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ABSTRACT

Runtime and scalability of large neural networks can be significantly affected by
the placement of operations in their dataflow graphs on suitable devices. With in-
creasingly complex neural network architectures and heterogeneous device char-
acteristics, finding a reasonable placement is extremely challenging even for do-
main experts. Most existing automated device placement approaches are impracti-
cal due to the significant amount of compute required and their inability to gener-
alize to new, previously held-out graphs. To address both limitations, we propose
an efficient end-to-end method based on a scalable sequential attention mecha-
nism over a graph neural network that is transferable to new graphs. On a diverse
set of representative deep learning models, including Inception-v3, AmoebaNet,
Transformer-XL, and WaveNet, our method on average achieves 16% improve-
ment over human experts and 9.2% improvement over the prior art with 15× faster
convergence. To further reduce the computation cost, we pre-train the policy net-
work on a set of dataflow graphs and use a superposition network to fine-tune it
on each individual graph, achieving state-of-the-art performance on large hold-out
graphs with over 50k nodes, such as an 8-layer GNMT.

1 INTRODUCTION

Neural networks have demonstrated remarkable scalability–improved performance can usually be
achieved by training a larger model on a larger dataset (Hestness et al., 2017; Shazeer et al., 2017;
Jozefowicz et al., 2016; Mahajan et al., 2018; Radford et al.). Training such large models efficiently
while meeting device constraints, like memory limitations, necessitate partitioning of the underlying
dataflow graphs for the models across multiple devices. However, devising a good partitioning and
placement of the dataflow graphs requires deep understanding of the model architecture, optimiza-
tions performed by domain-specific compilers, as well as the device characteristics, and is therefore
extremely hard even for experts.

ML practitioners often rely on their understanding of model architecture to determine a reasonable
partitioning and placement for graphs. However, relying solely on the model architecture while ig-
noring the effect of the partitioning on subsequent compiler optimizations like op-fusion can lead
to sub-optimal placements and consequently under-utilization of available devices. The goal of
automated device placement is to find the optimal assignment of operations to devices such that
the end-to-end execution time for a single step is minimized and all device constraints like memory
limitations are satisfied. Since this objective function is non-differentiable, prior approaches (Mirho-
seini et al., 2017; 2018; Gao et al., 2018) have explored solutions based on reinforcement learning
(RL). However, these RL policies are usually not transferable and require training a new policy
from scratch for each individual graph. This makes such approaches impractical due to the signifi-
cant amount of compute required for the policy search itself, at times offsetting gains made by the
reduced step time.

In this paper, we propose an end-to-end deep RL method for device placement where the learned pol-
icy is generalizable to new graphs. Specifically, the policy network consists of a graph-embedding
network that encodes operation features and dependencies into a trainable graph representation, fol-
lowed by a scalable sequence-to-sequence placement network based on an improved Transformer
(Vaswani et al., 2017; Dai et al., 2019). The placement network transforms the graph representa-
tions into a placement decision with soft attention, removing hard constraints such as hierarchical
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grouping of operations (Mirhoseini et al., 2018) or co-location heuristics (to reduce the placement
complexity) (Mirhoseini et al., 2017). Both of our graph-embedding network and placement net-
work can be jointly trained in an end-to-end fashion using a supervised reward, without the need
to manipulate the loss functions at multiple levels. We empirically show that the network learns
flexible placement policies at a per-node granularity and can scale to problems over 50,000 nodes.

To generalize to arbitrary and held-out graphs, our policy is trained jointly over a set of dataflow
graphs (instead of one at a time) and then fine-tuned on each graph individually. By transferring
the learned graph embeddings and placement policies, we are able to achieve faster convergence
and thus use less resources to obtain high-quality placements. We also use super-positioning, i.e., a
feature conditioning mechanism based on the input graph embeddings, to effectively orchestrate the
optimization dynamics of graphs with drastically different sizes in the same batch.

Our contributions can be summarized as follows:

1. An end-to-end device placement network that can generalize to arbitrary and held-out
graphs. This is enabled by jointly learning a transferable graph neural network along with
the placement network.

2. A scalable placement network with an efficient recurrent attention mechanism, which elim-
inates the need for an explicit grouping stage before placement. The proposed end-to-end
network provides 15× faster convergence as compared to the hierarchical LSTM model
used in earlier works (Mirhoseini et al., 2017; 2018).

3. A new batch pre-training and fine-tuning strategy based on network superposition, which
leads to improved transferability, better placements especially for larger graphs, and 10×
reduction in policy search time as compared to training individual graphs from scratch.

4. Superior performance over a wide set of workloads, including InceptionV3 (Szegedy et al.,
2015), AmoebaNet (Real et al., 2018), RNNs, GNMT (Wu et al., 2016), Transformer-XL
(Dai et al., 2019), WaveNet (van den Oord et al., 2016), and more.

2 RELATED WORK

Device Placement Reinforcement learning has been used for device placement of a given dataflow
graph (Mirhoseini et al., 2017) and demonstrated run time reduction over human crafted place-
ment and conventional heuristics. For improved scalability, a hierarchical device placement strategy
(HDP) (Mirhoseini et al., 2018) has been proposed that clusters operations into groups before placing
the operation groups onto devices. Spotlight (Gao et al., 2018) applies proximal policy optimization
and cross-entropy minimization to lower training overhead. Both HDP and Spotlight rely on LSTM
controllers that are difficult to train and struggle to capture very long-term dependencies over large
graphs. In addition, both methods are restricted to process only a single graph at a time, and cannot
generalize to arbitrary and held-out graphs. Placeto (Addanki et al., 2019) represents the first at-
tempt to generalize device placement using a graph embedding network. But like HDP, Placeto also
relies on hierarchical grouping and only generates placement for one node at each time step. Our
approach (GDP) leverages a recurrent attention mechanism and generates the whole graph place-
ment at once. This significantly reduces the training time for the controller. We also demonstrate
the generalization ability of GDP over a wider set of important workloads.

Parallelization Strategy Mesh-TensorFlow is a language that provides a general class of dis-
tributed tensor computations. While data-parallelism can be viewed as splitting tensors and opera-
tions along the “batch” dimension, in Mesh-TensorFlow the user can specify any tensor-dimensions
to be split across any dimensions of a multi-dimensional mesh of processors. FlexFlow (Jia et al.,
2018) introduces SOAP, a more comprehensive search space of parallelization strategies for DNNs
which allows parallelization of a DNN in the Sample, Operator, Attribute, and Parameter dimen-
sions. It uses guided randomized search of the SOAP space to find a parallelization strategy for a
specific parallel machine. GPipe (Huang et al., 2018) proposed pipeline parallelism, by partitioning
a model across different accelerators and automatically splitting a mini-batch of training examples
into smaller micro-batches. By pipelining the execution across micro-batches, accelerators can op-
erate in parallel. Our GDP focuses on a general deep RL method for automating device placement
on arbitrary graphs, and is therefore orthogonal to existing parallelization strategies.
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Figure 1: Overview of GDP: An end-to-end placement network that combines graph embedding and
sequential attention. N : Number of Nodes, h: Hidden Size, d: Number of Devices.

Compiler Optimization REGAL (Paliwal et al., 2019) uses deep RL to optimize the execution
cost of computation graphs in a static compiler. The method leverages the policy’s ability to transfer
to new graphs to improve the quality of the genetic algorithm for the same objective budget. How-
ever, REGAL only targets peak memory minimization while GDP focuses on graph run time and
scalability while also meeting the peak memory constraints of the devices. Specifically, we general-
ize graph partitioning and placement into a single end-to-end problem, with and without simulation,
which can handle graphs with over 50,000 nodes.

3 END-TO-END PLACEMENT POLICY

Given a dataflow graph G(V,E) where V represents atomic computational operations (ops) and E
represents the data dependency, our goal is to learn a policy π : G 7→ D that assigns a placement
D ∈ D for all the ops in the given graph G ∈ G, to maximize the reward rG,D defined based on the
run time. In this work, we represent policy πθ as a neural network parameterized by θ.

Unlike prior works that focus on a single graph only, the RL objective in GDP is defined to simulta-
neously reduce the expected runtime of the placements over a set of N dataflow graphs:

J(θ) = EG∼G,D∼πθ(G)[rG,D] ≈
1

N

∑
G

ED∼πθ(G)[rG,D] (1)

In the following, we refer to the case whenN = 1 as individual training and the case whenN > 1 as
batch training. We optimize the objective above using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) for improved sample efficiency.

Our proposed policy network πθ consists a graph embedding network that learns the graphical rep-
resentation of any dataflow graph, and a placement network that learns a placement strategy over the
given graph embeddings. The two components are jointly trained in an end-to-end fashion. Note the
architecture is designed to be invariant over the underlying graph topology, enabling us to apply the
same learned policy to a wide set of input graphs with different structures.

Figure 1 shows an overview of the proposed end-to-end device placement network. Next, we will
discuss on each of the components in details.

3.1 GRAPH EMBEDDING NETWORK

We leverage graph neural networks (GNNs) (Hamilton et al., 2017; Xu et al., 2019; You et al.,
2018) to capture the topological information encoded in the dataflow graph. GNNs have gained
increasing popularity in various domains for their ability in learning efficient representations over
graph-structured and relational data. However, most graph embedding frameworks are inherently
transductive and can only generate embeddings for a given fixed graph. These transductive methods
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do not efficiently extrapolate to handle unseen nodes (e.g., in evolving graphs), and cannot learn to
generalize to unseen graphs. GraphSAGE (Hamilton et al., 2017) is an inductive framework that
leverages node attribute information to efficiently generate representations on previously unseen
data. While our proposed framework is generic, we adopt the feature aggregation scheme proposed
in GraphSAGE to model the dependencies between the operations and build a general, end-to-end
device placement method for a wide set of dataflow graphs.

In GDP, nodes and edges in the dataflow graph are represented as the concatenation of their meta
features (e.g., operation type, output shape, adjacent node ids) and are further encoded by the graph
embedding network into a trainable representation. The graph embedding process consists of multi-
ple iterations, and the computation procedure for the l-th iteration can be outlined as follows:

First, each node v ∈ V aggregates the feature representations of its neighbors, {h(l)u ,∀u ∈ N (v)},
into a single vector h(l)N (v). This aggregation outcome is a function of all previously generated
representations, including the initial representations defined based on the input node features. In
this work, we use the following aggregation function with max pooling:

h
(l)
N (v) = max(σ(W (l)h(l)u + b(l)),∀u ∈ N (v)) (2)

where (W (l), b(l)) define an affine transform and σ stands for the sigmoid activation function. We
then concatenate the node’s current representation, h(l)v , with the aggregated neighborhood vector,
h
(l)
N (v), and feed this concatenated vector through a fully connected layer f (l+1)

h(l+1)
v = f (l+1)(concat(h(l)v , h

(l)
N (v))) (3)

Different from GraphSAGE, parameters in our graph embedding network are trained jointly with a
placement network via stochastic gradient descent with PPO, in a supervised fashion, as described
in Section 3. That is, we replace the unsupervised loss with our task-specific objective.

3.2 PLACEMENT NETWORK

Designing a scalable placement network that can generalize to graphs with thousands of nodes is
challenging, as the conventional GNMT models proposed for language tasks usually target a shorter
sequence length. Hierarchical placement (Mirhoseini et al., 2018) has been proposed to address
this issue,however, the proposed grouper network comes with limited flexibility and generality. For
example, the grouper network leverages an aggregated feature representation by averaging feature
vectors for nodes within the same group. The non-differentiable grouping procedure prevents train-
ing the graph-embedding and placement networks end-to-end.

To remove the two-stage hierarchical workflow in HDP for improved scalability, we propose to use a
Transformer-based attentive network to generate operation placements in an end-to-end fashion. As
the graph embedding already contains spatial (topological) information for each node, we remove
the positional embedding in the original transformer to prevent the model from overfitting node
identifications. To capture long-term dependencies efficiently among a large set of nodes, we adopt
segment-level recurrence introduced in Transformer-XL (Dai et al., 2019; Dai, 2019), where hidden
states computed for the previous set of nodes are cached (with gradient flows disabled) and reused as
an extended context during the training of the next segment. Besides achieving extra long context,
we empirically find the segment-level recurrent attention much faster than a conventional LSTM-
based GNMT model. In our experimental evaluation, we compare both the performance and speed
up of our placement network with that of the LSTM-based hierarchical device placement.

3.3 BATCH TRAINING WITH PARAMETER SUPERPOSITION

Since the parameterization for the architecture of the end-to-end policy is designed to be invariant
over input graphs with different topologies, the same placement policy can be shared across a wide
set of workloads. We therefore propose a batch training strategy, and further enhance the aforemen-
tioned architecture to handle such generalization across graphs.

Naı̈ve batch training is challenging in our context as different dataflow graphs contain different num-
ber of operations connected in different topologies. In addition, unlike previous device placement
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methods, GDP aims to handle graphs from potentially different application domains (e.g. computer
vision, language, and speech), where the number of operations can range from a few thousand to
one million. These graphs have drastically different network architecture, in terms of computational
operations, data shape, and network topology. As an example, recurrent networks have completely
different operation types and connections compared to multi-branch convolutional networks that are
widely used in computer vision. It would be highly desirable to train a single shared network that
maximizes information sharing across these heterogeneous tasks, without hurting the performance
on each of them due to their distinct learning dynamics.

To this end, we propose a feature conditioning mechanism similar to parameter superposition (Che-
ung et al., 2019). The idea is to train one shared policy, but condition its parameters based on
the input features to mitigate the potentially undesirable interference among different input graphs.
Since dense layers (affine transforms followed by nonlinearity) serve as the fundamental building
blocks in all of our network components, we introduce an additional conditioning layer to enable
superposition in all dense layers the placement network:

x(l+1) = g(l)(c(x(0))� x(l)) (4)

where g(l) stands for a dense layer in our policy network, c stands for the feature conditioning layer,
and x(0) denotes the feature representation of the input graph generated by the graph-embedding
network. The feature conditioning layer is implemented with minimum overhead by adding an
additional transformer layer to our placement network.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

In this section, we evaluate our training strategy on widely used machine learning models in com-
puter vision, natural language processing, and speech domains. We compare our approach to human
expert placement, TensorFlow METIS placement, and hierarchical device placement (HDP) (Mirho-
seini et al., 2018). Our experiments are run on machines with one Intel Broadwell CPU and up to
eight Nvidia P100 GPUs. Note that the prior work (Mirhoseini et al., 2017; 2018; Gao et al., 2018)
were evaluated on different GPU devices, preventing direct comparison of results. Therefore, we
re-evaluate HDP on our own system environment and report those numbers.

The performance of a placement is evaluated by the resulted training step time (run time) of the
neural network. We use the negative square root of the run time as the reward. We use the average
reward of all the previous trials as a bias term. The advantage value is computed by subtracting the
reward by the average reward. During the search, we apply a large negative reward (-10) for invalid
placements (e.g. a violation of co-location constraint, out of memory, etc.).

4.2 PERFORMANCE ON INDIVIDUAL GRAPHS

We evaluate GDP by training the model separately on six important graphs, including RNN Lan-
guage Modeling, GNMT (Sutskever et al., 2014), Transformer-XL, Inception, AmoebaNet, and
WaveNet. We name this approach GDP-one. For all the tasks, GDP-one consistently outperforms
human expert placement, TensorFlow METIS (Karypis & Kumar, 1998) placement, and HDP. For
extremely large graphs, GDP-one is only 6% worse on 8-layer NMT (over 60k nodes), compared
to human placement, but is 6.8% better than HDP. Overall, GDP-one achieves on average more
than 16% run time reduction across the evaluated 12 graphs, compared to human expert place-
ment. Compared to hierarchical device placement, GDP-one achieves an average 9.2% speed up,
and scales better to large graphs such as 8-layer NMT and 4-layer RNNLM. Importantly, with the
efficient end-to-end training and sample efficient reinforcement learning algorithm, GDP-one has a
15x speed up in convergence time of the placement network over HDP.

4.3 GENERALIZATION

GDP enables the training of multiple heterogeneous graphs in a single batch, sharing parameters in
the graph-embedding network and the placement network. We name this training strategy GDP-
batch. We empirically show that GDP-batch generates better placements for many workloads such
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Table 1: Run time comparison between GDP-one, human expert, Tensorflow METIS, and hierarchi-
cal device placement (HDP) on six graphs (RNNLM, GNMT, Transformer-XL, Inception, Amoe-
baNet, and WaveNet). Graph runtime speed up is compared with Human Placement (HP) and Hi-
erarchical Device Placement (HDP). Search speed up is the policy network training time speed up
compared to HDP (reported values are averages of six runs).

Model (#devices) GDP-one
(s)

HP
(s)

METIS
(s)

HDP
(s)

Run time
speed up

over HP / HDP

Search
speed up

2-layer RNNLM (2) 0.234 0.257 0.355 0.243 9.8% / 4% 2.95x
4-layer RNNLM (4) 0.409 0.48 OOM 0.490 17.4% / 19.8% 1.76x
2-layer GNMT (2) 0.301 0.384 OOM 0.376 27.6% / 24.9% 30x
4-layer GNMT (4) 0.409 0.469 OOM 0.520 14.7% / 27.1% 58.8x
8-layer GNMT (8) 0.649 0.610 OOM 0.693 -6% / 6.8% 7.35x

2-layer
Transformer-XL (2) 0.386 0.473 OOM 0.435 22.5% / 12.7% 40x

4-layer
Transformer-XL (4) 0.580 0.641 OOM 0.621 11.4% / 7.1% 26.7x

8-layer
Transformer-XL (8) 0.748 0.813 OOM 0.789 8.9% / 5.5% 16.7x

Inception (2) 0.405 0.418 0.423 0.417 3.2% / 3% 13.5x
AmoebaNet (4) 0.394 0.44 0.426 0.418 26.1% / 6.1% 58.8x
2-stack 18-layer

WaveNet (2) 0.317 0.376 OOM 0.354 18.6% / 11.7% 6.67x

4-stack 36-layer
WaveNet (4) 0.659 0.988 OOM 0.721 50% / 9.4% 20x

GEOMEAN - - - - 16% / 9.2% 15x

as transformer-XL (7.6%), WaveNet (15%), and 8-layer GNMT (8%). Table 2 compares the run
time of 11 tasks using GDP-batch, with the same end-to-end architecture as described in section 4.2.
GDP-batch yields slightly better run time compared to GDP-one in majority of the tasks, while being
only slightly worse on AmoebaNet. Compared to training graphs separately, GDP-batch reduces
network parameters and enables transfer learning among different graphs.

We further evaluate the effect of transfer learning by mixing redundant tasks in a batch. We find
that mixing different graphs such as RNNLM and GNMT models with different number of layers
results in both faster and better learning for RNNLM and GNMT with large number of layers (8-
layer). As a matter of fact, both Placeto (Addanki et al., 2019) and HDP had problems matching
human placement performance for 8-layer GNMT or 8-layer RNNLM. With batch training, GDP
is the first device placement work to match human expert performance for both 8-layer GNMT
and 8-layer RNNLM. We also for the first time show that GDP-batch not only improves the
search time (since we do not retrain the policy for every new graph), it can also improve the
performance of the found placements. More detailed results are shown in Appendix Table 3.

Table 2: Run time comparison on GDP-batch vs. GDP-one.

Model Speed up Model Speed up

2-layer RNNLM 0 Inception 0
4-layer RNNLM 5% AmoebaNet -5%
2-layer GNMT 0 4-stack 36-layer WaveNet 3.3 %
4-layer GNMT 0 2-stack 18-layer WaveNet 15%

2-layer Transformer-XL 7.6% 8-layer Transformer-XL 1.5%
4-layer Transformer-XL 3%

Generalization to hold-out graphs: Here we show another set of experiments where we treat GDP-
batch as a pre-training strategy and remove the target graph from the batch training dataset. We then
fine-tune the pre-trained model on the hold-out graphs for fewer than 50 steps, which takes less than
one minute. We name this GDP-generalization+finetune. Figure 2 shows that GDP fine-tuning for
hold-out graphs outperforms human expert placement and HDP consistently on all six batch training
datasets, and performs only slightly worse than GDP-one. 2-layer RNNLM and 2-stack WaveNet
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almost match the performance of GDP-one. We also run inference (generate placement) directly on
the pre-trained model for the target hold-out graphs, and name this GDP-generalization-zeroshot.
We find that GDP-generalization-zeroshot only marginally hurts performance as compared to GDP-
generalization+finetune, while being slightly better than human placement and HDP. This indicates
that both graph embedding and the learned policies transfer and generalize to the unseen data.

2-layer RNNLM 4-layer RNNLM 4-layer GNMT 2-layer TRFXL 4-layer TRFXL 2-stack WaveNet
Unseen Models
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Figure 2: Finetuning on hold-out graphs.

Comparisons with other generalized placement approaches: Placeto (Addanki et al., 2019), to
our knowledge, is the only other method beside GDP that shows true (and non-simulated) gener-
alized device placement results. Direct comparison is not possible since Placeto uses a different
hardware platform and different input graphs (Inception-V3, NMT, and NASNet). Placeto’s search
time is on average 2.65x faster than HDP, while GDP is on average 15x faster than HDP on our
larger set of graphs. Apart from search time speed up, Placeto on average reduces placed graph run
time by 3% (for its different graphs and hardware) while GDP on average reduces placed graph run
time by 9.2%, compared to HDP. One advantage of GDP over Placeto is that it does not rely on any
initial feasible placement. Providing a reasonable initial placement is often non-trivial for domain
experts, especially for larger graphs such as 8-layer GNMT. As such, we are the first to report
superhuman results on 8-layer GNMT.

4.4 ABLATION STUDIES
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Figure 3: Ablation Study on Attention and Superposition of the Placement Network.

Attention and Superposition. We did an ablation study on the attention and the superposition
layer in the transformer-XL placer network. We find that attention improves placement run time
by an average of 18% compared to a placer network with no attention, and superposition improves
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Figure 4: Normalized run time (step time for the generated placement) and normalized training
time (search time) for fine-tuning. Time is normalized to GDP without fine-tuning (training from
scratch).

placement run time by an average of 6.5% where all the graphs are trained in a single batch as
described in Section 4.3. Without superposition network, batch training fails for AmoebaNet and
Inception when mixing with larger RNNLM or GNMT models (4-layer).

Pre-training graph embeddings. We also evaluate a fine-tuning strategy by pre-training the graph
embedding and placement network and fine-tuning the network on the down stream tasks. The
difference here compared to Section 4.3 is that we also include the target graphs in the pre-training
dataset. When GDP-batch is used as a pre-training strategy, the graph embedding and placement
network assimilate meaningful graph representations and placement policies from a wide set of
graphs, thus can be used as a strong baseline network for fine-tuning on downstream tasks. We
compare the generated placement run time and the placement search time, normalized to GDP-one.
We find that fine-tuning further reduces the the placed graph run time by an average of 5% and
placement search time by an average of 86%, compared to GDP-one.

5 CONCLUSION

In this paper, we present a generalized device placement strategy that uses a graph neural network
and super-positioning to generalize to arbitrary and held out graphs. Through experimental eval-
uation over a wide set of representative graphs from different domains including computer vision,
speech, and NLP, we demonstrated over 15 times faster convergence while achieving a 16% and
9.2% reductions in step time over human expert placement and HDP, respectively.
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6 APPENDIX

Table 3: Run time comparison on GDP batch training vs. the best of related methods (human expert,
METIS, HDP, and GDP no batch training).

Batch Setting Model speed up (s)

Batch 2

Inception 0

AmoebaNet -4.5%

2-layer RNNLM 0

2-layer GNMT 0

2-layer Transformer-XL 6.5%

2-stack 18-layer Wavenet 4%

Batch 3

2-layer RNNLM 0

4-layer RNNLM 0

8-layer RNNLM 4.5%

2-layer GNMT 0

4-layer GNMT 0

8-layer GNMT 8%

Batch 4 3x8-layer GNMT 5.1%

Batch 5 3x8-layer RNNLM 4.5%
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