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ABSTRACT

Experimentally, it has been observed that humans and animals often make decisions
that do not maximize their expected utility, but rather choose outcomes randomly,
with probability proportional to expected utility. Probability, as this strategy is
called, is equivalent to maximum entropy reinforcement learning (MaxEnt RL).
However, MaxEnt RL does not optimize expected utility. In this paper, we formally
show that MaxEnt RL does optimally solve certain classes of control problems
with variability in the reward function. In particular, we show (1) that MaxEnt
RL can be used to solve a certain class of POMDPs, and (2) that MaxEnt RL is
equivalent to a two-player game where an adversary chooses the reward function.
These results suggest a deeper connection between MaxEnt RL, robust control,
and POMDPs, and provide insight for the types of problems for which we might
expect MaxEnt RL to produce effective solutions. Specifically, our results suggest
that domains with uncertainty in the task goal may be especially well-suited for
MaxEnt RL methods.

1 INTRODUCTION

Reinforcement learning (RL) searches for a policy that maximizes the expected, cumulative reward.
In fully observed Markov decision processes (MDPs), this maximization always has a deterministic
policy as a solution. Maximum entropy reinforcement learning (MaxEnt RL) is a modification of the
RL objective that further adds an entropy term to the objective. This additional entropy term causes
MaxEnt RL to seek policies that (1) are stochastic, and (2) have non-zero probability of sampling every
action. MaxEnt RL can equivalently be viewed as probability matching between trajectories visited
by the policy and a distribution defined by exponentiating the reward (See Section 2). MaxEnt RL
has appealing connections to probabilistic inference (Dayan & Hinton, 1997; Neumann et al., 2011;
Todorov, 2007; Kappen, 2005; Toussaint, 2009; Rawlik et al., 2013; Theodorou et al., 2010; Ziebart,
2010), prompting a renewed interest in recent years (Haarnoja et al., 2018b; Abdolmaleki et al., 2018;
Levine, 2018). MaxEnt RL can also be viewed as using Thompson sampling (Thompson, 1933)
to collect trajectories, where the posterior belief is given by the exponentiated return. Empirically,
MaxEnt RL algorithms achieve good performance on a number of simulated (Haarnoja et al., 2018b)
and real-world (Haarnoja et al., 2018a; Singh et al., 2019) control tasks, and can be more robust to
perturbations (Haarnoja et al., 2018c).

There is empirical evidence that behavior similar MaxEnt RL is used by animals in the natural world.
While standard reinforcement learning is often used as a model for decision decision making (Scott,
2004; Liu & Todorov, 2007; Todorov & Jordan, 2002), many animals, including humans, do not
consistently make decisions that maximize expected utility. Rather, they engage in probability
matching, choosing actions with probability proportional to how much utility that action will provide.
Examples include ants (Lamb & Ollason, 1993), bees (Greggers & Menzel, 1993), fish (Bitterman
et al., 1958), ducks (Harper, 1982), pigeons (Bullock & Bitterman, 1962; Graf et al., 1964), and
humans, where it has been documented so extensively that Vulkan (2000) wrote a survey of surveys
of the field. This effect has been observed not just in individuals, but also in the collective behavior of
groups of animals (see Stephens & Krebs (1986)), where it is often described as obtaining the ideal free
distribution. Probability matching is not merely a reflection of youth or ignorance. Empirically, more
intelligent creatures are more likely to engage in probability matching. For example, in a comparison
of Yale students and rats, Gallistel (1990) found that the students nearly always performed probability
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matching, while rats almost always chose the maximizing strategy. Similarly, older children and adults
engage in probability matching more frequently than young children (Stevenson & Odom, 1964;
Weir, 1964). While prior work has offered a number of explanations of probability matching (Vulkan,
2000; Gaissmaier & Schooler, 2008; Wozny et al., 2010; Sakai & Fukai, 2008), its root cause remains
an open problem.

The empirical success of MaxEnt RL algorithms on RL problems is surprising, as MaxEnt RL
optimizes a different objective than standard RL. The solution to every MaxEnt RL problem is
stochastic, while deterministic policies can always be used to solve standard RL problems (Puterman,
2014). While RL can be motivated from the axioms of utility theory (Russell & Norvig, 2016),
MaxEnt RL has no such fundamental motivation. It remains an open question as to whether the
standard MaxEnt RL objective actually optimizes some well-defined notion of risk or regret that
would account for its observed empirical benefits. This paper studies this problem, and aims to
answer the following question: if MaxEnt RL is the solution, then what is the problem?

In this paper, we show that MaxEnt RL provides the optimal control solution in settings with
uncertainty and variability in the reward function. More precisely, we show that MaxEnt RL is
equivalent to two more challenging problems: (1) regret minimization in a meta-POMDP, and (2)
robust-reward control. The first setting, the meta-POMDP, is a partially observed MDP where the
reward depends on an unobserved portion of the state, and where multiple episodes in the original
MDP correspond to a single extended trial in the meta-POMDP. While seemingly Byzantine, this type
of problem setting arises in a number of real-world settings discussed in Section 3. Optimal policies
for the meta-POMDP must explore at test-time, behavior that cannot result from maximizing expected
utility. In the second setting, robust-reward control, we consider an adversary that chooses some
aspects of the reward function. Intuitively, we expect stochastic policies to be most robust because
they are harder to exploit, as we formalize in Section 5. Even if the agent will eventually be deployed
in a setting without adversaries, the adversarial objective bounds the worst-case performance of that
agent. Our result in this setting can be viewed as an extension of prior work connecting the principle
of maximum entropy to two-player games (Ziebart et al., 2011; Grünwald et al., 2004). While both
robust-reward control and regret minimization in a meta-POMDP are natural problems that arise
in many real-world scenarios, neither is an expected utility maximization problem, so we cannot
expected optimal control to solve these problems. In contrast, we show that MaxEnt RL provides
solutions to both. In summary, our analysis suggests that the empirical benefits of MaxEnt RL arise
implicitly solving control problems with variability in the reward.

2 PRELIMINARIES

We begin by defining notation and discussing some previous motivations for MaxEnt RL. An agent
observes states st, takes actions at ∼ π(at | st), and obtains rewards r(st, at). The initial state is
sampled s1 ∼ p1(s1), and subsequent states are sampled s′ ∼ p(s′ | s, a). Episodes have T steps,
which we summarize as a trajectory τ , (s1, a1, · · · , sT , aT ). Without loss of generality, we can
assume that rewards are undiscounted, as any discount can be addressed by modifying the dynamics
to transition to an absorbing state with probability 1− γ. The RL objective is:

arg max
π

Eπ

[
T∑
t=1

r(st, at)

]
=

∫ ( T∑
t=1

r(st, at)

)
p1(s1)

T∏
t=1

p(st+1 | st, at)π(at | st)dτ.

In fully observed MDPs, there always exists a deterministic policy as a solution (Puterman, 2014).
The MaxEnt RL problem, also known as the entropy-regularized control problem, is to maximize the
sum of expected reward and conditional action entropy,Hπ[a | s]:

arg max
π

Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s] = Eπ

[
T∑
t=1

r(st, at)− log π(at | st)

]

The MaxEnt RL objective results in policies that are stochastic, with higher-entropy action distribu-
tions in states where many different actions lead to similarly optimal rewards, and lower-entropy
distributions in states where a single action is much better than the rest. Moreover, MaxEnt RL
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results in policies that have non-zero probability of sampling any action. MaxEnt RL can equiva-
lently be defined as a form of probability matching, minimizing a reverse Kullback Leibler (KL)
divergence (Rawlik et al., 2013):

max
π

Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s] = −min

π
DKL(π(τ) ‖ pr(τ)),

where the policy distribution π(τ) and the target distribution pr(τ) are defined as

pr(τ) ∝ p1(s1)

T∏
t=1

p(st+1 | st, at)e
∑T
t=1 r(st,at), π(τ) , p1(s1)

T∏
t=1

p(st+1 | st, at)π(at | st).

Prior work on MaxEnt RL offers a slew of intuitive explanations for why one might prefer MaxEnt
RL. We will summarize three common explanations and highlights problems with each.

Exploration: MaxEnt RL is often motivated as performing good exploration. Unlike many other
RL algorithms, such as DQN (Mnih et al., 2015) and DDPG (Lillicrap et al., 2015), MaxEnt RL
performs exploration and policy improvement with the same (stochastic) policy. One problem with
this motivation is that stochastic policies can be obtained directly from standard RL, without adding
an entropy term (Heess et al., 2015). More troubling, while MaxEnt RL learns a stochastic policy,
many MaxEnt RL papers evaluate the corresponding deterministic policy (Haarnoja et al., 2018b),
suggesting that the stochastic policy is not what should be optimized.

Probabilistic inference: Connections with probabilistic inference offer a second motivation for
MaxEnt RL (Abdolmaleki et al., 2018; Haarnoja et al., 2018b; Todorov, 2007; Levine, 2018; Toussaint,
2009). These approaches cast optimal control as an inference problem be defining additional
optimality binary random variables Ot, equal one with probability proportional to exponentiated
reward. These methods then maximize the following likelihood:

p(Ot) =

∫
p1(s1)

T∏
t=1

p(Ot = 1 | st, at)p(st+1 | st, at)π(at | st)dτ

=

∫
e
∑T
t=1 r(st,at)

T∏
t=1

p(st+1 | st, at)π(at | st)dτ

= Eπ
[
e
∑T
t=1 r(st,at)

]
≈ Eπ

[
T∑
t=1

r(st, at)

]
+ Varπ

[
T∑
t=1

r(st, at)

]
(1)

The last term is a cumulant generating function (i.e., the logarithm of a moment generating func-
tion (Gut, 2013, Chpt. 6)), which can be approximated as the sum of expected reward and variance of
returns (Mihatsch & Neuneier, 2002). Thus, directly maximizing likelihood leads to risk-seeking
behavior, not optimal control. Equation 1 can also be directly obtained by considering an agent with
a risk-seeking utility function (O’Donoghue, 2018). While risk seeking behavior can be avoided by
maximizing a certain lower bound on Equation 1 (Levine, 2018), artificially constraining algorithms
to maximize a lower bound suggests that likelihood is not what we actually want to maximize.

Easier optimization: Finally, some prior work (Ahmed et al., 2018; Williams & Peng, 1991) argues
that the entropy bonus added by MaxEnt RL makes the optimization landscape smoother. However, it
does not suggest why optimizing the wrong but smooth problem yields a good solution to the original
optimization problem.

3 WHAT PROBLEMS DOES MAXENT RL SOLVE?

MaxEnt RL produces stochastic policies, so we first discuss when stochastic policies may be optimal.
Informally, the two strengths of stochastic policies are that they (1) are guaranteed to eventually try
every action sequence and (2) do not always choose the same sequence of actions.

The first strength of stochastic policies guarantees that they will not have to wait infinitely long to find
a good outcome. Imagine that a cookie is hidden in one of two jars. A policy that always chooses to
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look in the same jar (say, the left jar) may never find the cookie if it is hidden in the other jar (the right
jar). Such a policy would incur infinite regret. This need to try various approaches arises in many
realistic settings where we do not get to observe the true reward function, but rather have a belief
over what the true reward is. For example, in a health-care setting, consider the course of treatment
for a patient. The desired outcome is to cure the patient. However, whether the patient is cured by
different courses of treatment depends on their illness, which is unknown. A physician will prescribe
medications based on his beliefs about the patient’s illness. If the medication fails, the patient returns
to the physician the next week, and the physician recommends another medication. This process
will continue until the patient is cured. The physician’s aim is to minimize the number of times
the patient returns. Another example is a robot that must perform chores in the home based on a
user’s commands. The true goal in this task is to satisfy the user. Their desires are never known with
certainty, but must be inferred from the user’s behavior. Indeed, arguably the majority of problems
to which we might want to apply reinforcement learning algorithms are actually problems where
the true reward is unobserved, and the reward function that is provided to the agent represents an
imperfect belief about the goal. In Section 4, we define a meta-level POMDP for describing these
sorts of tasks and show that MaxEnt RL minimizes regret in such settings.

The second strength of stochastic policies is that they are harder to exploit. For example, in the game
rock-paper-scissors (“ro-sham-bo”), it is bad to always choose the same action (say, rock) because an
adversary can always choose an action that makes the player perform poorly (e.g., by choosing paper).
Indeed, the Nash existence theorem (Nash et al., 1950) requires stochastic policies to guarantee that a
Nash equilibrium exists. In RL, we might likewise expect that a randomized policies are harder to
exploit than deterministic policies. To formalize the intuition that MaxEnt policies are robust against
adversaries, we define the robust-reward control problem.
Definition 3.1. The robust-reward control problem for a set of reward functions R = {ri} is

arg max
π

min
r′∈R

Eπ

[
T∑
t=1

r′(st, at)

]
.

We can think of this optimization problem as a two-player, zero-sum game between a policy player
and an adversarial reward player. The policy player chooses the sequence of actions in response to
observations, while the reward player chooses the reward function against which the states and actions
will be evaluated. This problem is slightly different from typical robust control (Zhou & Doyle, 1998),
as it considers perturbations to rewards, not dynamics. Typically, solving the robust-reward control
problem is challenging because it is a saddle-point problem. Nonetheless, in Section 5, we show that
MaxEnt RL is exactly equivalent to solving a robust-reward control problem.

Together, these two properties suggest that stochastic policies, such as those learned with MaxEnt RL,
can be robust to variability in the reward function. This variability may be caused by (1) a designer’s
uncertainty about what the right reward should be, (2) the presence of perturbations to the reward
(e.g., for an agent that interacts with human users, who might have different needs and wants in each
interaction), or (3) partial observability (e.g., a robot in a medical setting may not observe the true
cause for a patient’s illness). In this paper, we formally show that MaxEnt RL algorithms produce
policies that are robust to two distinct sources of reward variability: unobserved rewards in partially
observed Markov decision processes (POMDPs) and adversarial variation in the rewards.

4 MAXIMUM ENTROPY RL AND PARTIALLY OBSERVED ENVIRONMENTS

In this section, we formalize the intuition from Section 3 that stochastic policies are preferable in
settings with unknown tasks. We first describe the problem of solving an unknown task as a special
class of POMDPs, and then show that MaxEnt RL provides the optimal solution for these POMDPs.
Our results in this section suggest a tight coupling between MaxEnt RL and regret minimization.

We begin by defining the meta-POMDP as a MDP with many possible tasks that could be solved.
Solving a task might mean reaching a particular goal state or performing a particular sequence of
actions. We will use the most general definition of success as simply matching some target trajectory,
τ∗. Crucially, the agent does not know which task it must solve (i.e., τ∗ is not observed). Rather, the
agent has access to a belief p(τ) over what the target trajectory may be. This results in a POMDP,
where the agent’s ignorance of the true task makes the problem partial observed.
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Each meta-step of the meta-POMDP corresponds to one episode of the original MDP. A meta-episode
is a sequence of meta-steps, which ends when the agent solves the task in the original MDP. Intuitively,
each meta-episode in the meta-POMDP corresponds to multiple trials in the original MDP, where
the task remains the same across trials. The agent keeps interacting with the MDP until it solves the
task. While the meta-POMDP might seem counter-intuitive, it captures many practical scenarios. For
example, in the health-care setting in Section 3, the physician does not know the patient’s illness,
and may not even know when the patient has been cured. Each meta-step corresponds to one visit
to the physician, which might entail running some tests, performing an operation, and prescribing a
new medication. The meta-episode is the sequence of patient visits, which ends when the patient
is cured. As another example, Appendix A.2 describes how meta-learning can also be viewed as a
meta-POMDP.

Before proceeding, we emphasize that defining the meta-POMDP in terms of trajectory distributions is
strictly more general than defining it in terms of state distributions. However, Section 4.3 will discuss
how goal-reaching, a common problem setting in current RL research (Lee et al., 2019b; Warde-Farley
et al., 2018; Pong et al., 2019), can be viewed as a special case of this general formulation.

4.1 REGRET IN THE META-POMDP

The meta-POMDP has a simple reward function: +1 when the task is completed, and 0 otherwise.
Since the optimal policy would solve the task immediately, its reward on every meta-step would be
one. Therefore, the regret is given by 1− 0 = 1 for every meta-step when the agent fails to solve the
task, and 1− 1 = 0 for the (final) meta-step when the agent solves the task. Thus, the cumulative
regret of an agent is the expected number of meta-steps required to complete the task. For example,
in the health-care example, the regret is the number of times the patient visits the physician before
being cured.

Mathematically, we use π(τ∗) to denote the probability that policy π produces target trajectory τ∗.
Then, the number of episodes until it matches trajectory τ∗ is a geometric random variable with
parameter π(τ∗). The expected value of this random variable is 1/π(τ∗), so we can write the regret
of the meta-POMDP as:

Regretp(π) = Eτ∗∼p
[

1

π(τ∗)

]
.

Note that this regret is a function of a particular policy π(a | s), evaluated over potentially infinitely
many steps in the original MDP. A policy that never replicates the target trajectory incurs infinite
regret. Thus, we expect that optimal policies for the meta-POMDP will be stochastic.

4.2 SOLVING THE META-POMDP

We solve the meta-POMDP by finding an optimal distribution over trajectories:

min
π

Regretp(π) s.t.
∫
π(τ)dτ = 1, π(τ) > 0.

Using Lagrange multipliers (see Appendix A.1), we find that the optimal policy is:

π(τ) =

√
p(τ)∫ √
p(τ ′)dτ ′

.

This policy is stochastic and matches the unnormalized distribution
√
p(τ). This result suggests

that we can find the optimal policy by solving a MaxEnt RL problem, with a trajectory-level reward
function rτ (τ) , 1

2 log p(τ). To make this statement precise, we consider the bandit setting and
MDP setting separately. If the underlying MDP is a bandit, then trajectories are equivalent to actions.
We can define a reward function as r(a) = 1

2 log p(a). Applying MaxEnt RL to this reward function
yields the following policy, which is optimal for the meta-POMDP: π(a) ∝

√
p(a). For MDPs with

horizon lengths greater than one, we can make a similar statement:
Lemma 4.1. Let a goal trajectory distribution p(τ) be given, and assume that there exists a policy π
whose trajectory distribution is proportional to the square-root of the target distribution: π(τ) ∝√
p(τ). Then there exists a reward function r(s, a) such that the MaxEnt RL problem with r(s, a)

and the meta-POMDP have the same solution(s).
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Proof. Let π be the solution to the meta-POMDP. Our assumption that π(τ) ∝
√
p(τ) implies that π

is the solution to the MaxEnt RL problem with the trajectory-level reward r(τ) = 1
2 log p(τ):

π ∈ arg min
π

Eπ
[

1

2
log p(τ)

]
+Hπ[a | s] = DKL(π(τ) ‖ 1

c

√
p(τ)) ⇐⇒ π(τ) ∝

√
p(τ) ∀τ.

The normalizing constant c, which is independent from π, is introduced to handle the fact that
√
p(τ)

does not integrate to one. The implication comes from the fact that the KL is minimized when its
arguments are equal. We show in Appendix A.3 that a trajectory-level reward r(τ) can always be
decomposed into an state-action reward r(st, at) with the same MaxEnt RL solution. Thus, there
exists a reward function such that MaxEnt RL solves the meta-POMDP:

π ∈ arg min
π

Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s] ⇐⇒ π(τ) ∝

√
p(τ) ∀τ.

The obvious criticism of the proof above is that it is not constructive, failing to specify how the
MaxEnt RL reward might be obtained. Nonetheless, our analysis illustrates why MaxEnt RL methods
might work well: even when the meta-POMDP is unknown, MaxEnt RL methods will minimize
regret in some meta-POMDP, which could account for their good performance, particularly in the
presence of uncertainty and perturbations.

4.3 GOAL-REACHING META-POMDPS

We can make the connection between MaxEnt RL and meta-POMDPs more precise by considering
a special class of meta-POMDPs: meta-POMDPs where the target distribution is defined only in
terms of the last state in a trajectory, corresponding to goal-reaching problems. While prior work on
goal-reaching (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017) assumes that the goal
state is observed, the goal-reaching meta-POMDP only assumes that the policy has a belief about the
goal state.

Lemma 4.2. Let a meta-POMDP with target distribution that depends solely on the last state and
action in the trajectory be given. That is, the target distribution p(τ) satisfies

sT (τ) = sT (τ ′) and aT (τ) = aT (τ ′) =⇒ p(τ) = p(τ ′) ∀τ, τ ′

where sT (τ) and aT (τ) are functions that extract the last state and action in trajectory τ . We can thus
write the density of a trajectory under the goal trajectory distribution as a function of the last state and
action: p̃(sT (τ), aT (τ)) = p(τ), where p̃(sT , aT ) is an unnormalized density. Assume that there ex-
ists a policy whose marginal state density at the last time step, ρTπ (s, a), satisfies ρTπ (s, a) ∝

√
p̃(s, a)

for all states s. Then the MaxEnt RL problem with reward r(st, at) , 1
21(t = T ) · log p̃(st, at) and

the meta-POMDP have the same solutions.

Proof. We simply combine Lemma 4.1 with the definition of the reward function r:

T∑
t=1

r(st, at) =

T∑
t=1

1

2
1(t = T ) · log p(st, at) =

1

2
log p̃(sT , sT ) = rτ (τ).

While our assumption that there exists a policy that exactly matches some distribution (
√
p̃(sT , aT ))

may seem somewhat unnatural, we provide a sufficient condition in Appendix A.4. Further, while the
analysis so far has considered the equivalence of MaxEnt RL and the meta-POMDP at optimum, in
Appendix A.5 we bound the difference between these problems away from their optima. In summary,
the meta-POMDP allows us to represent goal-reaching tasks with uncertainty in the true goal state.
Moreover, solving these goal-reaching meta-POMDPs with MaxEnt RL is straightforward, as the
reward function for MaxEnt RL is a simple function of the last transition.
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4.4 A COMPUTATIONAL EXPERIMENT

To conclude this section, we present a simple computational experiment to verify that Max-
Ent RL does solve the meta-POMDP. We instantiated the meta-POMDP using 5-armed ban-
dits. Each meta-POMDP is specified by a prior belief p(i) over the target arm. We sam-
ple this distribution from a Dirichlet(1). To solve this meta-POMDP, we applied MaxEnt
RL using a reward function r(i) = 1

2 log p(i), as derived above. When the agent pulls arm
i, it observes a noisy reward ri ∼ N (r(i), 1). To implement the MaxEnt RL approach, we

Figure 1: MaxEnt RL solves the Meta-POMDP. On a
5-armed bandit problem, we show that solving a MaxEnt
RL problem with a reward of r(i) = 1

2
log p(i) mini-

mizes regret on the meta-POMDP defined by p(i). The
thick line is the average across 10 randomly-generated
bandit problems (thin lines). Lower is better.

maintained the posterior of the reward r(i),
given our observations so far. We initialized our
beliefs with a zero-mean, unit-variance Gaussian
prior. To obtain a policy with MaxEnt RL, we
chose actions with probability proportional to
the exponentiated expected reward. Through-
out training, we tracked the regret (Eq. 4.1).
Since the minimum regret possible for each
meta-POMDP is different, we normalized the
regret for each meta-POMDP by dividing by
the minimum possible regret. Thus, the normal-
ized regret lies in the interval [1,∞], with lower
being better. Figure 1 shows that MaxEnt RL
converges to the regret-minimizing policy for
each meta-POMDP.

5 MAXIMUM ENTROPY RL AND ADVERSARIAL GAMES

While the meta-POMDP considered in the previous setting was defined in terms of task uncertainty,
that uncertainty was fixed throughout the learning process. We now consider uncertainty introduced by
an adversary who perturbs the reward function, and show how MaxEnt RL’s aversion to deterministic
policies provides robustness against these sorts of adversaries. In particular, we show MaxEnt RL
is equivalent to solving robust-reward control, and run a computational experiment to support our
claims. We generalize these results in Appendix B.

5.1 MAXENT RL SOLVES ROBUST-REWARD CONTROL

Our main result on reward robustness builds on the general equivalence between entropy maximization
and game theory from prior work. To start, we note two results from prior work that show how
entropy maximization can be written as a robust optimization problem:
Lemma 5.1 (Grünwald et al. (2004)). Let x be a random variable, and let P be the set of all
distributions over x. The problem of choosing a maximum entropy distribution for x and maximizing
the worst-case log-loss are equivalent:

max
p∈P
Hp[x] = max

p∈P
min
q∈P

Ep[− log q(x)].

An immediately corollary is that maximizing the entropy of any conditional distribution is equivalent
to a robust optimization problem:
Corollary 5.1.1 (Grünwald et al. (2004); Ziebart et al. (2011)). Let x and y be random variables,
and let Px|y be the set of all conditional distributions p(x | y). The problem of choosing a maximum
entropy distribution for the conditional distribution p(x | y) and maximizing the worst-case log-loss
of x given y are equivalent:

max
p∈Px|y

Ey [Hp[x | y]] = max
p∈Px|y

min
q∈Px|y

Ey [Ep[− log q(x | y)]] .

In short, prior work shows that the principle of maximum entropy results minimizes worst-case
performance on prediction problems that use log-loss. Our contribution extends this result to show
that MaxEnt RL minimizes worst-case performance on reinforcement learning problems for certain
classes of reward functions.
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Figure 2: MaxEnt RL = Robust-Reward Control: The policy obtained by running MaxEnt RL on
reward function r is the optimal robust policy for a collection of rewards, Rr. (Left) We plot the
original reward function, r as a red dot, and the collection of reward functions, Rr, as a blue line.
(Center) For each policy, parameterized solely by its probability of choosing action 1, we plot the
expected reward for each reward function in Rr. The robust-reward control problem is to choose
the policy whose worst-case reward (dark blue line) is largest. (Right) For each policy, we plot the
MaxEnt RL objective (i.e., the sum of expected reward and entropy).

Theorem 5.2. The MaxEnt RL objective for a reward function r is equivalent to the robust-reward
control objective for a certain class of reward functions:

Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s] = min

r∈Rr
Eπ

[
T∑
t=1

r(st, at)

]
,

where
Rr = {r′(s, a) , r(s, a)− log q(a | s) | q ∈ Π}. (2)

For completeness, we provide a proof in Appendix B.1. We will call the set Rr of reward functions a
robust set. As an aside, we note that the log q(a | s) term in the definition of the robust set arises
from the fact that we consider MaxEnt RL algorithms using Shannon entropy. MaxEnt RL algorithms
using other notions of entropy (Lee et al., 2019a; Chow et al., 2018) would result in different robust
sets (see Grünwald et al. (2004)). We leave this generalization for future work.

5.2 A SIMPLE EXAMPLE

In Figure 2, we consider a simple, 2-armed bandit, with the following reward function:

r(a) =

{
2 a = 1

1 a = 2
.

The robust set is then defined as

Rr =

{
r′(a) =

{
2− log q(a) a = 1

1− log(1− q(a)) a = 2

∣∣∣∣ q ∈ [0, 1]

}
.

Figure 2 (left) traces the original reward function and this robust set. Plotting the robust-reward
control objective (center) and the MaxEnt RL objective (right), we observe that they are equivalent.

5.3 A COMPUTATIONAL EXPERIMENT

We ran an experiment to support our claim that MaxEnt RL is equivalent to solving the robust-reward
problem. The mean for arm i, µi, is drawn from a zero-mean, unit-variance Gaussian distribution,
µi ∼ N (0, 1). When the agent pulled arm i, it observes a noisy reward ri ∼ N (µi, 1). We implement
the MaxEnt RL approaches as in Section 4.4.

As a baseline, we compare to fictitious play (Brown, 1951), an algorithm for solving two-player,
zero-sum games. Fictitious play alternates between choosing the best policy w.r.t. the historical
average of observes rewards, and choosing the worst reward function for the historical average of

8
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policies. We choose the worst reward function from the robust set (Eq. 2). For fair comparison, the
policy only observes the (noisy) reward associated with the selected arm. We also compared to an
oracle version of fictitious play that observes the (noisy) rewards associated with all arms, including
arms not selected.

Figure 3: MaxEnt RL solves a robust-reward con-
trol problem. On a 5-armed bandit problem, MaxEnt
RL converges to the optimal minimax policy. Fictitious
play, a prior method for solving adversarial problems,
fails to solve this task, but an oracle variant achieves re-
ward similar to MaxEnt RL. The thick line is the average
over 10 random seeds (thin lines). Higher is better.

We ran each method on the same set of 10 bandit
problems, and evaluated the worst-case reward
for each method (i.e., the expected reward of
the policy, if the reward function were adversar-
ially chosen from the robust set). Because each
problem had a different minimax reward, we nor-
malized the worst-case reward by the worst-case
reward of the optimal policy. The normalized
rewards are therefore in the interval [0, 1], with 1
being optimal. Figure 3 plots the normalized re-
ward throughout training. The main result is that
MaxEnt RL converges to a policy that achieves
optimal minimax reward, supporting our claim
that MaxEnt RL is equivalent to a robust-reward
control problem. The failure of fictitious play
to solve this problem illustrates that the robust-
reward control problem is not trivial to solve.
Only the oracle version of fictitious play, which
makes assumptions not made by MaxEnt RL, is
competitive with MaxEnt RL.

6 DISCUSSION

In summary, this paper studies connections between MaxEnt RL and control problems with variability
in the reward function. While MaxEnt RL is a relatively simple algorithm, the problems that it solves,
such as robust-reward control and regret minimization in the meta-POMDP, are typically viewed as
quite complex. This result hints that MaxEnt RL might also be used to solve even broader classes
of control problems. Our results also have implications for the natural world. The abundance of
evidence for probability matching in nature suggests that, in the course of evolution, creatures that
better handled uncertainty and avoided adversaries were more likely to survive. We encourage RL
researchers to likewise focus their research on problem settings likely to occur in the real world.
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A META-POMDP

A.1 SOLVING FOR THE OPTIMAL TRAJECTORY DISTRIBUTION

We solve the optimization problem introduced in Section 4.2. The Lagrangian is

L(π, λ) ,
∫

p(τ)

π(τ)
dτ + λ

(∫
π(τ)dτ − 1

)
.

The first and second derivatives of the Lagrangian are:

dL
dπ

= − p(τ)

π(τ)2
− λ d2L

dπ2
= 2

p(τ)

π(τ)3
> 0.

Note that the second derivative is positive so setting the first derivative equal to zero will provide a
minimum of the objective:

dL
dπ

= 0 =⇒ π(τ) =
√
−λp(τ).

We then solve for λ using the constraint that π(τ) integrate to one, yielding the solution to the
optimization problem:

π(τ) =

√
p(τ)∫ √
p(τ ′)dτ ′

.

A.2 THE META-POMDP AS (MEMORYLESS) META-LEARNING

The meta-POMDP can be viewed as a meta-learning problem (Thrun & Pratt, 2012), solved with
a memoryless meta-learner. Formally, a meta-learning algorithm is a distribution over policies π,
given the observed data, D: p(π | D). We will consider memoryless meta-learning algorithms:
the distribution of policies proposed at each step is the same, as the meta-learner cannot update
its beliefs based on observed evidence: p(π | D) = p(π). We define a meta-learning problem
by a distribution over MDPs, p(M). A unknown MDP M will be sampled, and the job of the
meta-learning algorithm is to solveM as quickly as possible. Solving an MDP can mean a number
of different things: reaching a goal state, achieving a certain level of reward, or avoiding episode
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termination. For simplicity, we assume that each MDP has a single successful policy, and each policy
is successful for a single MDP, though this analysis can likely be extended to more general notions of
success. We will define πi as the unique policy that solves MDPMi. Note that, in this setting, the
regret of the meta-POMDP is exactly the number of episodes required to find the optimal policy for
the (unknown) MDP. Lemma 4.1 tells us that the optimal (memoryless) meta-learning algorithm is
defined as p(πi) ∝

√
p(Mi).

While the assumption that the meta-learning algorithm is independent of observed data is admittedly
strong, it is realistic in settings where failing at one task provides no information about that the true
task might be. Broadly, we believe that the meta-POMDP is a first step towards understanding if and
how MaxEnt RL might be used to solve problems typically approached as meta-learning problems.

A.3 WHEN CAN TRAJECTORY-LEVEL REWARDS BE DECOMPOSED?

Lemma A.1. Let a trajectory-level reward function rτ (τ) be given, and define the corresponding
target distribution as

prτ (τ) ∝ p1(s1)erτ (τ)
T∏
t=1

p(st+1 | st, at).

If there exists a Markovian policy π such that π(τ) = prτ (τ) for all trajectories τ , then there exists a
state-action level reward function r(s, a) satisfying

rτ (τ) =

T∑
t=1

r(st, at) ∀τ,

Proof. To start, we recall the definitions of π(τ) and prτ (τ):

π(τ) ∝ p1(s1)

T∏
t=1

p(st+1 | st, at)π(at | st) (3)

prτ (τ) ∝ p1(s1)erτ (τ)
T∏
t=1

p(st+1 | st, at). (4)

By our assumption that π(τ) = prτ (τ), we know that Equations 3 and 4 are equal, up to some
proportionality constant c′:

p1(s1)erτ (τ)
T∏
t=1

p(st+1 | st, at) = c′p1(s1)

T∏
t=1

p(st+1 | st, at)π(at | st)

= p1(s1)elog c′+
∑T
t=1 log π(at|st)

T∏
t=1

p(st+1 | st, at)

= p1(s1)e
∑T
t=1 r(st,at)

T∏
t=1

p(st+1 | st, at),

where r(s, a) , log π(a | s) + 1
T log c′.

A.4 WHEN DOES A SOLUTION EXIST?

When considering goal-reaching meta-POMDPs, we made an assumption that there exists a policy that
exactly matches some distribution (

√
p̃(sT , aT )). Here, we provide a sufficient (but not necessary)

condition for the existence of such a policy

Lemma A.2. Let p(τ) = p̃(sT , aT ) be some distribution over trajectories that depends only on the
last state and action in each trajectory (as in Lemma 4.2). If, for every state sT and action aT where
p̃(sT , aT ) > 0, there exists a policy πsT ,aT that deterministically reaches state sT and action aT on
the final time step, then there exists a Markovian policy satisfying π(τ) = p(τ).
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The main idea behind the proof is that, if there exists policies that reach each of the possible target
state-action pairs, then there exists a way of “mixing” these policies to obtain a policy with the desired
marginal distribution.

Proof. First, we construct a mixture policy π̄ by sampling sT , aT ∼ q̃(sT , aT ) at the start of
each episode, and using policy πsT ,aT for every step in that episode. By construction, we
have ρπ̄(sT , aT ) = q(sT , aT ). However, this policy π̄ is non-Markovian. Nonetheless, Ziebart
(2010, Theorem 2.8) guarantees that there exists a Markovian policy π̃ with the same marginal
state distribution: π̃(sT , aT ) = π̄(sT , aT ). Thus, there exists a Markovian policy, π̃ satisfying
π̃(sT , aT ) = q(sT , aT ).

A.5 BOUNDING THE DIFFERENCE BETWEEN MAXENT RL AND THE META-POMDP

While the result in Section 4 shows that MaxEnt RL has the same solution as the meta-POMDP, it
does not tells us how the two control problems differ away from their optima. The following theorem
provides an answer.
Theorem A.3. Assume that the ratio p(τ)/π(τ) is bounded in [a, b] for all trajectories τ and a, b > 0.
Further, assume that there exists a policy πr that can solve the MaxEnt RL problem exactly (i.e.,
π(τ) = p(τ)). Then the MaxEnt RL objective minimizes an upper bound on the log regret of the
meta-POMDP, plus an additional term that vanishes as π → pr:

J(π, pr) ≥ log Regretp2
r
(π) + C(π, r).

Before proving this theorem, we note that the assumption that the MaxEnt RL problem can be solved
exactly is always satisfied for linearly-solveable MDPs (Todorov, 2007). Moreover, given a MDP that
cannot be solved exactly, we can always modify the reward function (i.e., the target distribution p(τ))
such that the optimal policy remains the same, but such that the optimal policy now exactly matches
the target distribution. The proof of the theorem will consist of two steps. First, we will bound the
difference between the log regret of the meta-POMDP and a forward KL. The second step is to bound
the difference between that forward KL and the reverse KL (which is optimized by MaxEnt RL).

Proof. To start, we apply a “backwards” version of Jensen’s inequality from Simic (2009, Theorem
1.1), which states that the following inequality holds for any convex function f(x):∫

p(τ)f(xτ )dτ − f
∫
p(τ)xτdτ ≤

1

4
(b− a)(f ′(b)− f ′(a)).

We use − log(x) as our convex function, whose derivative is −1
x , and further define xτ = p(τ)/π(τ):

−
∫
p(τ) log

(
p(τ)

π(τ)

)
dτ + log

∫
p2(τ)

π(τ)
dτ ≤ 1

4
(b− a)(1/a− 1/b).

Rearranging terms, we get

log

∫
p2(τ)

π(τ)
dτ ≤

∫
p(τ) log

(
p(τ)

π(τ)

)
dτ +

1

4
(b− a)(1/a− 1/b). (5)

The LHS is not quite a log regret (Eq. 4.1) because it contains a p2(τ) term in the numerator, which
is not a proper probability distribution. Defining Z =

∫
p2(τ) as the normalizing constant (which

does not depend on π), we can write the log regret using a proper distribution:

log Regret 1
Z p

2(π) = log

∫
p2(τ)

Zπ(τ)
dτ = log

∫
p2(τ)

π(τ)
dτ − logZ

We can now rewrite Equation 5 as a bound on log regret:

log Regret 1
Z p

2(π) ≤
∫
p(τ) log

(
p(τ)

π(τ)

)
dτ +

1

4
(b− a)(1/a− 1/b) + logZ. (6)

Notice that the integral on the RHS is the forward KL between p and π, whereas MaxEnt RL
minimizes the reverse KL. Our next step is to show that the forward KL is not too much larger than
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the reverse KL, so optimizing the reverse KL (as done by MaxEnt RL) will still minimize an upper
bound on the log regret of the meta-POMDP. We will do this using a result from Norouzi et al. (2016).
First, we need to define the logits corresponding to distributions π and p. We start by defining the
logits for just the dynamics:

`d(τ) , log p1(s1) +

T∑
t=1

log p(st+1 | st, at).

Now, the policy distribution π(τ) and the target distribution, p(τ), can both be written in terms of
dynamics and policy:

log π(τ) = `d(τ) +

T∑
t=1

log π(at | st)

log p(τ) = `d(τ) +

T∑
t=1

log π∗p(at | st),

where π∗p is the optimal MaxEnt RL policy for the reward r(τ) = log p(τ). By our assumption that
there exists some π such that π(τ) = p(τ), we know that π∗p(τ) = p(τ). With this notation in place,
we can employ Proposition 2 of Norouzi et al. (2016):

DKL(p(τ) ‖ π(τ)) ≤ DKL(π(τ) ‖ p(τ)) +
∑
τ

(`p(τ)− `π(τ))2

= DKL(π(τ) ‖ p(τ)) +
∑
τ

(
T∑
t=1

log π∗p(at | st)−
T∑
t=1

log π(at | st)

)2

. (7)

Note that the dynamics logits `d cancelled with one another. Now, we combine Equations 6 and 7 to
obtain:

log Regretp2
r
(π) ≤ 1

Z
DKL(π(τ) ‖ p(τ)) + C(π, r), (8)

where

C(π, r) =

(
T∑
t=1

log π∗p(at | st)−
T∑
t=1

log π(at | st)

)2

+
1

4
(b− a)(1/a− 1/b).

As π → π∗p , difference of log probabilities (term 1) vanishes. Additionally, the ratio p(τ)/π(τ)→ 1,
so we can take a and b (the limits on the probability ratio) towards 1. As a → 1 and b → 1, the
second term in C(π, r) vanishes as well.

In summary, the difference between the MaxEnt RL objective and the log regret of the meta-POMDP
is controlled by a term C(π, r). At the solution to the MaxEnt RL problem, this term is zero, implying
that solving the MaxEnt RL problem will minimize regret on the meta-POMDP.

B MAXIMUM ENTROPY RL AND ADVERSARIAL GAMES

B.1 PROOF AND EXTENSIONS OF THEOREM 5.2

Our proof of Theorem 5.2 consists of first applying Corollary 5.1.1, and then rearranging terms.

Proof.

max
π∈Π

Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s] = max

π∈Π
Eπ

[
T∑
t=1

r(st, at)

]
+ min

q∈Π
Eπ

[
T∑
t=1

− log q(at | st)

]

= max
π∈Π

min
q∈Π

Eπ

[
T∑
t=1

(r(st, at)− log q(at | st))

]

= max
π∈Π

min
r′∈Rr

Eπ

[
T∑
t=1

r′(st, at)

]
.
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A corollary of this result is that the solution to the MaxEnt RL objective is robust. More precisely, the
MaxEnt objective obtained by some policy is a lower bound on that policy’s reward for any reward
function in some set.
Corollary B.0.1. Let policy π and reward function r be given, and let J be the MaxEnt objective
policy π on reward function r:

J(π, r) , Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s].

Then the expected return of policy π on any reward function in Rr is at least J:

Eπ

[
T∑
t=1

r′(st, at)

]
≥ J(π, r) ∀r′ ∈ Rr.

B.2 INTUITION FOR ROBUST SETS

We can gain intuition for the robust set by explicitly writing out the definition of Π:

Π ,

{
q | q(s, a) ∈ [0, 1] ∀s, a and

∫
A

q(a | s)da = 1 ∀s
}

=

{
q | log q(s, a) ∈ [−∞, 0] ∀s, a and

∫
A

elog q(a|s)da = 1 ∀s
}
.

Now, we can rewrite our definition of Rr as follows:

Rr =

{
r(s, a) + us(a) | us(a) ≥ 0 ∀s, a and

∫
A
e−us(a)da = 1 ∀s

}
(9)

=

{
r′(s, a) | r′(s, a) ≥ 0 ∀s, a and

∫
A
er(s,a)−r′(s,a)da = 1 ∀s

}
.

Intuitively, we are robust to all reward functions obtained by adding (positive) additional reward to
the original reward, with the only constraints being that (1) the reward function is increased enough,
and (2) significantly increasing the reward for one state-action pair limits the amount the reward
can be increased for another state-action pair. One important caveat of the results in this section is
that, individually, the reward functions in in the robust set Rr are “easier” than the original reward
function, in that they assign larger values to the reward at a given state and action:

r(s, a) ≤ r′(s, a) ∀s ∈ S, a ∈ A, r′ ∈ Rr.
Appendix B.4 discusses the role of temperatures on the robustness of MaxEnt RL.

B.3 EQUIVALENCE CLASSES OF ROBUST REWARD CONTROL PROBLEMS

In this section, we aim to understand whether the policy obtained by running MaxEnt RL on reward
function r is robust to reward functions besides those in Rr. As a first step, we show that the policy
is also robust to reward functions that are “easier” than those in Rr. We then show that the set Rr
is not unique and introduce a family of equivalent robust-reward control problems, all of which are
equivalent to the original MaxEnt RL problem.

B.3.1 ROBUSTNESS TO DOMINATED REWARD FUNCTIONS

In Theorem 5.2, we showed that the optimal MaxEnt RL policy π is also the minimax policy for the
reward functions in Rr. A somewhat trivial corollary is that π is also robust to any reward function
that is pointwise weakly better than a reward function in our robust set:
Lemma B.1. The MaxEnt RL objective for a reward function r is equivalent to the robust-reward
control objective for a class of reward functions, R+

r ⊇ Rr:

Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s] = min

r∈R+
r

Eπ

[
T∑
t=1

r(st, at)

]
,

where
R+
r , {r+(s, a) = r′(s, a) + c | c ≥ 0, r′ ∈ Rr}.
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Figure 4: Expanded Robust Set: MaxEnt RL is robust to the reward functions along the blue line,
which implies that it is also robust to the reward functions in the shaded region.

Proof. To prove this, we simply note that these additional reward functions, r+ ∈ R+
r \ Rr, will

never be chosen as the arg min of the RHS. Thus, expanding the constraint set from Rr to R+
r does

not change the value of the RHS.

This constrained says that we are robust to reward functioned that are bounded away from the original
reward function. We plot the expanded robust set, R+

r , in Figure 4. Note that the expanded robust
set corresponds to all reward functions “above” and to the “right” of our original robust set. We can
use this result to write a new definition for the robust set. Since we now know that u can be made
arbitrarily small, we can allow e−us(a) to take very small values. More precisely, whereas before
we were constrained to add a term that integrated to one, we now are allows to add any term whose
integral is at at most one:

R+
r =

{
r(s, a) + us(a) | us(a) ≥ 0 ∀s, a and

∫
A
e−us(a)da ≤ 1 ∀s

}
.

B.3.2 GLOBAL AFFINE TRANSFORMATIONS

In optimal control, modifying a reward function by adding a global constant or scaling all reward by
a positive constant does not change the optimal policy. Thus, the robust-reward control problem for a
set of rewards Rr has the same solution as the robust-reward control problem for a scaled and shifted
set of rewards:

Lemma B.2. Let a set of reward functionsRr be given, and let b, c ∈ R, b > 0 be arbitrary constants.
Then the following two optimization problems are equivalent:

arg max
π

min
r′∈Rr

Eπ

[
T∑
t=1

r′(st, at)

]
= arg max

π
min

r′∈bRr+c
Eπ

[
T∑
t=1

r′(st, at)

]
.

Proof. The proof follows simply by linearity of expectation, and the invariance of the argmax to
positive affine transformations:

arg max
π

min
r′∈bRr+c

Eπ

[
T∑
t=1

r′(st, at)

]
= arg max

π
min
r′∈Rr

Eπ

[
T∑
t=1

(br′(st, at) + c)

]
(10)

= arg max
π

b min
r′∈Rr

Eπ

[
T∑
t=1

r′(st, at)

]
+ cT (11)

= arg max
π

min
r′∈Rr

Eπ

[
T∑
t=1

r′(st, at)

]
. (12)

Note, however, that the robust-reward control problem for rewards Rr is not the same as being
simultaneously robust to the union of all affine transformations of robust sets. Said another way,
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Figure 5: Global Affine Transformations: In a simple, 2-armed bandit, we draw one reward function
(turquoise dot) an its robust set (turquoise, thick line). The policy that is minimax for the reward
functions in the robust set. The policy is also minimax for other robust sets, obtained by (Left) scaling
and (Right) shifting the original robust set. Importantly, the policy is not simultaneously robust
against the union of these robust sets.

there exists a family of equivalent robust-reward control problems, each defined by a fixed affine
transformation of Rr.

To gain some intuition for these transformations of reward functions, we apply a variety of transfor-
mations to the reward function from Figure 2. In Figure 5 (left) we show the effect of multiplying the
reward by a positive constant. Figure 5 (right) shows the effect of adding a constant to the reward
for every state and action.. For the robust sets in the right plot, there exists another reward function
(r† = r + c) such that the shifted robust set is equal to the robust set of the shifted reward (i.e.,
Rr+c = Rr + c):

Lemma B.3. Let reward function r and constant c ∈ R be given. Define a reward function
rc(s, a) , r(s, a) + c. LetWr be the set of robust optimization problems which are equivalent to the
MaxEnt RL problem on reward function r. The MaxEnt RL problem with the shifted reward function,
rc, is equivalent to the same set of robust optimization problems: Wr =Wrc

Proof. In addition to the argument given above, we can simply note that the two MaxEnt RL problems
are the same:

arg max
π

Eπ

[
T∑
t=1

rc(st, at)

]
+Hπ[a | s] = arg max

π
Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s] +���:

const.
T · c.

Lemma B.3 is not true for the robust sets in the left plot. While the policy that is minimax for Rr is
also minimax for bRr, there does not exist another reward function r† such that Rr† = bRr. The
reason is that scaling the robust violates the constraint

∫
e−us(a)da = 1.

B.4 TEMPERATURES

Many algorithms for MaxEnt RL (Haarnoja et al., 2018b; Fox et al., 2015; Nachum et al., 2017)
include a temperature α > 0 to balance the reward and entropy terms:

J(π, r) = Eπ

[
T∑
t=1

r(st, at)

]
+ αHπ[a | s].
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Figure 6: Effect of Temperature: (Left) For a given reward function (blue dot), we plot the
robust sets for various values of the temperature. Somewhat surprisingly, it appears that increasing
the temperature decreases the set of reward functions that MaxEnt is robust against. (Right) We
examine the opposite: for a given reward function, which other robust sets might contain this reward
function. We observe that robust sets corresponding to larger temperatures (i.e., the red curve) can be
simultaneously robust against more reward functions than robust sets at lower temperatures.

We can gain some intuition into the effect of this temperature on the set of reward functions to which
we are robust. In particular, including a temperature α results in the following robust set:

Rαr =

{
r(s, a) + αus(a) | us(a) ≥ 0 ∀s, a and

∫
A
e−us(a)da ≤ 1 ∀s

}
(13)

=

{
r(s, a) + us(a) | us(a) ≥ 0 ∀s, a and

∫
A
e−us(a)/αda ≤ 1 ∀s

}
. (14)

In the second line, we simply moved the temperature from the objective to the constraint by redefining
us(a)→ 1

αus(a).

We visualize the effect of the temperature in Figure 6. First, we fix a reward function r, and plot
the robust set Rαr for varying values of α. Figure 6 (left) shows the somewhat surprising result that
increasing the temperature (i.e., putting more weight on the entropy term) makes the policy less
robust. In fact, the robust set for higher temperatures is a strict subset of the robust set for lower
temperatures:

α1 < α2 =⇒ Rα2
r ⊆ Rα2

r .

This statement can be proven by simply noting that the function e−
x
α is an increasing function of α

in Equation 14. It is important to recognize that being robust against more reward functions is not
always desirable. In many cases, to be robust to everything, an optimal policy must do nothing.

We now analyze the temperature in terms of the converse question: if a reward function r′ is included
in a robust set, what other reward functions are included in that robust set? To do this, we take a
reward function r′, and find robust sets Rαr that include r′, for varying values of α. As shown in
Figure 6 (right), if we must be robust to r′ and use a high temperature, the only other reward functions
to which we are robust are those that are similar, or pointwise weakly better, than r′. In contrast, when
using a small temperature, we are robust against a wide range of reward functions, including those
that are highly dissimilar from our original reward function (i.e., have higher reward for some actions,
lower reward for other actions). Intuitively, increasing the temperature allows us to simultaneously be
robust to a larger set of reward functions.

B.5 MAXENT SOLVES ROBUST CONTROL FOR REWARDS

In Section 5, we showed that MaxEnt RL is equivalent to some robust-reward problem. The aim
of this section is to go backwards: given a set of reward functions, can we formulate a MaxEnt RL
problem such that the robust-reward problem and the MaxEnt RL problem have the same solution?
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Theorem B.4. For any collection of reward functions R, there exists another reward function r such
that the MaxEnt RL policy w.r.t. r is an optimal robust-reward policy for R:

arg max
π

Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s] ⊆ arg max

π
min
r′∈R

Eπ

[
T∑
t=1

r′(st, at)

]
.

We use set containment, rather than equality, because there may be multiple solutions to the robust-
reward control problem.

Proof. Let π∗ be a solution to the robust-reward control problem:

π∗ ∈ arg max
π

min
ri∈R

Eπ

[
T∑
t=1

ri(st, at)

]
.

Define the MaxEnt RL reward function as follows:

r(s, a) = log π∗(a | s).
Substituting this reward function in Equation 2, we see that the unique solution is π = π∗.

Intuitively, this theorem states that we can use MaxEnt RL to solve any robust-reward control
problem that requires robustness with respect to any arbitrary set of rewards, if we can find the right
corresponding reward function r for MaxEnt RL. One way of viewing this theorem is as providing an
avenue to sidestep the challenges of robust-reward optimization. Unfortunately, we will still have
to perform robust optimization to learn this magical reward function, but at least the cost of robust
optimization might be amortized. In some sense, this result is similar to Ilyas et al. (2019).

B.6 FINDING THE ROBUST REWARD FUNCTION

In the previous section, we showed that a policy robust against any set of reward functions R can be
obtained by solving a MaxEnt RL problem. However, this requires calculating a reward function r∗
for MaxEnt RL, which is not in general an element in R. In this section, we aim to find the MaxEnt
reward function that results in the optimal policy for the robust-reward control problem. Our main
idea is to find a reward function r∗ such that its robust set, Rr∗ , contains the set of reward functions
we want to be robust against, R. That is, for each ri ∈ R, we want

ri(s, a) = r∗(s, a) + us(a) for some us(a) satisfying
∫
A
e−us(a)da ≤ 1 ∀s.

Replacing u with r′ − r∗, we see that the MaxEnt reward function r must satisfy the following
constraints: ∫

A
er
∗(s,a)−r′(s,a)da ≤ 1 ∀s ∈ S, r′ ∈ R.

We define R∗(R) as the set of reward functions satisfying this constraint w.r.t. reward functions in R:

R∗(R) ,

{
r∗
∣∣∣∣ ∫
A
er
∗(s,a)−r′(s,a)da ≤ 1 ∀s ∈ S, r′ ∈ R

}
We now use Corollary 5.1.1 to argue that all any applying MaxEnt RL to any reward function in
r∗ ∈ R∗(R) lower bounds the robust-reward control objective.
Corollary B.4.1. Let a set of reward functions R be given, and let r∗ ∈ R∗(R) be an arbitrary
reward function belonging to the feasible set of MaxEnt reward functions. Then

J(π, r∗) ≤ min
r′∈R

Eπ

[
T∑
t=1

r′(st, at)

]
∀π ∈ Π.

Note that this bound holds for all feasible reward functions and all policies, so it also holds for the
maximum r∗:

max
r∗∈R∗(R)

J(π, r∗) ≤ min
r′∈R

Eπ

[
T∑
t=1

r′(st, at)

]
∀π ∈ Π. (15)
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Defining π∗ = arg maxπ J(π, r∗), we get the following inequality:

max
r∗∈R∗(R),π∈Π

J(π, r∗) ≤ min
r′∈R

Eπ∗
[
T∑
t=1

r′(st, at)

]
≤ max

π∈Π
min
r′∈R

Eπ

[
T∑
t=1

r′(st, at)

]
. (16)

Thus, we can find the tightest lower bound by finding the policy π and feasibly reward r∗ that
maximize Equation 16:

max
r,π

Eπ

[
T∑
t=1

r(st, at)

]
+Hπ[a | s] (17)

s.t.
∫
A
er(s,a)−r′(s,a)da ≤ 1 ∀ s ∈ S, r′ ∈ R.

It is useful to note that the constraints are simply LOGSUMEXP functions, which are convex. For
continuous action spaces, we might approximate the constraint via sampling. Given a particular
policy, the optimization problem w.r.t. r has a linear objective and convex constraint, so it can be
solved extremely quickly using a convex optimization toolbox. Moreover, note that the problem can
be solved independently for every state. The optimization problem is not necessarily convex in π.

B.7 ANOTHER COMPUTATIONAL EXPERIMENT

This section presents an experiment to study the approach outlined above. Of particular interest is
whether the lower bound (Eq 16) comes close the the optimal minimax policy.

We will solve robust-reward control problems on 5-armed bandits, where the robust set is a collection
of 5 reward functions, each is drawn from a zero-mean, unit-variance Gaussian. For each reward
function, we add a constant to all of the rewards to make them all positive. Doing so guarantees
that the optimal minimax reward is positive. Since different bandit problems have different optimal
minimax rewards, we will normalize the minimax reward so the maximum possible value is 1.

Our approach, which we refer to as “LowerBound + MaxEnt”, solves the optimization problem in
Equation 17 by alternating between (1) solving a convex optimization problem to find the optimal
reward function, and (2) computing the optimal MaxEnt RL policy for this reward function. Step 1
is done using CVXPY, while step 2 is done by exponentiated the reward function, and normalizing
it to sum to one. Note that this approach is actually solving a harder problem: it is solving the
robust-reward control problem for a much larger set of reward functions that contains the original set
of reward functions. Because this approach is solving a more challenging problem, we do not expect
that it will achieve the optimal minimax reward. However, we emphasize that this approach may
be easier to implement than fictitious play, which we compare against. Different from experiments
in Sections 4.4 and 5.3, the “LowerBound + MaxEnt” approach assumes access to the full reward
function, not just the rewards for the actions taken. For fair comparison, fictitious play will also use
a policy player that has access to the reward function. Fictitious play is guaranteed to converge to
the optimal minimax policy, so we assume that the minimax reward it converges to is optimal. We
compare to two baselines. The “pointwise minimum policy” finds the optimal policy for a new reward
function formed by taking the pointwise minimum of all reward functions: r̃(a) = minr∈R r(a).
This strategy is quite simple and intuitive. The other baseline is a “uniform policy” that chooses
actions uniformly at random.

We ran each method on the same set of 10 robust-reward control bandit problems. In Figure 7, we
plot the (normalized) minimax reward obtained by each method on each problem, as well as the
average performance across all 10 problems. The “LowerBound + MaxEnt” approach converges to
a normalized minimax reward of 0.91, close to the optimal value of 1. In contrast, the “pointwise
minimum policy” and the “uniform policy” perform poorly, obtaining normalized minimax rewards
of 0.56 and 0.60, respectively. In summary, while the method proposed for converting robust-
reward control problems to MaxEnt RL problems does not converge to the optimal minimax policy,
empirically it performs well.

B.8 ALL ADVERSARIAL GAMES ARE MAXENT PROBLEMS

In this section, we generalize the previous result to show that MaxEnt RL can be used to solve to
arbitrary control games, including robust control and regret minimization on POMDPs.
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Figure 7: Approximately solving an arbitrary robust-reward control problem. In this experi-
ment, we aim to solve the robust-reward control problem for an arbitrary set of reward functions.
While we know that MaxEnt RL can be used to solve arbitrary robust-reward control problems exactly,
doing so requires that we already know the optimal policy (§ B.5). Instead, we use the approach
outlined in Section B.6, which allows us to approximately solve an arbitrary robust-reward control
problem without knowing the solution apriori. This approach (“LowerBound + MaxEnt”) achieves
near-optimal minimax reward.

We can view the robust-reward control problem as a special case of a more general, two player,
zero-sum game. The policy player chooses a policy at every round (or, more precisely, a mixture of
policies). The second player, the MDP player, chooses the MDP with which we interact (or, more
precisely, a mixture over MDPs). Formally, we define the set of policies Π and MDPsM, both of
which correspond to pure strategies for our players. To represent mixed strategies, we use QΠ ⊆ PΠ

and QM ⊆ PM to denote distributions over policies and models, respectively. Our goal is to find a
Nash equilibrium for the following game:

max
pπ∈QΠ

min
pM∈QM

F(pπ, pM)

where F(pπ, pM) , E π∼pπ,M∼pM
a∼π(a|s), s′∼pM(s′|s,a)

[
T∑
t=1

rM(st, at)

]
. (18)

The objective F says that, at the start of each episode, we independently sample a policy and a MDP.
We evaluate the policy w.r.t. this MDP, where both the dynamics and reward function are governed
by the sampled MDP. We recall that the Nash Existence Theorem (Nash et al., 1950) proves that a
Nash Equilibrium will always exist. With this intuition in place, we state our main result:
Theorem B.5. For every solution adversarial control problem (Eq. 18), there exists a Markovian
policy π∗ that is optimal:

∃π∗ s.t. min
pM∈QM

F(1π∗ , pM) = max
pπ∈QΠ

min
pM∈QM

F(pπ, pM).

In the statement of the theorem above, we have used 1π∗ to indicate that the policy player uses a pure
strategy, deterministically using policy π∗. While one might expect that mixtures of policies might
be more robust, this theorem says this is not the case.

Proof. To begin, we note that F depends solely on the marginal distribution over states and actions
visited by the policy. We will use ρπ(s, a) to denote this marginal distribution. Given the mixture
over policies pπ(π), each with its own marginal distribution, we can form the aggregate marginal
distribution, ρ̄(s, a):

ρ̄(s, a) =

∫
Π

pπ(π)ρπ(s, a)dπ.

We can now employ Ziebart (2010, Theorem 2.8) to argue that there exists a single policy π∗ with the
same marginal distribution:

∃ π∗ s.t. ρπ∗(s, a) = ρ̄(s, a) ∀s, a.

22



Under review as a conference paper at ICLR 2020

Thus, we conclude that
min

pM∈QM
F(1π∗ , pM) = min

pM∈QM
F(p∗π, pM).

One curious aspect of this proof is that is does not require that we use MaxEnt policies. In Ap-
pendix B.9, we discuss how alternative forms of regularized control might be used to solve this same
problem. We now examine four special types of adversarial games. For each problem, MaxEnt RL
can be used to find the optimal Markovian policy.

Robust-Reward Control – The robust-reward control problem (Definition 3.1) is a special
case where the MDPs that the adversary can choose among, M, have identical states,
actions and dynamics, differing only in their reward functions. The adversary’s choice of a
distribution over MDPs is equivalent to choosing a distribution over reward functions.
POMDPs – MaxEnt RL can be used to find the optimal Markovian policy for a POMDP.
Recall that all POMDPs can be defined as distributions over MDPs. Let a POMDP be given,
and let p∗M be its corresponding distribution over MDPs. We now define the set of MDPs
the adversary can among asQM = {p∗M}. That is, the adversary’s only choice is p∗M. Note
that the singleton set is closed under convex combinations (i.e., it contains all the required
mixed strategies). Thus, we can invoke Theorem B.5 to claim that MaxEnt RL can solve
this problem.
Robust Control – Next, we consider the general robust control problem, where an adversary
chooses both the dynamics and the reward function. To invoke Theorem B.5, we simply
define a set of MDPs with the same state and actions spaces, but which differ in their
transition probabilities and reward functions. Note that this result is much stronger than
the robust-reward control problem discussed in Section B.5, as it includes robustness to
dynamics.
Robust Adversarial Reinforcement Learning – The robust adversarial RL problem (Pinto
et al., 2017) is defined in terms of a MDP and a collection of “perturbation policies”,
among which the adversary chooses the worst. Note that the original MDP combined with
perturbations from one of the perturbation policies defines a new MDP with the same states,
actions, and rewards, but modified transition dynamics. Thus, we can convert the original
MDP and collection of perturbation policies into a collection of MDPs, each of which differs
only in its transition function.

While MaxEnt RL can find the optimal Markovian policy for each problem, restricting ourselves
to Markovian policies may limit performance. For example, the optimal policy for a robust control
problem might perform system ID internally, but this cannot be done by a Markovian policy.

B.9 ALTERNATIVE FORMS OF REGULARIZED CONTROL

In this section, we examine why we used MaxEnt RL in Section B.5. If we write out the KKT
stationarity conditions for the robust-reward control problem, we find that the solution to the robust-
reward control problem π, is also the solution to a standard RL problem with a reward function that
is a convex combination of the reward functions in the original set.

∇πEπ

[
T∑
t=1

r̄(s, a)

]
=⇒ π ∈ arg max

π
Eπ

[
T∑
t=1

r̄(st, at)

]
,

where
r̄(s, a) ,

∑
i

λiri(s, a).

Above, we have used λi as the dual parameters for reward function ri. However, we have no guarantee
that π is the unique solution to the RL problem with reward function r̄. Using MaxEnt RL guarantees
that the optimal policy is unique.1 More broadly, we needed a regularized control problem. It is
interesting to consider what other sorts of regularizers can induce unique solutions, thereby allowing
us to reduce robust-reward control to these other problems as well. We leave this to future work.

1However, the parameters of the optimal policy may not be unique if there is a surjective mapping from
policy parameters to policies.
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