(xp|Θ)))pz(xp) =
EPX

EQ(Z|X)c
′(xp, G(Q(xp|Θ))). Thus, a mapping that places outliers δ away from the

mean will have a lower loss than one that places some percentage of outliers less than δ from the
mean.

B
DATASETS

Dataset # Features # Datapoints % Outliers
Satellite 36 6435 32%
Pima 8 768 35%
WBC 30 278 5.6%
Arrythmia 274 452 15%
Breastw 9 638 35%
Letter 32 1600 6.25%
Cardio 21 1831 9.6%
Lympho 18 148 4.1%
Musk 166 3062 3.2%
Thyroid 6 3772 2.5%
Satimage-2 36 5803 1.2%

Table 3: Description of the dimensionality, number of datapoints, and contamination percentage of
each dataset we tested our method on.
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