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ABSTRACT

The information bottleneck (IB) problem tackles the issue of obtaining relevant
compressed representations T of some random variable X for the task of predict-
ing Y . It is defined as a constrained optimization problem which maximizes the
information the representation has about the task, I(T ;Y ), while ensuring that
a minimum level of compression r is achieved (i.e., I(X;T ) ≤ r). For practi-
cal reasons the problem is usually solved by maximizing the IB Lagrangian (i.e.,
LβIB(T ) = I(T ;Y ) − βI(X;T )) for many values of β ∈ [0, 1], therefore draw-
ing the IB curve (i.e., the curve of maximal I(T ;Y ) for a given I(X;Y )) and
selecting the representation of desired predictability and compression. It is known
when Y is a deterministic function of X , the IB curve cannot be explored and
other Lagrangians have been proposed to tackle this problem (e.g., the squared IB
Lagrangian: Lβsq

sq-IB(T ) = I(T ;Y ) − βsqI(X;T )2)). In this paper we (i) present
a general family of Lagrangians which allow for the exploration of the IB curve
in all scenarios; (ii) prove that if these Lagrangians are used, there is a one-to-one
mapping between the Lagrange multiplier and the desired compression rate r for
known IB curve shapes, hence, freeing from the burden of solving the optimiza-
tion problem for many values of the Lagrange multiplier.

1 INTRODUCTION

Let X and Y be two statistically dependent random variables with joint distribution p(x, y). The
information bottleneck (IB) (Tishby et al., 2000) investigates the problem of extracting the relevant
information from X for the task of predicting Y .

For this purpose, the IB defines a bottleneck variable T obeying the Markov chain Y ↔ X ↔ T
so that T acts as a representation of X . Tishby et al. (2000) define the relevant information as the
information the representation keeps from Y after the compression of X (i.e., I(T ;Y )), provided a
minimum level of compression (i.e, I(X;T ) ≤ r). Therefore, we select the representation which
yields the value of the IB curve that best fits our requirements.
Definition 1 (IB functional). Let X and Y be statistically dependent variables. Let ∆ be the set of
random variables T obeying the Markov condition Y ↔ X ↔ T . Then the IB functional is

FIB,max(r) = max
T∈∆
{I(T ;Y )} s.t. I(X;T ) ≤ r, (1)

where r ∈ [0,min {H(X), H(T )}].
Definition 2 (IB curve). The IB curve is the set of points defined by the solutions of FIB,max(r) for
varying values of r ∈ [0,min{H(X), H(T )}].
Definition 3 (Information plane). The plane is defined by the axes I(T ;Y ) and I(X;T ).

In practice, solving a constrained optimization problem such as the IB functional is difficult. Thus,
in order to avoid the non-linear constraints from the IB functional the IB Lagrangian is defined.
Definition 4 (IB Lagrangian). Let X and Y be statistically dependent variables. Let ∆ be the
set of random variables T obeying the Markov condition Y ↔ X ↔ T . Then we define the IB
Lagrangian as

1



Under review as a conference paper at ICLR 2020

LβIB(T ) = I(T ;Y )− βI(X;T ). (2)

Here β ∈ [0, 1] is the Lagrange multiplier which controls the trade-off between the information of
Y retained and the compression of X . Note we consider β ∈ [0, 1] because (i) for β ≤ 0 many
uncompressed solution such as T = X maximizes LβIB, and (ii) for β ≥ 1 the IB Lagrangian is non-
positive due to the data processing inequality (DPI) (Theorem 2.8.1 from Cover & Thomas (2012))
and trivial solutions like T = const are maximizers with LβIB = 0 (Kolchinsky et al., 2019).

We know the solutions of the IB Lagrangian optimization (if existent) are solutions of the IB func-
tional by the Lagrange’s sufficiency theorem (Theorem 5 in Appendix A of Courcoubetis (2003)).
Moreover, since the IB functional is concave (Lemma 5 of Gilad-Bachrach et al. (2003)) we know
they exist (Theorem 6 in Appendix A of Courcoubetis (2003)).

Therefore, the problem is usually solved by maximizing the IB Lagrangian with adaptations of
the Blahut-Arimoto algorithm (Tishby et al., 2000), deterministic annealing approaches (Tishby &
Slonim, 2001) or a bottom-up greedy agglomerative clustering (Slonim & Tishby, 2000) or its im-
proved sequential counterpart (Slonim et al., 2002). However, when provided with high-dimensional
random variables X such as images, these algorithms do not scale well and deep learning based
techniques, where the IB Lagrangian is used as the objective function, prevailed (Alemi et al., 2017;
Chalk et al., 2016; Kolchinsky et al., 2017).

Note the IB Lagrangian optimization yields a representation T with a given performance
(I(X;T ), I(T ;Y )) for a given β. However there is no one-to-one mapping between β and I(X;T ).
Hence, we cannot directly optimize for a desired compression level r but we need to perform several
optimizations for different values of β and select the representation with the desired performance
(e.g., Alemi et al. (2017)). The Lagrange multiplier selection is important since (i) sometimes even
choices of β < 1 lead to trivial representations such that p(T |X) = p(T ), and (ii) there exist some
discontinuities on the performance level w.r.t. the values of β (Wu et al., 2019).

Moreover, recently Kolchinsky et al. (2019) showed how in deterministic scenarios (such as many
classification problems where we say an input xi belongs to a single particluar class yi) the IB La-
grangian could not explore the IB curve. Particularly, they showed that multiple β yielded the same
performance level and that a single value of β could result in different performance levels. In order
to solve this issue, they introduced the squared IB Lagrangian, Lβsq

sq-IB = I(T ;Y ) − βsqI(X;T )2,
which is able to explore the IB curve in any scenario by optimizing for different values of βsq.

The main contributions of this article are:

1. We introduce a general family of Lagrangians (the convex IB Lagrangians) which are able
to explore the IB curve in any scenario for which the squared IB Lagrangian (Kolchinsky
et al., 2019) is a particular case of. More importantly, the analysis made for deriving this
family of Lagrangians can serve as inspiration for obtaining new Lagrangian families which
solve other objective functions with intrinsic trade-off such as the IB Lagrangian.

2. We show that in deterministic scenarios (and other scenarios where the IB curve shape is
known) one can use the convex IB Lagrangian to obtain a desired level of performance.
That is, there is a one-to-one mapping between the Lagrange multiplier used for the opt-
mization and the level of compression and informativeness obtained. Therefore, eliminat-
ing the need of multiple optimizations to select a suitable representation.

Furthermore, we provide some insight for explaining why there are discontinuities in the perfor-
mance levels w.r.t. the values of the Lagrange multipliers. In a classification setting, we connect
those discontinuities with the intrinsic clusterization of the representations when optimizing the IB
bottleneck objective.

The structure of the article is the following: in Section 2 we motivate the usage of the IB in super-
vised learning settings. Then, in Section 3 we outline the important results used about the IB curve
in deterministic scenarios. Later, in Section 4 we introduce the convex IB Lagrangian and explain
some of its properties. After that, we support our (proved) claims with some empirical evidence on
the MNIST dataset (LeCun et al., 1998) in Section 5. You can download the PyTorch (Paszke et al.,
2017) implementation at https://gofile.io/?c=9o41z6.
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2 THE IB IN SUPERVISED LEARNING

In this section we will first give an overview of supervised learning in order to later motivate the
usage of the information bottleneck in this setting.

2.1 SUPERVISED LEARNING OVERVIEW

In supervised learning we are given a dataset Dn = {xi, yi}ni=1 of n pairs of input features and task
outputs. In this case,X and Y are the random variables of the input features and the task outputs. We
assume xi and yi are sampled i.i.d. from the true distribution p(x, y) = p(y|x)p(x). The usual aim
of supervised learning is to use the dataset Dn to learn a particular conditional distribution qθ(ŷ|x)
of the task outputs given the input features, parametrized by θ, which is a good approximation of
p(y|x). We use Ŷ and ŷ to indicate the predicted task output random variable and its outcome. We
call a supervised learning task regression when Y is continuous-valued and classification when it is
discrete.

Usually supervised learning methods employ intermediate representations of the inputs before mak-
ing predictions about the outputs (e.g., hidden layers in neural networks (Chapter 5 from Bishop
(2006)) or transformations in a feature space through the kernel trick in kernel machines like SVMs
or RVMs (Sections 7.1 and 7.2 from Bishop (2006)). Let T be a possibly stochastic function of the
input featuresX with a parametrized conditional distribution qθ(t|x); then T obeys the Markov con-
dition Y ↔ X ↔ T . The mapping from the representation to the predicted task outputs is defined
by the parametrized conditional distribution qθ(ŷ|t). Therefore, in representation-based machine
learning methods the full Markov Chain is Y ↔ X ↔ T ↔ Ŷ . Hence, the overall estimation of the
conditional probability p(y|x) is given by the marginalization of the representations,

qθ(ŷ|x) =

∫
∀t
qθ(ŷ|t)qθ(t|x)dt. (3)

In order to achieve the goal of having a good estimation of the conditional probability distribution
p(y|x), we usually define an instantaneous cost function jθ(x, y) : X × Y → R. This serves as a
heuristic to measure the loss our algorithm (parametrized by θ) obtains when trying to predict the
realization of the task output y with the input realization x.

Clearly, we are interested in minimizing the expectation of the instantaneous cost function over all
the possible input features and task outputs, which we call the cost function. However, since we only
have a finite dataset Dn we have instead to minimize the empirical cost function.

Definition 5 (Cost function and empirical cost function). Let X and Y be the input features and
task output random variables and x ∈ X and y ∈ Y their realizations. Let also jθ(x, y) be the
instantaneous cost function, θ the parametrization of our learning algorithm, andDn = {xi, yi}ni=1
the given dataset. Then we define:

1. The cost function: J(θ) = Ep(X,Y )[jθ(x, y)] (4)

2. The emprical cost function: Ĵ(θ,Dn) =
1

n

n∑
i=1

jθ(xi, yi) (5)

The discrepancy between the normal and empirical cost functions is called the generalization gap
or generalization error (see Section 1 of Xu & Raginsky (2017), for instance) and intuitevely, the
smaller this gap is, the better our model generalizes (i.e., the better it will perform to new, unseen
samples in terms of our cost function).

Definition 6 (Generalization gap). Let J(θ) and Ĵ(θ,Dn) be the cost and the empirical cost func-
tions as defined in Definition 5. Then, the generalization gap is defined as

gen(θ,Dn) = J(θ)− Ĵ(θ,Dn), (6)

and it represents the error incurred when the selected distribution is the one parametrized by θ when
the rule Ĵ(θ,Dn) is used instead of J(θ) as the function to minimize.
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Ideally, we would want to minimize the cost function. Hence, we usually try to minimize the em-
pirical cost function and the generalization gap simultaneously. The modifications to our learning
algorithm which intend to reduce the generalization gap but not hurt the performance on the empir-
ical cost function are known as regularization.

2.2 WHY DO WE USE THE IB?

Definition 7 (Representation cross-entropy cost function). Let X and Y be two statistically de-
pendent variables with joint distribution p(x, y) = p(y|x)p(x). Let also T be a random variable
obeying the Markov condition Y ↔ X ↔ T and qθ(t|x) and qθ(y|t) be the encoding and decod-
ing distributions of our model, parametrized by θ. Finally, let C(p(z)||q(z)) = −Ep(Z)[log(q(z))]
be the cross entropy between two probability distributions p and q. Then, the cross-entropy cost
function is

JCE(θ) = Eqθ(T |X)p(X) [C(qθ(y|t)||qθ(ŷ|t))] = Ep(X,Y ) [jCE,θ(x, y)] , (7)

where qθ(y|t) =
∫
∀x p(y|x)qθ(t|x)p(x)/qθ(t)dx and jCE,θ(x, y) = C(qθ(t|x)||qθ(ŷ|t)) is the in-

stantaneous representation cross-entropy cost function.

The cross-entropy is a widely used cost function in classification tasks (e.g., Krizhevsky et al. (2012);
Shore & Gray (1982); Teahan (2000)) which has many interesting properties (Shore & Johnson,
1981). Moreover, it is known that minimizing the JCE(θ) maximizes the mutual information I(T ;Y )
(see Section 2 of Kolchinsky et al. (2019) or Section II A. of Vera et al. (2018)).
Definition 8 (Nuisance). A nuisance is any random variable which affects the observed data X but
is not informative to the task we are trying to solve. That is, Ξ is a nuisance for Y if Y ⊥ Ξ or
I(Ξ, Y ) = 0.

Similarly, we know that minimizing I(X;T ) minimizes the generalization gap for restricted classes
when using the cross-entropy cost function (Theorem 1 of Vera et al. (2018)), and when using
I(T ;Y ) directly as an objective to maximize (Theorem 4 of Shamir et al. (2010)). Furthermore,
Achille & Soatto (2018) in Proposition 3.1 upper bound the information of the input representations,
T , with nuisances that affect the observed data, Ξ, with I(X;T ). Therefore minimizing I(X;T )
helps generalization by not keeping useless information of Ξ in our representations.

Thus, jointly maximizing I(T ;Y ) and minimizing I(X;T ) is a good choice both in terms of per-
formance in the available dataset and in new, unseen data, which motivates studies on the IB.

3 THE INFORMATION BOTTLENECK IN DETERMINISTIC SCENARIOS

Kolchinsky et al. (2019) showed that when Y is a deterministic function of X (i.e., Y = f(X)), the
IB curve is piecewise linear. More precisely, it is shaped as stated in Proposition 1.
Proposition 1 (The IB curve is piecewise linear in deterministic scenarios). Let X be a random
variable and Y = f(X) be a deterministic function of X . Let also T be the bottleneck variable that
solves the IB functional. Let us assume H(X) > H(T ) and H(X) > H(Y ). Then the IB curve in
the information plane is defined by the following equation:{

I(T ;Y ) = I(X;T ) if I(X;T ) ∈ [0, H(Y ))
I(T ;Y ) = H(Y ) if I(X;T ) ∈ [H(Y ), H(T )]

(8)

if H(T ) > H(Y ), and I(T ;Y ) = I(X;T ) for I(X;T ) ∈ [0, H(T )] otherwise.

Furthermore, they showed that the IB curve could not be explored by optimizing the IB Lagrangian
for multiple β because the curve was not strictly concave. That is, there was not a one-to-one
relationship between β and the performance level.
Theorem 1 (In deterministic scenarios, the IB curve cannot be explored using the IB La-
grangian). Let X be a random variable and Y = f(X) be a deterministic function of X . Let
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also T be the bottleneck variable that solves arg maxT∈∆{L
β
IB} with ∆ the set of r.v. obeying the

Markov condition Y ↔ X ↔ T . Then:

1. Any solution T ∈ ∆ s.t. I(X;T ) ∈ [0,min{H(Y ), H(T )}) and I(T ;Y ) = I(X;T )

solves arg maxT∈∆{L
β
IB} for β = 1.

2. Any solution T ∈ ∆ s.t. I(X;T ) ∈ [H(Y ), H(T )] and I(T ;Y ) = H(Y ) solves
arg maxT∈∆{L

β
IB} for β = 0 if H(T ) ≥ H(Y ).

3. The solution of I(X;T ) = I(T ;Y ) = H(Y ) is achieved ∀β ∈ (0, 1). Furthermore, this is
the only solution β ∈ (0, 1) yields if H(T ) ≥ H(Y ).

4 THE CONVEX IB LAGRANGIAN

4.1 EXPLORING THE IB CURVE

Clearly, a situation like the one depicted in Theorem 1 is not desirable, since we cannot aim for
different levels of compression or performance. For this reason, we generalize the effort from
Kolchinsky et al. (2019) and look for families of Lagrangians which are able to explore the IB
curve. Inspired by the squared IB Lagrangian, Lβsq

sq-IB(T ) = I(T ;Y )− βsqI(X;T )2, we look at the
conditions a function of I(X;T ) requires in order to be able to explore the IB curve. In this way,
we realize that any monotonically increasing and strictly convex function will be able to do so, and
we call the family of Lagrangians with these characteristics the convex IB Lagrangians, due to the
nature of the introduced function.
Theorem 2 (Convex IB Lagrangians). Let ∆ be the set of r.v. T obeying the Markov condition
Y ↔ X ↔ T . Then, if h is a monotonically increasing and strictly convex function, then the IB
curve can always be recovered by the solutions of arg maxT∈∆{L

βh
IB,h(T )}, with

LβhIB,h(T ) = I(T ;Y )− βhh(I(X;T )). (9)

That is, for each point (I(X;T ), I(T ;Y )) s.t. dI(T ;Y )/dI(X;T ) > 0 there is a unique βh for
which maximizing LβhIB,h(T ) achieves this solution. Furthermore, βh is strictly decreasing w.r.t.

I(X;T ). We call LβhIB,h(T ) the convex IB Lagrangian.

The proof of this theorem can be found on Appendix A. Furthermore, by exploiting the IB curve
duality (Lemma 10 of Gilad-Bachrach et al. (2003)) we were able to derive other families of La-
grangians which allow for the exploration of the IB curve (Appendix E).
Remark 1. Clearly, we can see how if h is the identity function (i.e., h(I(X;T )) = I(X;T )) then
we end up with the normal IB Lagrangian. However, since the identity function is not strictly convex,
it cannot ensure the exploration of the IB curve.

4.2 AIMING FOR A SPECIFIC COMPRESSION LEVEL

LetBh denote the domain of Lagrange multipliers βh for which we can find solutions in the IB curve
with the convex IB Lagrangian. Then the convex IB Lagrangians do not only allow us to explore
the IB curve with different βh. They also allow us to identify the specific βh that obtains a given
point (I(X;T ), I(T ;Y )), provided we know the IB curve in the information plane. Conversely,
the convex IB Lagrangian allows to find the specific point (I(X;T ), I(T ;Y )) that is obtained by a
given βh.
Proposition 2 (Bijective mapping between IB curve point and convex IB Lagrange multiplier).
Let the IB curve in the information plane be known; i.e., I(T ;Y ) = fIB(I(X;T )) is known. Then
there is a bijective mapping from Lagrange multipliers βh ∈ Bh\{0} from the convex IB Lagrangian
to points in the IB curve (I(X;T ), fIB(I(X;T )). Furthermore, these mappings are:

βh =
dfIB(I(X;T ))

dI(X;T )

1

h′(I(X;T ))
and I(X;T ) = (h′)−1

(
dfIB(I(X;T ))

dI(X;T )

1

βh

)
, (10)
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where h′ is the derivative of h and (h′)−1 is the inverse of h′.

It is interesting since in deterministic scenarios we know the shape of the IB curve (Theorem 1) and
since the convex IB Lagrangians allow for the exploration of the IB curve (Theorem 2). A proof for
Proposition 2 can be found in Appendix B.
Remark 2. The inclusion of the function h is what allows us to find the bijection between βh and
I(X;T ). The previous definition from Tishby et al. (2000) of β as d(I(T ;Y ))/dI(X;T ) did not.

A direct result derived from this proposition is that we know the domain of Lagrange multipliers,Bh,
which allow for the exploration of the IB curve if the shape of the IB curve is known. Furthermore,
if the shape is not known we can at least bound that range.
Corollary 1 (Domain of convex IB Lagrange multiplier with known IB curve shape). Let the
IB curve in the information plane be I(T ;Y ) = fIB(I(X;T )) and let Hmax = min{H(T ), H(Y )}.
Let also I(X;T ) = rmax be the minimum mutual information s.t. fIB(rmax) = Hmax (i.e., rmax =
minr{fIB(r) = Hmax}). Then the range of Lagrange multipliers that allow the exploration of the IB
curve with the convex IB Lagrangian is Bh = [βh,min, βh,max], with

βh,min = lim
r→r−max

{
f ′IB(r)

h′(r)

}
≥ 0 and βh,max = lim

r→0+

{
f ′IB(r)

h′(r)

}
, (11)

where f ′IB(r) and h′(r) are the derivatives of fIB(I(X;T )) and h(I(X;T )) w.r.t. I(X;T ) evaluated
at r respectively.
Corollary 2 (Domain of convex IB Lagrange multiplier bound). The range of the Lagrange mul-
tipliers that allow the exploration of the IB curve is contained by [0, βh,top] which is also contained
by [0, β+

h,top], where

βh,top =
(infΩx⊂X {β0(Ωx)})−1

limr→0+ {h′(r)}
, and β+

h,top =
1

limr→0+ {h′(r)}
, (12)

h′(r) is the derivative of h(I(X;T )) w.r.t. I(X;T ) evaluated at r, X is the set of possible realiza-
tions of X and β0

1 and Ωx are defined as in (Wu et al., 2019). That is, Bh ⊆ [0, βh,top] ⊆ [0, β+
h,top].

Corollaries 1 and 2 allow us to reduce the range search for β when we want to explore the IB
curve. Practically, infΩx⊂X {β0(Ωx)} might be difficult to calculate so Wu et al. (2019) derived an
algorithm to approximate it. However, we still recommend 1 for simplicity. The proofs for both
corollaries are found in Appendices C and D.

5 EXPERIMENTAL SUPPORT

In order to showcase our claims we use the MNIST dataset (LeCun et al., 1998). We simply modify
the nonlinear-IB method (Kolchinsky et al., 2017), which is a neural network that minimizes the
cross-entropy while also minimizing a differentiable kernel-based estimate of I(X;T ) (Kolchin-
sky & Tracey, 2017). Then we use this technique to maximize a lower bound on the convex IB
Lagrangians by applying the functions h to the I(X;T ) estimate.

For a fair comparison, we use the same network architecture as that in (Kolchinsky et al., 2017):
First, a stochastic encoder 2 T = fθ,enc(X) + W with W ∼ N (0, I2) such that T ∈ R2. Here
fθ,enc is a three fully-conected layer encoder with 800 ReLU units on the first two layers and 2 linear
units on the last layer. Second, a deterministic decoder qθ(Ŷ |T ) = fθ,dec(T ). Here, fθ,dec is a
fully-conected 800 ReLU unit layers followed by an output layer with 10 softmax units. For further
details about the experiment setup and additional results for different values of α and η please refer
to Appendix F.

1Note in (Wu et al., 2019) they consider the dual problem (see Appendix E) so when they refer to β−1 it
translates to β in this article.

2The encoder needs to be stochastic to (i) ensure a finite and well-defined mutual information (Kolchinsky
et al., 2019; Amjad & Geiger, 2019) and (ii) make gradient-based optimization methods over the IB Lagrangian
useful (Amjad & Geiger, 2019).
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Figure 1: The top row shows the results for the power IB Lagrangian with α = 1, and the bottom
row for the exponential IB Lagrangian with η = 1. In each row, from left to right it is shown
(i) the information plane, where the region of possible solutions of the IB problem is shadowed
in light orange and the information-theoretic limits are the dashed orange line; (ii) I(T ;Y ) as a
function of βh; and (iii) the compression I(X;T ) as a function of βh. In all plots the red crosses
joined by a dotted line represent the values computed with the training set, the blue dots the values
computed with the validation set and the green stars the theoretical values computed as dictated by
Proposition2. Moreover, in all plots it is indicated H(Y ) = log2(10) in a dashed, orange line. All
values are shown in bits.
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=0.061 =0.082

=0.102 =0.245

(b) Example of clusters for different βpow.

Figure 2: Depiction of the clusterization behavior3of the bottleneck variable for the power IB La-
grangian with α = 1.

In Figure 1 we show our results for two particularizations of the convex IB Lagrangians:

1. the power IB Lagrangians4: Lβpow
IB,pow(T, α) = I(T ;Y )− βpowI(X;T )(1+α), α > 0 .

2. the exponential IB Lagrangians: Lβexp
IB,exp(T, η) = I(T ;Y )− βexp exp(ηI(X;T )), η > 0.

We can clearly see how both Lagrangians are able to explore the IB curve (first column from Figure
1) and how the theoretical performance trend of the Lagrangians matches the experimental results
(second and third columns from Figure 1). There are small mismatches between the theoretical and
experimental performance. This is because using the nonlinear-IB, as stated by Kolchinsky et al.
(2019), does not guarantee that we find optimal representations due to factors like: (i) innacurate

3The clusters were obtained using the DBSCAN algorithm (Ester et al., 1996; Schubert et al., 2017).
4Note when α = 1 we have the squared IB functional from Kolchinsky et al. (2019).
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estimation of I(X;T ), (ii) restrictions on the structure of T , (iii) use of an estimation of the decoder
instead of the real one and (iv) the typical non-convex optimization issues that arise with gradient-
based methods. The main difference comes from the discontinuities in performance for increasing
β, which cause is still unknown (cf. Wu et al. (2019)). It is known, however, that the bottleneck
variable performs an intrinsic clusterization in classification tasks (see, for instance (Kolchinsky
et al., 2017; 2019; Alemi et al., 2018) or Figure 2b). We realized how this clusterization matches
with the quantized performance levels observed (e.g., compare Figure 2a with the top center graph in
Figure 1); with maximum performance when the number of clusters is equal to the cardinality of Y
and reducing performance with a reduction of the number of clusters. We do not have a mathematical
proof for the exact relationship between these two phenomena; however, we agree with Wu et al.
(2019) that it is an interesting matter and hope this realization serves as motivation to derive new
theory.

To sum up, in order to achieve a desired level of performance with the convex IB Lagrangian as an
objective one should:

1. In a deterministic or close to deterministic setting (see ε-deterministic definition in Kolchin-
sky et al. (2019)): Use the adequate βh for that performance using Proposition 2. Then if
the perfomance is lower than desired (i.e., we are placed in the wrong performance plateau),
gradually reduce the value of βh until reaching the previous performance plateau.

2. In a stochastic setting: Draw the IB curve with multiple values of βh on the range defined
by Corollary 2 and select the representations that best fit their interests.

I(X; T)

I(T
;Y

)

= 0.0

= 0.083
= 0.167= 0.25= 0.333

Figure 3: Example of value convergence with
the exponential IB Lagrangian with η = 3. We
show the intersection of the isolines of Lβexp

IB,exp

for different βexp ∈ Bexp
5with the IB curve.

In practice, there are different criterions for choos-
ing the function h. For instance, the exponential
IB Lagrangian could be more desirable than the
power IB Lagrangian when we want to draw the
IB curve since it has a finite range of βh. This is
Bh = [(η exp(ηHmax))−1, η−1] for the exponen-
tial IB Lagrangian vs. Bh = [((1+α)Hα

max)−1,∞)
for the power IB Lagrangian. Furthermore, there is
a trade-off between (i) how much the selected h
function ressembles the identity (e.g., with α or η
close to zero), since it will suffer from similar prob-
lems as the original IB Lagrangian; and (ii) how
fast it grows (e.g., higher values of α or η), since it
will suffer from value convergence; i.e., optimizing
for separate values of βh will achieve similar lev-
els of performance (Figure 3). Please, refer to Ap-
pendix G for a more thorough explanation of this
phenomenon.

6 CONCLUSION

The information bottleneck is a widely used and studied technique. However, it is known that the
IB Lagrangian cannot be used to achieve varying levels of performance in deterministic scenarios.
Moreover, in order to achieve a particular level of performance multiple optimizations with different
Lagrange multipliers must be done to draw the IB curve and select the best traded-off representation.

In this article we introduced a general family of Lagrangians which allow to (i) achieve varying
levels of performance in any scenario, and (ii) pinpoint a specific lagrange multiplier βh to optimize
for a specific performance level in known IB curve scenarios (e.g., deterministic). Furthermore,
we showed the βh domain when the IB curve is known and a βh domain bound for exploring the
IB curve when it is unkown. This way we can reduce and/or avoid multiple optimizations and,
hence, reduce the computational effort for finding well traded-off representations. Finally, (iii) we
provided some insight to the discontinuities on the performance levels w.r.t. the Lagange multipliers
by connecting those with the intrinsic clusterization of the bottleneck variable.

5Bh ≈ [1.56 · 10−5, 3−1] using Corollary 1.
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A PROOF OF THEOREM 2

Proof. We start the proof by remembering the optimization problem at hand (Definition 1):

FIB,max(r) = max
T∈∆
{I(T ;Y )} s.t. I(X;T ) ≤ r (13)

We can modify the optimization problem by

max
T∈∆
{I(T ;Y )} s.t. h(I(X;T )) ≤ h(r) (14)

iff h is a monotonically non-decreasing function since otherwise h(I(X;T )) ≤ h(r) would not
hold necessarily. Now, let us assume ∃T ∗ ∈ ∆ and β∗h s.t. T ∗ maximizes Lβ

∗
h

IB,h(T ) over all T ∈ ∆,
and I(X;T ∗) ≤ r. Then, we can operate as follows:

max
T∈∆

h(I(X;T ))≤h(r)

{I(T ;Y )} = max
T∈∆

h(I(X;T ))≤h(r)

{I(T ;Y )− β∗h(h(I(X;T ))− h(r) + ξ)} (15)

≤ max
T∈∆
{I(T ;Y )− β∗h(h(I(X;T ))− h(r) + ξ)} (16)

= I(T ∗;Y )− β∗h(h(I(X;T ∗)− h(r) + ξ) = I(T ∗;Y ). (17)

Here, the equality from equation (15) comes from the fact that since I(X;T ) ≤ r, then ∃ξ ≥ 0 s.t.
h(I(X;T ))− h(r) + ξ = 0. Then, the inequality from equation (16) holds since we have expanded

10
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the optimization search space. Finally, in equation (17) we use that T ∗ maximizes Lβ
∗
h

IB,h(T ) and that
I(X;T ∗) ≤ r.

Now, we can exploit that h(r) and ξ do not depend on T and drop them in the maximization in
equation (16). We can then realize we are maximizing over Lβ

∗
h

IB,h(T ); i.e.,

arg max
T∈∆

h(I(X;T ))≤h(r)

{I(T ;Y )} ≤ arg max
T∈∆

{I(T ;Y )− β∗h(h(I(X;T ))− h(r) + ξ)} (18)

= arg max
T∈∆

{I(T ;Y )− β∗hh(I(X;T ))} = arg max
T∈∆

{Lβ
∗
h

IB,h(T )}. (19)

Therefore, since I(T ∗;Y ) satisfies both the maximization with T ∗ ∈ ∆ and the constraint
I(X;T ∗) ≤ r, maximizing Lβ

∗
h

IB,h(T ) obtains FIB,max(r).

Now, we know if such β∗h exists, then the solution of the Lagrangian will be a solution for FIB,max(r).
Then, if we consider Theorem 6 from the Appendix of Courcoubetis (2003) and consider the maxi-
mization problem instead of the minimization problem, we know if both I(T ;Y ) and −h(I(X;T ))
are concave functions, then a set of Lagrange multipliers S∗h exists with these conditions. We can
make this consideration because f is concave if −f is convex and max{f} = min{−f}. We know
I(T ;Y ) is a concave function of T for T ∈ ∆ (Lemma 5 of Gilad-Bachrach et al. (2003)) and
I(X;T ) is convex w.r.t. T given p(x) is fixed (Theorem 2.7.4 of Cover & Thomas (2012)). Thus, if
we want −h(I(X;T )) to be concave we need h to be a convex function.

Finally, we will look at the conditions of h so that for every point (I(X;T ), I(T ;Y )) in the IB
curve, there exists a unique β∗h s.t. Lβ

∗
h

IB,h(T ) is maximized. That is, the conditions of h s.t. |S∗h| = 1.
For this purpose we will look at the solutions of the Lagrangian optimization:

dLβhIB,h(T )

dT
=
d(I(T ;Y )− βhh(I(X;T )))

dT
=
dI(T ;Y )

dT
− βh

dh(I(X;T ))

dI(X;T )

dI(X;T )

dT
= 0 (20)

Now, if we integrate both sides of equation (20) over all T ∈ ∆ we obtain

βh =
dI(T ;Y )

dI(X;T )

(
dh(I(X;T ))

dI(X;T )

)−1

=
β

h′(I(X;T ))
, (21)

where β is the Lagrange multiplier from the IB Lagrangian (Tishby et al., 2000) and h′(I(X;T )) is
dh(I(X;T ))
dI(X;T ) . Also, if we want to avoid indeterminations of βh we need h′(I(X;T )) not to be 0. Since

we already imposed h to be monotonically non-decreasing, we can solve this issue by strengthening
this condition. That is, we will require h to be monotonically increasing.

We would like βh to be continuous, this way there would be a unique βh for each value of I(X;T ).
We know β is a non-increasing function of I(X;T ) (Lemma 6 of Gilad-Bachrach et al. (2003)).
Hence, if we want βh to be a strictly decreasing function of I(X;T ), we will require h′ to be
an strictly increasing function of I(X;T ). Therefore, we will require h to be a strictly convex
function.

Thus, if h is an strictly convex and monotonically increasing function, for each point
(I(X;T ), I(T ;Y )) in the IB curve s.t. dI(T ;Y )/dI(X;T ) > 0 there is a unique βh for which
maximizing LβhIB,h(T ) achieves this solution.

11
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B PROOF OF PROPOSITION 2

Proof. In Theorem 2 we showed how each point of the IB curve (I(X;T ), I(T ;Y )) can be found
with a unique βh maximizing LβhIB,h. Therefore since we also proved LβhIB,h is strictly concave w.r.t. T
we can find the values of βh that maximize the Lagrangian for fixed I(X;T ).

First, we look at the solutions of the Lagrangian maximization:

dLβhIB,h(T )

dT
=
d(fIB(I(X;T ))− βhh(I(X;T )))

dT
=
dfIB(I(X;T ))

dT
−βh

dh(I(X;T ))

dI(X;T )

dI(X;T )

dT
= 0.

(22)

Then as before we can integrate at both sides for all T ∈ ∆ and solve for βh:

βh =
dfIB(I(X;T ))

dI(X;T )

1

h′(I(X;T ))
. (23)

Moreover, since h is a strictly convex function its derivative h′ is strictly decreasing. Hence, h′ is an
invertible function (since a strictly decreasing function is bijective and a function is invertible iff it
is bijective by definition). Now, if we consider βh > 0 to be known and I(X;T ) to be the unknown
we can solve for I(X;T ) and get:

I(X;T ) = (h′)−1

(
dfIB(I(X;T ))

dI(X;T )

1

βh

)
. (24)

Note we require βh not to be 0 so the mapping is defined.

C PROOF OF COROLLARY 1

Proof.

Lemma 1. Let LβhIB,h(T ) be a convex IB Lagrangian, then maxT∈∆{L0
IB,h(T )} =

min{H(T ), H(Y )}.

Proof. If we write L0
IB,h(T ) = I(T ;Y ), we see that maximizing this Lagrangian is directly max-

imizing I(T ;Y ). We know I(T ;Y ) is a concave function of T for T ∈ ∆ (Theorem 2.7.4 from
Cover & Thomas (2012)); hence it has a maximum. We also know I(T ;Y ) = H(T )−H(T |Y ) =
H(Y ) − H(Y |T ); therefore I(T ;Y ) ≤ H(T ) and I(T ;Y ) ≤ H(Y ). Moreover, we know both
H(T ) and H(Y ) can be achieved if, for example, T is a deterministic function of Y or Y is a
deterministic function of T respectively. Thus, maxT∈∆{L0

IB,h(T )} = min{H(T ), H(Y )}.

For βh = 0 we know maximizingLIB,h(T ) can obtain the point in the IB curve (rmax, Hmax) (Lemma
1).

Moreover, we know that for every point (I(X;T ), fIB(I(X;T ))), ∃!βh s.t. max{LβhIB,h(T )} achieves
that point (Theorem 2). Thus, ∃!βh,min s.t. limr→r−max

(r, fIB(r)) is achieved. From Proposition 2 we
know this βh,min is given by

βh,min = lim
r→r−max

{
f ′IB(r)

h′(r)

}
. (25)

Since we know fIB(I(X;T )) is a concave non-decreasing function in (0, rmax) (Lemma 5 of Gilad-
Bachrach et al. (2003)) we know it is continuous in this interval. In addition we know βh is strictly
decreasing w.r.t. I(X;T ) (Theorem 2). Furthermore, by definition of rmax and knowing I(T ;Y ) ≤
min{H(T ), H(Y )} we know f ′IB(r) = 0, ∀r > rmax. Therefore, we cannot ensure the exploration
of the IB curve for β′h s.t. 0 < β′h < βh,min.

12
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Then, since h is a strictly increasing function in (0, rmax), h′ is positive in that interval. Hence,
taking into account βh is strictly decreasing we can find a maximum βh when I(X;T ) approaches
to 0. That is,

βh,max = lim
r→0+

{
f ′IB(r)

h′(r)

}
, (26)

D PROOF OF COROLLARY 2

Proof. If we use Corollary 1, it is straightforward to see that βh ⊆ [L−, L+] if βh,min ≥ L− and
βh,max ≤ L+ for all IB curves fIB and functions h. Therefore, we look at a domain bound dependent
on the function choice. That is, if we can find βmin ≤ f ′IB(r) and βmax ≥ f ′IB(r) for all IB curves and
all values of r, then

Bh ⊆

[
βmin

limr→r−max
{h′(r)}

,
βmax

limr→0+{h′(r)}

]
. (27)

The region for all possible IB curves regardless of the relationship between X and Y is depicted in
Figure 4. The hard limits are imposed by the DPI (Theorem 2.8.1 from Cover & Thomas (2012))
and the fact that I(A;B) ≤ min{H(A), H(B)} since I(A;B) = H(A)−H(A|B) (Theorem 2.4.1
from Cover & Thomas (2012)), and that the entropy is non-negative (Lemma 2.1.1 from Cover &
Thomas (2012)). Hence, a minimum and maximum values of f ′IB are given by the minimum and
maximum values of the slope of the Pareto frontier. Which means

Bh ⊆
[
0,

1

limr→0+{h′(r)}

]
. (28)

Note 0/(limr→r−max
{h′(r)}) = 0 since h is monotonically increasing and, thus, h′ will never be 0.

I(X; T)

I(T
;Y

)  I(X; Y)

 H(Y)

 H(T)

I(X; Y) H(Y) H(T) H(X)

 I(X; T) I(T; Y)

Figure 4: Graphical representation of the IB curve in the information plane. Dashed lines in orange
represent tight bounds confining the region (in light orange) of possible IB curves (delimited by the
red line, also known as the Pareto frontier). Dashed lines in black rerpesent looser bounds. Black
dotted lines are informative values. In blue we show an example of a possible IB curve confining
a region (in darker orange) of an IB curve which does not achieve the Pareto frontier. Finally, the
yellow star represents the point where the representation keeps the same information about the input
and the output.
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Finally, we can tighten the bound using the results from Wu et al. (2019), where, in The-
orem 2, they showed the slope of the Pareto frontier could be bounded in the origin by
f ′IB ≤ (infΩx⊂X {β0(Ωx)})−1. Finally, we know that in deterministic classification tasks
infΩx⊂X {β0(Ωx)} = 1, which aligns with Kolchinsky et al. (2019) and what we can observe from
Figure 4. Therefore,

Bh ⊆
[
0,

(infΩx⊂X {β0(Ωx)})−1

limr→0+{h′(r)}

]
⊆
[
0,

1

limr→0+{h′(r)}

]
. (29)

E OTHER LAGRANGIAN FAMILIES

We can use the same ideas we used for the convex IB Lagrangian to formulate new families of
Lagrangians that allow the exploration of the IB curve. For that we will use the duality of the IB
curve (Lemma 10 of (Gilad-Bachrach et al., 2003)). That is:
Definition 9 (IB dual functional). Let X and Y be statistically dependent variables. Let also ∆
be the set of random variables T obeying the Markov condition Y ↔ X ↔ T . Then the IB dual
functional is

FIB,min(i) = min
T∈∆
{I(X;T )} s.t. I(T ;Y ) ≥ i, (30)

where i ∈ [0,min {H(T ), H(Y )}].
Theorem 3 (IB curve duality). Let the IB curve be defined by the solutions of FIB,max(r) for varying
r ∈ [0,min{H(X), H(T )}. Then,

∀r∃i s.t. (r, FIB,max(r)) = (FIB,min(i), i) (31)

and

∀i∃r s.t. (FIB,min(i), i) = (r, FIB,max(r)). (32)

From this definition it follows that minimizing the dual IB Lagrangian, Lβdual
IB,dual(T ) = I(X;T ) −

βdualI(T ;Y ), for βdual = β−1 is equivalent to maximizing the IB Lagrangian. In fact, the original
Lagrangian for solving the problem was defined this way (Tishby et al., 2000). We decided to use
the maximization version because the domain of useful β is bounded while it is not for βdual.

Following the same reasoning as we did in the proof of Theorem 2, we can ensure the IB curve can
be explored if:

1. We minimize LβgIB,g(T ) = I(X;T )− βgg(I(T ;Y )).

2. We maximize Lβg,dual
IB,g,dual(T ) = g(I(T ;Y ))− βg,dualI(X;T ).

3. We minimize Lβg,dual
IB,h,dual(T ) = h(I(X;T ))− βg,dualI(T ;Y ).

Here, h is a monotonically increasing strictly convex function, g is a monotonically increasing
strictly concave function, and βg, βg,dual, βh,dual are the Lagrange multipliers of the families of La-
grangians defined above.

In a similar manner, one could obtain relationships between the Lagrange multipliers of the IB
Lagrangian and the convex IB Lagrangian with these Lagrangian families. Also, one could find a
range of values for these Lagrangians to allow for the IB curve exploration and define a bijective
mapping between their Lagrange multipliers and the IB curve. However, (i) as mentioned in Section
2.2, I(T ;Y ) is particularly interesting to maximize without transformations because of its meaning.
Moreover, (ii) like βdual, the domain of useful βg and βh,dual is not upper bounded. These two
reasons make these other Lagrangians less preferable. We only include them here for completeness.
Nonetheless, we encourage the curiours reader to explore these families of solutions too.
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F EXPERIMENTAL SETUP DETAILS

In order to generate the empirical support results from Section 5 we used the nonlinear IB (Kolchin-
sky et al., 2017) on the MNIST dataset (LeCun et al., 1998). This dataset contains 60,000 training
samples and 10,000 testing samples of hand-written digits. The samples are 28x28 pixels and are
labeled from 0 to 9; i.e., X = R784 and Y = {0, 1, ..., 9}.
As in (Kolchinsky et al., 2019) we trained the neural network with the Adam optimization algorithm
(Kingma & Ba, 2014) with a learning rate of 10−4 but we introduced a 0.6 decay rate every 10
iterations. After talking with the authors of the nonlinear IB (Kolchinsky et al., 2017), we decided
to estimate the gradients of both Iθ(X;T ) and the cross entropy with the same mini-batch of 128
samples. Moreover, we did not learn the covariance of the mixture of Gaussians used for the kernel
density estimation of Iθ(X;T ) and we set it to (exp(−1))2. We trained for 100 epochs. You can
find the PyTorch (Paszke et al., 2017) implementation at https://gofile.io/?c=9o41z6.

Then, we used the DBSCAN algorithm (Ester et al., 1996; Schubert et al., 2017) for clustering.
Particularly, we used the scikit-learn (Pedregosa et al., 2011) implementation with ε = 0.3 and
min samples = 50.

In Figure 5 we show how the IB curve can be explored with different values of α for the power IB
Lagrangian and in Figure 6 for different values of η and the exponential IB Lagrangian.

Finally, in Figure 7 we show the clusterization for the same values of α and η as in Figures 5 and 6.
In this way the connection between the performance discontinuities and the clusterization is more
evident. Furthermore, we can also observe how the exponential IB Lagrangian maintains better the
theoretical performance than the power IB Lagrangian (see Appendix G for an explanation of why).

G GUIDELINES FOR SELECTING A PROPER FUNCTION IN THE CONVEX IB
LAGRANGIAN

When chossing the right h function, it is important to find the right balance between avoiding value
convergence and aiming for strong convexity. Practically, this balance is found by looking at how
much faster h grows w.r.t. the identity function.

G.1 AVOIDING VALUE CONVERGENCE

In order to explain this issue we are going to use the example of classification on MNIST (LeCun
et al., 1998), where H(Y ) = log2(10), and again the power and exponential IB Lagrangians.

If we use Proposition 2 on both Lagrangians we obtain the bijective mapping between their Lagrange
multipliers and a certain level of compression in the classification setting:

1. Power IB Lagrangian: βpow = ((1 + α)I(X;T )α)
−1 and I(X;T ) = ((1 + α)βpow)

− 1
α .

2. Exponential IB Lagrangian: βexp = (η exp(ηI(X;T )))
−1 and I(X;T ) = − log(ηβexp)/η.

Hence, we can simply plot the curves of I(X;T ) vs. βh for different hyperparameters α and η (see
Figure 8). In this way we can observe how increasing the growth of the function (e.g., increasing α
or η in this case) too much provokes that many different values of βh converge to very similar values
of I(X;T ). This is an issue both for drawing the curve (for obvious reasons) and for aiming for a
specific performance level. Due to the nature of the estimation of the IB Lagrangian, the theoretical
and practical value of βh that yield a specific I(X;T ) may vary slightly (see Figure 1). Then if
we select a function with too high growth, a small change in βh can result in a big change in the
performance obtained.

G.2 AIMING FOR STRONG CONVEXITY

Definition 10 (µ-Strong convexity). If a function f(r) is twice continuous differentiable and its
domain is confined in the real line, then it is µ-strong convex if f ′′(r) ≥ µ ≥ 0 ∀r.
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Figure 5: Results for the power IB Lagrangian with α = {0.5, 1, 2}, from top to bottom. In each
row, from left to right it is shown (i) the information plane, where the region of possible solutions
of the IB problem is shadowed in light orange and the information-theoretic limits are the dashed
orange line; (ii) I(T ;Y ) as a function of βh; and (iii) the compression I(X;T ) as a function of βh.
In all plots the red crosses joined by a dotted line represent the values computed with the training set,
the blue dots the values computed with the validation set and the green stars the theoretical values
computed as dictated by Proposition 2. Moreover, in all plots it is indicated H(Y ) = log2(10) in a
dashed, orange line. All values are shown in bits.

Experimentally, we observed when the growth of our function h(r) is small in the domain of interest
r ∈ [0,min{H(X), H(T )}] the convex IB Lagrangian does not perform well. Later we realized that
this was closely related with the strength of the convexity of our function.

In Theorem 2 we imposed the function h to be strictly convex to enforce having a unique βh for
each value of I(X;T ). Hence, since in practice we are not exactly computing the Lagrangian but an
estimation of it (e.g., with the nonlinear IB (Kolchinsky et al., 2017)) we require strong convexity in
order to be able to explore the IB curve.

We now look at the second derivative of the power and exponential function: h′′(r) = (1+α)αrα−1

and h′′(r) = η2 exp(ηr) respectivelly. Here we see how both functions are inherently 0-strong
convex for r > 0 and α, η > 0. However, values of α < 1 and η < 1 could lead to low µ-strong
convexity in certain domains of r. Particularly, the case of α < 1 is dangerous because the function
approaches 0-strong convexity as r increases, so the power IB Lagrangian performs poorly when
low α are used to find high performances.
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Figure 6: Results for the exponential IB Lagrangian with η = {log(2), 1, 1.5}, from top to bottom.
In each row, from left to right it is shown (i) the information plane, where the region of possible
solutions of the IB problem is shadowed in light orange and the information-theoretic limits are
the dashed orange line; (ii) I(T ;Y ) as a function of βh; and (iii) the compression I(X;T ) as a
function of βh. In all plots the red crosses joined by a dotted line represent the values computed
with the training set, the blue dots the values computed with the validation set and the gren stars
the theoretical values computed as dictated by Proposition 2. Moreover, in all plots it is indicated
H(Y ) = log2(10) in a dashed, orange line. All values are shown in bits.
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Figure 7: Depiction of the clusterization behavior of the bottleneck variable. In the first row, from
left to right, the power IB Lagrangian with different values of α = {0.5, 1, 2}. In the second row,
from left to right, the exponential IB Lagrangian with different values of η = {log(2), 1, 1.5}.
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Figure 8: Theoretical bijection between I(X;T ) and different α from βh,min to 1.5 in the power IB
Lagrangian (top), and different η in the domain Bh in the exponential IB Lagrangian (bottom).
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