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ABSTRACT

With the prevalence of machine learning services, crowdsourced data containing
sensitive information poses substantial privacy challenges. Existing work focusing
on protecting against membership inference attacks under the rigorous framework
of differential privacy are vulnerable to attribute inference attacks. In light of the
current gap between theory and practice, we develop a novel theoretical framework
for privacy-preservation under the attack of attribute inference. Under our frame-
work, we propose a minimax optimization formulation to protect the given attribute
and analyze its privacy guarantees against arbitrary adversaries. On the other hand,
it is clear that privacy constraint may cripple utility when the protected attribute
is correlated with the target variable. To this end, we also prove an information-
theoretic lower bound to precisely characterize the fundamental trade-off between
utility and privacy. Empirically, we extensively conduct experiments to corrobo-
rate our privacy guarantee and validate the inherent trade-offs in different privacy
preservation algorithms. Our experimental results indicate that the adversarial
representation learning approaches achieve the best trade-off in terms of privacy
preservation and utility maximization.

1 INTRODUCTION

With the growing demand for machine learning systems provided as services, a massive amount of
data containing sensitive information, such as race, income level, age, etc., are generated and collected
from local users. This poses a substantial privacy challenge and it has become an imperative object of
study in machine learning (Abadi et al., 2016; Gilad-Bachrach et al., 2016), computer vision (Chou
et al., 2018; Wu et al., 2018), healthcare (Beaulieu-Jones et al., 2018b;a), security (Shokri et al.,
2017), and many other domains. In this paper, we consider a practical scenario where the prediction
vendor requests crowdsourced data for a target task, e.g, scientific modeling. The data owner agrees
on the data usage for the target task while she does not want her other private information (e.g., age,
race) to be leaked. The goal of privacy-preserving in this context is then to protect private attributes
of the sanitized data released by data owner from potential attribute inference attacks of a malicious
adversary. For example, in an online advertising scenario, while the user (data owner) may agree
to share her historical purchasing events, she also wants to protect her age information so that no
malicious adversary can infer her age range from the shared data. Note that simply removing age
attribute from the shared data is insufficient for this purpose, due to the redundant encoding in data,
i.e., other attributes may have a high correlation with age.

Among many other techniques, differential privacy (DP) has been proposed and extensively in-
vestigated to protect the privacy of collected data (Dwork & Nissim, 2004; Dwork et al., 2006).
DP embraces formal guarantees for privacy problems such as defending against the membership
query attacks (Abadi et al., 2016; Papernot et al., 2016), or ensures the distribution of any two data
records statistically indistinguishable (Erlingsson et al., 2014; Duchi et al., 2013; Bassily & Smith,
2015). However, DP still suffers from attribute inference attacks (Fredrikson et al., 2015; Cormode,
2011; Gong & Liu, 2016), as it only prevents an adversary from gaining additional knowledge by
inclusion/exclusion of a subject, not from gaining knowledge from the data itself (Dwork et al.,
2014). As a result, an adversary can still accurately infer sensitive attributes of data owners from
differentially-private datasets. Such a gap between theory and practice calls for an important and
appealing challenge:
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Can we find a representation of the raw data to remove private information related
to a sensitive attribute while still preserving our utility of the target task? If
no, what is the fundamental trade-off between privacy preservation and utility
maximization?

Clearly, under the setting of attribute inference attacks, the notion of privacy preservation should be
attribute-specific: the goal is to protect specific attributes from being inferred by malicious adversaries.
Note that this is in sharp contrast with differential privacy, where mechanisms are usually designed to
resist worst-case membership query among all the data owners. From this perspective, our relaxed
definition of privacy also allows for a more flexible design of algorithms with better utility.

Our Contributions In this paper, we first formally define the notion of utility and privacy. We
justify why our definitions are particularly suited under the setting of attribute inference attacks.
Through the lens of representation learning, we then formulate the problem of utility maximization
with privacy constraint as a minimax optimization problem that can be effectively and practically
implemented. To provide a formal guarantee on privacy preservation, we prove an information-
theoretic lower bound on the inference error of the protected attribute under attacks from arbitrary
adversaries. To investigate the relationship between privacy preservation and utility maximization,
we also provide a theoretical result to formally characterize the inherent trade-off between these two
concepts. Empirically, we extensively conduct experiments to corroborate our privacy guarantee
and validate the inherent trade-offs in different privacy preservation algorithms. From our empirical
results, we conclude that the adversarial representation learning approach achieves the best trade-off
in terms of privacy preservation and utility maximization, among various state-of-the-art privacy
preservation algorithms.

2 PRELIMINARY

We first introduce our problem setting, the notations used throughout the paper and formally define
the notions of utility and privacy discussed in this paper.

2.1 PROBLEM SETUP AND NOTATION

Problem Setup We focus on the setting where the goal of the adversary is to perform attribute
inference. This setting is ubiquitous in sever-client paradigm where machine learning is provided
as a service (MLaaS, Ribeiro et al. (2015)). Formally, there are two parties in the system, namely
the prediction vendor and the data owner. We consider the practical scenarios where users agree to
contribute their data for training a machine learning model for specific purposes but do not want
others to infer their private attributes in the data, such as health information, race, gender, etc. The
prediction vendor will not collect raw user data but processed user data and the target attribute for the
target task. In our setting, we assume the adversary cannot get other auxiliary information than the
processed user data. In this case, the adversary can be anyone who can get access to the processed
user data to some extent and wants to infer other private information. For example, malicious machine
learning service providers are motivated to infer more information from users to do user profiling and
targeted advertisements. The goal of the data owner is to provide as much information as possible
to the prediction vendor to maximize the vendor’s own utility, but under the constraint that the data
owner should also protect the private information of the data source.

Notation We use X , Y andA to denote the input, output and adversary’s output space, respectively.
Accordingly, we use X,Y,A to denote the random variables which take values in X ,Y and A.
We note that in our framework the input space X may or may not contain the private attribute A.
For two random variables X and Y , I(X;Y ) denotes the mutual information between X and Y .
We use H(X) to mean the Shannon entropy of random variable X . Similarly, we use H(X | Y )
to denote the conditional entropy of X given Y . We assume there is a joint distribution D over
X × Y × A from which the data are sampled. To make our notation consistent, we use DX ,
DY and DA to denote the marginal distribution of D over X , Y and A. Given a feature map
function f : X → Z that maps instances from the input space X to feature space Z , we define
Df := D◦f−1 to be the induced (pushforward) distribution ofD under f , i.e., for any event E′ ⊆ Z ,
PrDf (E′) := PrD(f−1(E′)) = PrD({x ∈ X | f(x) ∈ E′}).
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2.2 UTILITY AND PRIVACY

To simplify the exposition, we mainly discuss the attribute inference setting where X ⊆ Rd,Y =
A = {0, 1}, but the underlying theory and methodology could easily be extended to the categorical
case as well. In what follows, we shall first formally define both the utility of the prediction vendor
and the privacy of the data owner. It is worth pointing out that our definition of privacy is attribute-
specific, and this is in contrast with the classic framework of differential privacy where the goal is
to preserve privacy in the general and worst-case query scenario. In particular, we seek to keep the
utility of the data while being robust to an adversary on protecting specific information from attack.

A hypothesis is a function h : X → Y . The error of a hypothesis h under the distribution D over
X × Y is defined as: Err(h) := ED

[
|Y − h(X)|

]
. Similarly, we use Êrr(h) to denote the empirical

error of h on a sample from D. For binary classification problem, when h(x) ∈ {0, 1}, the above
loss also reduces to the error rate of classification. LetH be the Hilbert space of hypotheses. In the
context of binary classification, we define the utility of a hypothesis h ∈ H as the opposite of error:
Definition 2.1 (Utility). The utility of a hypothesis h ∈ H is Util(h) := 1− ED

[
|Y − h(X)|

]
.

For binary classification, we always have 0 ≤ Util(h) ≤ 1, ∀h ∈ H. Now we proceed to define a
measure of privacy in our framework:
Definition 2.2 (Privacy). The privacy w.r.t. task A under attacks fromH is defined as PrivA(H) :=
minh∈H 1−

∣∣PrD(h(X) = 1 | A = 1)− PrD(h(X) = 1 | A = 0)
∣∣.

Again, it is straightforward to verify that 0 ≤ PrivA(H) ≤ 1. Based on our definition, PrivA(H) then
measures the privacy of data under possible attacks from adversaries in H. We can also refine the
above definition to a particular hypothesis h : X → {0, 1} to measure its ability to steal information
about A: PrivA(h) = 1−

∣∣PrD(h(X) = 1 | A = 1)− PrD(h(X) = 1 | A = 0)
∣∣.

Proposition 2.1. Let h : X → {0, 1} be a hypothesis, then PrivA(h) = 1 iff I(h(X);A) = 0 and
PrivA(h) = 0 iff h(X) = A almost surely or h(X) = 1−A almost surely.

Proposition 2.1 justifies our definition of privacy: when PrivA(h) = 1, it means that h(X) contains
no information about the sensitive attribute A. On the other hand, if PrivA(h) = 0, then h(X) fully
predicts A (or equivalently, 1 − A) from input X . In the latter case h(X) also contains perfect
information of A in the sense that I(h(X);A) = H(A), i.e., the Shannon entropy of A. It is worth
pointing out that our definition of privacy is insensitive to the marginal distribution of A, and hence is
more robust than other definitions such as the error rate of predicting A. In that case, if A is extremely
imbalanced, even a naive predictor can attain small prediction error by simply outputting constant.
We call a hypothesis space H symmetric if ∀h ∈ H, 1 − h ∈ H as well. Interestingly, when H is
symmetric, we can also relate the privacy PrivA(H) to a binary classification problem:
Proposition 2.2. If H is symmetric, then PrivA(H) = minh∈H Pr(h(X) = 0 | A = 1) +
Pr(h(X) = 1 | A = 0).

Table 1: Confusion matrix between A
and h(X).

h(X) = 0 h(X) = 1

A = 0 TN FP
A = 1 FN TP

Remark Consider the following confusion matrix be-
tween the actual private attribute A and its predicted vari-
able h(X) in Table 1. The false positive rate (eqv. Type-I
error) is defined as FPR = FP / (FP + TN) and the false neg-
ative rate (eqv. Type-II error) is similarly defined as FNR
= FN / (FN + TP). Using the terminology of confusion ma-
trix, it is then clear that Pr(h(X) = 0 | A = 1) = FNR
and Pr(h(X) = 1 | A = 0) = FPR. In other words,
Proposition 2.2 says that ifH is symmetric, then the privacy of a hypothesis spaceH corresponds to
the minimum sum of Type-I and Type-II error that is achievable under attacks fromH.

3 MINIMAX OPTIMIZATION AGAINST ATTRIBUTE INFERENCE ATTACKS

3.1 MINIMAX FORMULATION

Given a set of samples S = {(xi, yi, ai)}ni=1 drawn i.i.d. from the joint distribution D, how can the
data owner keeps the utility of the data while keeping the sensitive attribute A private under potential
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attacks from malicious adversary? Through the lens of representation learning, we seek to find a
(non-linear) feature representation f : X → Z from input space X to feature space Z such that f
still preserves relevant information w.r.t. the target task of inferring Y while hiding sensitive attribute
A. Specifically, we can solve the following unconstrained regularized problem with λ > 0:

min
h∈H,f

max
h′∈H

Êrr(h ◦ f)− λ
(

Pr
S

(h′(f(X)) = 0 | A = 1) + Pr
S

(h′(f(X)) = 1 | A = 0)
)

(1)

It is worth pointing out that the optimization formulation in (1) admits an interesting game-theoretic
interpretation, where two agents f and h′ play a game whose score is defined by the objective function
in (1). Intuitively, h′ seeks to minimize the sum of Type-I and Type-II error while f plays against h′
by learning transformation to removing information about the sensitive attribute A. Algorithmically,
for the data owner to achieve the goal of hiding information about the sensitive attribute A from
malicious adversary, it suffices to learn representation that is independent of A. Formally:

Proposition 3.1. Let f : X → Z be a deterministic function andH ⊆ 2Z be a hypothesis class over
Z . For any joint distribution D over X,A, Y , if I(f(X);A) = 0, then PrivA(H ◦ f) = 1.

Note that in this sequential game, f is the first-mover and h′ is the second. Hence without explicit
constraint f possesses a first-mover advantage so that f can dominate the game by simply mapping
all the input X to a constant or uniformly random noise. To avoid these degenerate cases, the first
term in the objective function of (1) acts as an incentive to encourage f to preserve task-related
information. But will this incentive compromise our privacy? As an extreme case if the target variable
Y and the sensitive attribute A are perfectly correlated, then it should be clear that there is a trade-off
in achieving utility and preserving privacy. In Sec. 4 we shall provide an information-theoretic bound
to precisely characterize such inherent trade-off. Furthermore, although the formulation in (1) only
works for defense over a single attribute, it is straightforward to extend the formulation so that it can
protect attacks over multiple attributes. Due to space limit, we defer the discussion of this extension
to Section C in appendix.

3.2 PRIVACY GUARANTEES ON ATTRIBUTE INFERENCE ATTACKS

In the last section we propose the unconstrained minimax formulation (1) to optimize both our utility
and the defined privacy measure. Clearly, the hyperparameter λ measures the trade-off between
utility and our privacy. On one hand, if λ→ 0, we barely care about the privacy and devote all the
focus to maximize our utility. On the other extreme, if λ→∞, we are only interested in protecting
the privacy. In what follows we analyze the true error that an optimal adversary has to incur in the
limit when both the task classifier and the adversary have unlimited capacity, i.e., they can be any
randomized functions from Z to {0, 1}. To study the true error, we hence use the population loss
rather than the empirical loss in our objective function. Furthermore, since the binary classification
error in (1) is NP-hard to optimize even for hypothesis class of linear predictors, in practice we
consider the cross-entropy loss function as a convex surrogate loss. The cross-entropy loss CEY (h)
of a probabilistic hypothesis h : X → [0, 1] w.r.t. Y on a distribution D is defined as follows:

CEY (h) := −ED [I(Y = 0) log(1− h(X)) + I(Y = 1) log(h(X))] . (2)

With a slight abuse of notation, we use CEA(h′) to mean the cross-entropy loss of the adversary h′
w.r.t. A. Using the same notation, the optimization formulation with cross-entropy loss becomes:

min
h∈H,f

max
h′∈H

CEY (h ◦ f)− λCEA(h′ ◦ f) (3)

Given a feature map f : X → Z , assume that H contains all the possible randomized classifiers
from the feature space Z to {0, 1}. For example, a randomized classifier can be constructed by first
defining a probabilistic function h : Z → [0, 1] followed by a random coin flipping to determine the
output label, where the probability of the coin being 1 is given by h(Z). Under such assumptions,
the following lemma shows that the optimal target classifier under f is given by the conditional
distribution h∗(Z) := Pr(Y = 1 | Z).

Lemma 3.1. For any feature map f : X → Z , assume that H contains all the randomized binary
classifiers, then minh∈HCEY (h ◦ f) = H(Y | Z) and h∗(Z) := arg minh∈HCEY (h ◦ f) =
Pr(Y = 1 | Z = f(X)).
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By a symmetric argument, we can also see that the worst-case (optimal) adversary under f is the
conditional distribution h

′∗(Z) := Pr(A = 1 | Z) and minh′∈HCEA(h′ ◦ f) = H(A | Z). Hence
we can further simplify the optimization formulation (3) to the following form where the only
optimization variable is the feature map f :

min
f

H(Y | Z = f(X))− λH(A | Z = f(X)) (4)

Since Z = f(X) is a deterministic feature map, it follows from the basic properties of Shannon
entropy that

H(Y | X) ≤ H(Y | Z = f(X)) ≤ H(Y ), H(A | X) ≤ H(A | Z = f(X)) ≤ H(A),

which means that H(Y | X)− λH(A) is a lower bound of the optimum of the objective function in
(4). However, such lower bound is not necessarily achievable. To see this, consider the simple case
where Y = A almost surely. In this case there exists no deterministic feature map Z = f(X) that
is both a sufficient statistics of X w.r.t. Y while simultaneously filters out all the information w.r.t.
A except in the degenerate case where A(Y ) is constant. On the other hand, to show that solving
the optimization problem in (4) helps to protect our privacy, the following theorem gives a bound of
privacy in terms of the error that has to be incurred by the optimal adversary:

Theorem 3.1. Let f∗ be the optimal feature map of (4) and define H∗ := H(A | Z = f∗(X)).
Then for any adversary Â : Z → {0, 1} such that Â ⊥ A | Z, PrDf∗ (Â 6= A) ≥ H∗/2 lg(6/H∗).

Remark Theorem 3.1 shows that whenever the conditional entropy H∗ = H(A | Z = f∗(X))
is large, then the inference error of the protected attribute incurred by any (randomized) adversary
has to be at least Ω(H∗/ log(1/H∗)). As we have already shown above, the conditional entropy
essentially corresponds to the second term in our objective function, whose optimal value could
further be flexibly adjusted by tuning the trade-off parameter λ. As a final note, Theorem 3.1
also shows that representation learning helps to protect the privacy about A since we always have
H(A | Z = f(X)) ≥ H(A | X) for any deterministic feature map f so that the lower bound of
inference error by any adversary is larger after learning the representation Z = f(X).

4 INHERENT TRADE-OFF BETWEEN UTILITY AND PRIVACY

As we briefly mentioned in Sec. 3.1, when the protected sensitive attribute A and the target variable
Y are perfectly correlated, it is impossible to simultaneously achieve the goal of privacy-preserving
and utility-maximizing. But what is the exact trade-off between utility and privacy when they
are correlated? In this section we shall provide an information-theoretic bound to quantitatively
characterize the inherent trade-off between privacy and utility, due to the discrepancy between the
conditional distributions of the target variable given the sensitive attribute. Our result is algorithm-
independent, hence it applies to a general setting where there is a need to preserve both utility and
privacy. To the best of our knowledge, this is the first information-theoretic result to precisely quantify
such trade-off. Due to space limit, we defer all the proofs to appendix.

Before we proceed, we first define several information-theoretic concepts that will be used in our
analysis. For two distributions D and D′, the Jensen-Shannon (JS) divergence DJS(D,D′) is:

DJS(D,D′) :=
1

2
DKL(D || DM ) +

1

2
DKL(D′ || DM ),

where DKL(· || ·) is the Kullback–Leibler (KL) divergence and DM := (D + D′)/2. The JS
divergence can be viewed as a symmetrized and smoothed version of the KL divergence, and it is
upper bounded by the L1 distance (total variation) between two distributions through Lin’s Lemma:

Lemma 4.1 (Lin (1991)). Let D and D′ be two distributions, then DJS(D,D′) ≤ 1
2 ||D − D

′||1.

Unlike the KL divergence, the JS divergence is bounded: 0 ≤ DJS(D,D′) ≤ 1. Additionally, from
the JS divergence, we can define a distance metric between two distributions as well, known as the JS
distance (Endres & Schindelin, 2003): dJS(D,D′) :=

√
DJS(D,D′). With respect to the JS distance,

for any feature space Z and any deterministic mapping f : X → Z , we can prove the following
lemma via the celebrated data processing inequality:
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Lemma 4.2. Let D0 and D1 be two distributions over X and let Df0 and Df1 be the induced distribu-
tions of D0 and D1 over Z by function f , then dJS(Df0 ,D

f
1 ) ≤ dJS(D0,D1).

Without loss of generality, any method aiming to predict the target variable Y defines a Markov chain

as X
f−→ Z

h−→ Ŷ , where Ŷ is the predicted target variable given by hypothesis h and Z is the
intermediate representation defined by the feature mapping f . Hence for any distribution D0(D1) of
X , this Markov chain also induces a distribution Dh◦f0 (Dh◦f1 ) of Ŷ and a distribution Df0 (Df1 ) of Z.
Now let DY0 (DY1 ) be the underlying true conditional distribution of Y given A = 0(A = 1). Realize
that the JS distance is a metric, the following chain of triangular inequalities holds:

dJS(DY0 ,DY1 ) ≤ dJS(DY0 ,D
h◦f
0 ) + dJS(Dh◦f0 ,Dh◦f1 ) + dJS(Dh◦f1 ,DY1 ).

Combining the above inequality with Lemma 4.2 to show

dJS(Dh◦f0 ,Dh◦f1 ) ≤ dJS(Df0 ,D
f
1 ),

we immediately have:

dJS(DY0 ,DY1 ) ≤ dJS(DY0 ,D
h◦f
0 ) + dJS(Df0 ,D

f
1 ) + dJS(Dh◦f1 ,DY1 ).

Intuitively, dJS(DY0 ,D
h◦f
0 ) and dJS(DY1 ,D

h◦f
1 ) measure the distance between the predicted and the

true target distribution on A = 0/1 cases, respectively. Formally, let Erra(h ◦ f) be the prediction
error of function h ◦ f conditioned on A = a. With the help of Lemma 4.1, the following result
establishes a relationship between dJS(DYa ,Dh◦fa ) and the utility of h ◦ f :

Lemma 4.3. Let Ŷ = h(f(X)) ∈ {0, 1} be the predictor, then for a ∈ {0, 1}, dJS(DYa ,Dh◦fa ) ≤√
Erra(h ◦ f).

Combine Lemma 4.2 and Lemma 4.3, we get the following key lemma that is the backbone for
proving the main results in this section:
Lemma 4.4 (Key lemma). Let D0, D1 be two distributions over X × Y conditioned on A = 0 and

A = 1 respectively. Assume the Markov chain X
f−→ Z

h−→ Ŷ holds, then ∀h ∈ H:

dJS(DY0 ,DY1 ) ≤
√

Err0(h ◦ f) + dJS(Df0 ,D
f
1 ) +

√
Err1(h ◦ f). (5)

We emphasize that for a ∈ {0, 1}, the term Erra(h◦f) measures the conditional error of the predicted
variable Ŷ by composite function h ◦ f over Da. Similarly, we can define the conditional utility
for a ∈ {0, 1} : Utila(h ◦ f) := 1− Erra(h ◦ f). The following main theorem then characterizes a
fundamental trade-off between utility and privacy:
Theorem 4.1. Let H ⊆ 2Z contains all the classifiers from Z to {0, 1}. Given the conditions in
Lemma 4.4, ∀h ∈ H, Util0(h ◦ f) + Util1(h ◦ f) + PrivA(H ◦ f) ≤ 3− 1

3DJS(DY0 ,DY1 ).

A few remarks follow. First, note that the maximal value achievable by the sum of the three terms on
the L.H.S. is 3. In light of this, the upper bound given in Theorem 4.1 shows that when the marginal
distribution of the target variable Y differ between two cases A = 0 or A = 1, then it is impossible
to perfectly maximize utility and privacy. Furthermore, the trade-off due to the difference in marginal
distributions is precisely given by the JS divergence DJS(DY0 ,DY1 ). Note that in Theorem 4.1 the
upper bound holds for any hypothesis h in the richest hypothesis classH that contains all the possible
binary classifiers. Put it another way, if we would like to maximally preserve privacy w.r.t. sensitive
attribute A, then we have to incur a large joint error:
Theorem 4.2. Assume the conditions in Theorem 4.1 hold. If PrivA(H ◦ f) ≥ 1−DJS(DY0 ,DY1 ),
then ∀h ∈ H, Err0(h ◦ f) + Err1(h ◦ f) ≥ 1

2

(
dJS(DY0 ,DY1 )−

√
1− PrivA(H ◦ f)

)2
.

Remark The above lower bound characterizes a fundamental trade-off between privacy and joint
error. In particular, up to a certain level 1−DJS(DY0 ,DY1 ), the larger the privacy, the larger the joint
error. In light of Proposition 3.1, this means that although the data-owner, or the first-mover f , could
try to maximally preserve the privacy via constructing f such that f(X) is independent of A, such
construction will also inevitably compromise the joint utility of the prediction vendor. It is also worth
pointing out that our results in both Theorem 4.1 and Theorem 4.2 are attribute-independent in the
sense that neither of the bounds depends on the marginal distribution of A. Instead, all the terms in
our results only depend on the conditional distributions given A = 0 and A = 1. This is often more
desirable than bounds involving mutual information, e.g., I(A, Y ), since I(A, Y ) is close to 0 if the
marginal distribution of A is highly imbalanced.
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5 EXPERIMENTS

Our theoretical results on the privacy guarantee of attribute inference attacks imply that the in-
ference error of the protected attribute incurred by any (randomized) adversary has to be at least
Ω(H∗/ log(1/H∗)). In this section we extensively conduct experiments on two real-world bench-
mark datasets, the UCI Adult dataset (Zhang et al., 2017) and the UTKFace dataset (Zhang et al.,
2017) to verify 1). Our guarantee on privacy can be used as a certificate for different privacy
preservation methods. 2). Inherent trade-offs exist between privacy and utility exist in all methods.
3). Among all the privacy preservation algorithms, including differential privacy, the adversarial
representation learning approach achieves the best trade-off in terms of privacy preservation and
utility maximization.

5.1 DATASETS AND SETUP

Datasets 1). Adult dataset: The Adult dataset is a benchmark dataset for privacy-preservation. The
task is to predict whether an individual’s income is greater or less than 50K/year based on census
data. The attributes in the dataset includes gender, education, occupation, age, etc. In this experiment
we set the target task as income prediction and the private task as inferring gender, age and education,
respectively. 2). The UTKFace dataset (Zhang et al., 2017) is a large-scale face dataset containing
more than 20,000 images with annotations of age, gender, and ethnicity. It is one of the benchmark
datasets for age estimation, gender and race classifications. In this experiment, we set our target task
as gender classification and we use the age and ethnicity as the protected attributes. We refer readers
to Section D in the appendix for detailed descriptions about the data pre-processing pipeline.

Methods We conduct extensive experiments with the following methods to verify our theoretical
results and provide a thorough practical comparison among these methods. 1). Privacy Partial Least
Squares (PPLS) (Enev et al., 2012), 2). Privacy Linear Discriminant Analysis (PLDA) (Whitehill &
Movellan, 2012), 3). Minimax filter with alternative update (ALT-UP) (Hamm, 2017) 4). Gradient
Reversal Layer (GRL) (Ganin et al., 2016) 5). Principal Component Analysis (PCA) 6). No defense
(NO-DEF) and, 7) Differential Privacy (DP). Among the first six methods, the first four are state-
of-the-art minimax methods for protecting against attribute inference attacks while the latter two
are non-private baselines for comprehensive comparison. Although DP is not tailored to attribute
inference attack, we can still add noise to the raw data based on the Laplacian mechanism. Our goal
here is to provide a thorough comparison in terms of utility-privacy trade-off by using methods from
both representation learning and differential privacy.

To make sure the comparison is fair among different methods, we conduct a controlled experiment by
using the same network structure as the baseline hypothesis among all the methods for each dataset.
For each experiment on the Adult dataset, we repeat the experiments for 5 times to report both the
average performance and their standard deviations. Similarly, we repeat each experiment on the
UTKFace dataset for 3 times, and we also report both the means and standard deviations. Details on
network structures and implementation of the above algorithms are provided in the appendix.

Note that in practice due to the non-convexity nature of optimizing deep neural nets, we cannot
guarantee to find the global optimal conditional entropy H∗. Hence in order to compute the privacy
guarantee given by our lower bound in Theorem 3.1, we use the cross-entropy loss of the optimal
adversary found by our algorithm on inferring the sensitive attribute A. Furthermore, since our
analysis only applies to representation learning based approaches, we do not have a privacy guarantee
for DP-related methods in our context.

5.2 RESULTS AND ANALYSIS

We visualize the performances of the aforementioned algorithms on privacy preservation and utility
maximization in Figure 1 and Figure 2, respectively. First, from Figure 1, we can see that among all
the methods, both DP, PLDA, ALT-UP and GRL are effective in privacy preservation by forcing the
optimal adversary to incur a large inference error. On the other hand, PCA and NO-DEF are the least
effective ones. This is expected as either NO-DEF nor PCA tries to filter information in data about
the sensitive attribute A. We can also see that with a larger trade-off value λ, both ALT-UP and GRL
achieve better privacy preservation.
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Figure 1: Performance on privacy preservation of different methods (the larger the better). The
horizontal lines across the bars indicate the corresponding privacy guarantees given by our lower
bound in Theorem 3.1.
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Figure 2: The joint conditional error (Err0 + Err1, the smaller the better) of different methods.

Second, from Figure 2, we can also see a sharp contrast between DP and other methods in terms of
the joint conditional error on the target task: DP incurs much more utility loss compared with other
methods. Combining this one with our previous observation from Figure 1, we can see that DP makes
data private by adding large amount of noise to effectively filter out all the information available in
the data, including both target-related and sensitive information. As a comparison, representation
learning based approaches leads to a much better trade-off. Among all the representation learning
methods, PLDA, ALT-UP and GRL perform the best in privacy preservation. Compared to ALT-UP
and GRL, PLDA is more effective in privacy preservation in some cases, but at the cost of a significant
drop in utility. PPLS is less effective in privacy preservation compared to other private representation
learning based approaches and it causes a large utility loss in the UTKFace dataset.

6 RELATED WORK

The attribute inference attack problem has close connections to both differential privacy and algorith-
mic fairness. In this section we mainly focus on discussing the connections and differences between
these problems. As a summary, we visualize their relationships in the diagram shown in Figure 3.

8



Under review as a conference paper at ICLR 2020

Differential Privacy DP has been proposed to bound the difference of algorithmic output between
any two “neighboring” datasets from the released data (Dwork & Nissim, 2004; Dwork et al., 2006;
Erlingsson et al., 2014) and was used in the training of deep neural network recently (Abadi et al.,
2016; Papernot et al., 2016). Our definition of privacy is different from (local) differential privacy
since the goal of DP tries to make any two neighboring datasets have close probabilities to produce
the same output. In the setting of learning algorithms, this means that the models trained from two
neighboring datasets should be close to each other. However, this does not necessarily imply that the
learned model itself is free from attribute inference attacks. As a comparison, our goal of defending
attribute inference attacks is to learn a representation such that the protected attributes cannot be
accurately inferred. Put it in another way, given a dataset matrix, the goal of DP is to ensure that it is
hard to infer about a row in the matrix while our privacy definition seeks to ensure that it is hard to
infer about a specific column of the data matrix. From this perspective, DP is closely related to the
well-known membership inference attack (Shokri et al., 2017) instead. It is observed (Dwork et al.,
2012) that the notion of individual fairness may be viewed as a generalization of DP.

Algorithmic Fairness The privacy defined in this work is related to the notion of group fairness in
the literature of algorithmic fairness (Dwork et al., 2012; Edwards & Storkey, 2015). In particular,
adversarial learning methods have been used as a tool in both fields to achieve the corresponding
goals. However, the motivations and goals significantly differ between these two fields. Specifically,
the widely adopted notion of group fairness, namely equalized odds (Hardt et al., 2016), requires
equalized false positive and false negative rates across different demographic subgroups. As a
comparison, in applications where privacy is a concern, we mainly want to ensure that adversaries
cannot steal sensitive information from the data. Hence our goal is to give a worst case guarantee on
the inference error that any adversary has at least to incur. To the best of our knowledge, our results
in Theorem 3.1 is the first one to analyze the performance of privacy preservation in such scenarios.
Furthermore, no prior theoretical results exist on discussing the trade-off between privacy and utility
on defending attribute inference attacks. Our proof techniques developed in this work could also be
used to derive information-theoretic lower bounds in related problems as well (Zhao et al., 2019;
Zhao & Gordon, 2019).

Individual Fairness
(Dwork et al., 2012)

Group Fairness
(Zemel et al., 2013)

Membership Inference
Attack

(Shokri et al., 2017)

Attribute Inference
Attack

(Fredrikson et al., 2015)

Figure 3: Relationships between different notions of fairness and privacy.

7 CONCLUSION

We develop a theoretical framework for privacy preservation under the setting of attribute inference
attacks. Under this setting, we propose a theoretical framework that suggests using adversarial
learning techniques to protect the private attribute. We further analyze the privacy guarantee of the
defense method in the limit of worst-case adversaries and prove an information-theoretic lower bound
to quantify the inherent trade-off between utility and privacy. Following our formulation, we conduct
extensive experiments to corroborate our theoretical results and to empirically compare different
state-of-the-art privacy preservation algorithms. Experimental results show that the adversarial
representation learning approaches are very effective in defending attribute inference attacks and
often achieve the best trade-off in terms of privacy preservation and utility maximization. We believe
our work takes an important step towards better understanding the privacy-utility trade-off, and it
also helps to stimulate the future design of privacy-preservation algorithm with adversarial learning
techniques.
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APPENDIX

In this appendix we provide the missing proofs of theorems and claims in our main paper. We also
describe detailed experimental settings here.

A TECHNICAL TOOLS

In this section we list the lemmas and theorems used during our proof.
Lemma A.1 (Theorem 2.2, (Calabro, 2009)). Let H−12 (s) be the inverse binary entropy function for
s ∈ [0, 1], then H−12 (s) ≥ s/2 lg(6/s).
Theorem A.1 (Data processing inequality). Let X ⊥ Y | Z, then I(X;Z) ≥ I(X;Y ).

B MISSING PROOFS

Proposition 2.1. Let h : X → {0, 1} be a hypothesis, then PrivA(h) = 1 iff I(h(X);A) = 0 and
PrivA(h) = 0 iff h(X) = A almost surely or h(X) = 1−A almost surely.

Proof. We first prove the first part of the proposition. By definition, PrivA(h) = 1 iff PrD(h(X) =
1 | A = 1) = PrD(h(X) = 1 | A = 0), which is also equivalent to h(X) ⊥⊥ A. It then follows that
h(X) ⊥⊥ A⇔ I(h(X);A) = 0.

For the second part of the proposition, again, by definition of PrivA(h), it is clear to see that we
either have PrD(h(X) = 1 | A = 1) = 1 and PrD(h(X) = 1 | A = 0) = 0, or PrD(h(X) = 1 |
A = 1) = 0 and PrD(h(X) = 1 | A = 0) = 1. Hence we discuss by these two cases. For ease of
notation, we omit the subscript D from PrD when it is obvious from the context which probability
distribution we are referring to.

1. If Pr(h(X) = 1 | A = 1) = 1 and Pr(h(X) = 1 | A = 0) = 0, then we know that:
Pr(h(X) 6= A) = Pr(A = 0) Pr(h(X) 6= A | A = 0) + Pr(A = 1) Pr(h(X) 6= A | A = 1)

= Pr(A = 0) Pr(h(X) = 1 | A = 0) + Pr(A = 1) Pr(h(X) = 0 | A = 1)

= Pr(A = 0) · 0 + Pr(A = 1) · 0
= 0.

2. If Pr(h(X) = 1 | A = 1) = 0 and Pr(h(X) = 1 | A = 0) = 1, similarly, we have:
Pr(h(X) 6= 1−A) = Pr(A = 0) Pr(h(X) 6= 1−A | A = 0) + Pr(A = 1) Pr(h(X) 6= 1−A | A = 1)

= Pr(A = 0) Pr(h(X) = 0 | A = 0) + Pr(A = 1) Pr(h(X) = 1 | A = 1)

= Pr(A = 0) · 0 + Pr(A = 1) · 0
= 0.

Combining the above two parts completes the proof. �

Proposition 2.2. If H is symmetric, then PrivA(H) = minh∈H Pr(h(X) = 0 | A = 1) +
Pr(h(X) = 1 | A = 0).

Proof. By definition, we have:
PrivA(H) := min

h∈H
PrivA(h)

= min
h∈H

1−
∣∣Pr(h(X) = 1 | A = 1)− Pr(h(X) = 1 | A = 0)

∣∣
= min
h∈H

1−
(

Pr(h(X) = 1 | A = 1)− Pr(h(X) = 1 | A = 0)
)

= min
h∈H

Pr(h(X) = 0 | A = 1) + Pr(h(X) = 1 | A = 0),

where the third equality holds due to the fact that maxh∈H
∣∣Pr(h(X) = 1 | A = 1)− Pr(h(X) =

1 | A = 0)
∣∣ = maxh∈H

(
Pr(h(X) = 1 | A = 1) − Pr(h(X) = 1 | A = 0)

)
. To see this, for any

specific h such that the term inside the absolute value is negative, we can find 1− h ∈ H such that it
becomes positive, due to the assumption thatH is symmetric. �
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Proposition 3.1. Let f : X → Z be a deterministic function andH ⊆ 2Z be a hypothesis class over
Z . For any joint distribution D over X,A, Y , if I(f(X);A) = 0, then PrivA(H ◦ f) = 1.

Proof. First, by the celebrated data-processing inequality, ∀h ∈ H:

0 ≤ I(h(f(X));A) ≤ I(f(X);A) = 0.

By Proposition 2.1, this means that ∀h ∈ H, PrivA(h) = 1, which further implies that PrivA(H◦f) =
1 by definition. �

Lemma 3.1. For any feature map f : X → Z , assume that H contains all the randomized binary
classifiers, then minh∈HCEY (h ◦ f) = H(Y | Z) and h∗(Z) := arg minh∈HCEY (h ◦ f) =
Pr(Y = 1 | Z = f(X)).

Proof. Let Df be the induced (pushforward) distribution of D under the map f : X → Z . By the
definition of cross-entropy loss, we have:

CEY (h ◦ f) = −ED [I(Y = 0) log(1− h(f(X))) + I(Y = 1) log(h(f(X)))]

= −EDf [I(Y = 0) log(1− h(Z)) + I(Y = 1) log(h(Z))]

= −EZEY |Z [I(Y = 0) log(1− h(Z)) + I(Y = 1) log(h(Z))]

= −EZ [Pr(Y = 0 | Z) log(1− h(Z)) + Pr(Y = 1 | Z) log(h(Z))]

= EZ [DKL(Pr(Y | Z) || h(Z))] +H(Y | Z)

≥ H(Y | Z).

It is also clear from the above proof that the minimum value of the cross-entropy loss is achieved when
h(Z) equals the conditional probability Pr(Y = 1 | Z), i.e., h∗(Z) = Pr(Y = 1 | Z = f(X)). �

Theorem 3.1. Let f∗ be the optimal feature map of (4) and define H∗ := H(A | Z = f∗(X)).
Then for any adversary Â : Z → {0, 1} such that Â ⊥ A | Z, PrDf∗ (Â 6= A) ≥ H∗/2 lg(6/H∗).

Proof. To prove this theorem, let E be the binary random variable that takes value 1 iff A 6= Â, i.e.,
E = I(A 6= Â). Now consider the joint entropy of A, Â and E. On one hand, we have:

H(A, Â, E) = H(A, Â) +H(E | A, Â) = H(A, Â) + 0 = H(A | Â) +H(Â).

Note that the second equation holds because E is a deterministic function of A and Â, that is, once
A and Â are known, E is also known, hence H(E | A, Â) = 0. On the other hand, we can also
decompose H(A, Â, E) as follows:

H(A, Â, E) = H(E) +H(A | E) +H(Â | A,E).

Combining the above two equalities yields

H(E) +H(A | E) +H(Â | A,E) = H(A | Â) +H(Â).

Furthermore, since conditioning cannot increase entropy, we have H(Â | A,E) ≤ H(Â), which
further implies

H(A | Â) ≤ H(E) +H(A | E).

Now consider H(A | E). Since A ∈ {0, 1}, by definition of the conditional entropy, we have:

H(A | E) = Pr(E = 1)H(A | E = 1) + Pr(E = 0)H(A | E = 0) = 0 + 0 = 0.

To lower bound H(A | Â), realize that

I(A; Â) +H(A | Â) = H(A) = I(A;Z) +H(A | Z).

Since Â is a randomized function of Z such that A ⊥ Â | Z, due to the celebrated data-processing
inequality, we have I(A; Â) ≤ I(A;Z), which implies

H(A | Â) ≥ H(A | Z).

13
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Combine everything above, we have the following chain of inequalities hold:

H(A | Z) ≤ H(A | Â) ≤ H(E) +H(A | E) = H(E),

which implies
Pr
Df∗

(A 6= Â) = Pr
Df∗

(E = 1) ≥ H−12 (H(A | Z)),

where H−12 (·) is the inverse function of the binary entropy H(t) := −t log t − (1 − t) log(1 − t)
when t ∈ [0, 1]. To conclude the proof, we apply Lemma A.1 to further lower bound the inverse
binary entropy function by

H−12 (H(A | Z)) ≥ H(A | Z)/2 lg(6/H(A | Z)),

completing the proof. �

Lemma 4.2. Let D0 and D1 be two distributions over X and let Df0 and Df1 be the induced distribu-
tions of D0 and D1 over Z by function f , then dJS(Df0 ,D

f
1 ) ≤ dJS(D0,D1).

Proof. Let B be a uniform random variable taking value in {0, 1} and let the random variable ZB
with distribution DfB (resp. XB with distribution DB) be the mixture of Df0 and Df1 (resp. D0 and
D1) according to B. It is easy to see that DB = (D0 +D1)/2, and we have:

I(B;XB) = H(XB)−H(XB | B)

= −
∑
DB logDB +

1

2

(∑
D0 logD0 +

∑
D1 logD1

)
= −1

2

∑
D0 logDB −

1

2

∑
D1 logDB +

1

2

(∑
D0 logD0 +

∑
D1 logD1

)
=

1

2

∑
D0 log

D0

DB
+

1

2

∑
D1 log

D1

DB

=
1

2
DKL(D0 || DB) +

1

2
DKL(D1 || DB)

= DJS(D0,D1).

Similarly, we have:
DJS(Df0 ,D

f
1 ) = I(B;ZB).

Since Df0 (resp. Df1 ) is induced by f from D0 (resp. D1), by linearity, DfB is also induced by f from
DB . Hence ZB = f(XB) and the following Markov chain holds:

B → XB → ZB .

Apply the data processing inequality, we have

DJS(D0,D1) = I(B;XB) ≥ I(B;ZB) = DJS(Df0 ,D
f
1 ).

Taking square root on both sides of the above inequality completes the proof. �

Lemma 4.3. Let Ŷ = h(f(X)) ∈ {0, 1} be the predictor, then for a ∈ {0, 1}, dJS(DYa ,Dh◦fa ) ≤√
Erra(h ◦ f).

Proof. For a ∈ {0, 1}, by definition of the JS distance:

d2JS(DYa ,Dh◦fa ) = DJS(DYa ,Dh◦fa )

≤ ||DYa −Dh◦fa ||1/2 (Lemma 4.1)

= (|Pr(Y = 0 | A = a)− Pr(h(f(X)) = 0 | A = a)|
+ |Pr(Y = 1 | A = a)− Pr(h(f(X)) = 1 | A = a)|) /2

= |Pr(Y = 1 | A = a)− Pr(h(f(X)) = 1 | A = a)|
= |E[Y | A = a]− E[h(f(X)) | A = a]|
≤ E[|Y − h(f(X))| | A = a]

= Erra(h ◦ f),

where the expectation is taken over the joint distribution of X,Y . Taking square root at both sides
then completes the proof. �
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Theorem 4.1. Let H ⊆ 2Z contains all the classifiers from Z to {0, 1}. Given the conditions in
Lemma 4.4, ∀h ∈ H, Util0(h ◦ f) + Util1(h ◦ f) + PrivA(H ◦ f) ≤ 3− 1

3DJS(DY0 ,DY1 ).

Proof. Before we delve into the details, we first give a high-level sketch of the main idea. The proof
could be basically partitioned into two parts. In the first part, we will show that whenH contains all
the measurable prediction functions, 1− PrivA(H ◦ f) could be used to upper bound DJS(Df0 ,D

f
1 ).

The second part combines Lemma 4.3 and Lemma 4.2 to complete the proof.

In this part we first show that DJS(Df0 ,D
f
1 ) ≤ 1− PrivA(H ◦ f):

DJS(Df0 ,D
f
1 ) ≤ 1

2
||Df0 −D

f
1 ||1

= dTV(Df0 ,D
f
1 )

= sup
A∈B

|Df0 (A)−Df1 (A)|,

where dTV(·, ·) denotes the total variation distance and B is the sigma algebra that contains all the
measurable subsets of Z . On the other hand, whenH contains all the measurable functions in 2Z , we
have:

1− PrivA(H ◦ f) = 1−min
h∈H

(
1− |Pr(h(Z) = 1 | A = 0)− Pr(h(Z) = 1 | A = 1)|

)
= max

h∈H
|Pr(h(Z) = 1 | A = 0)− Pr(h(Z) = 1 | A = 1)|

= max
h∈H
|D0(h−1(1))−D1(h−1(1))|

= sup
A∈B

|D0(A)−D1(A)|,

where the last equality follows from the fact that H is complete and contains all the measurable
functions. Combine the above two parts we immediately have DJS(Df0 ,D

f
1 ) ≤ 1− PrivA(H ◦ f).

Now using the key lemma, we have:

dJS(DY0 ,DY1 ) ≤ dJS(DY0 ,D
h◦f
0 ) + dJS(Df0 ,D

f
1 ) + dJS(Dh◦f1 ,DY1 )

≤
√

Err0(h ◦ f) +
√

1− PrivA(H ◦ f) +
√

Err1(h ◦ f)

=
√

1− Util0(h ◦ f) +
√

1− PrivA(H ◦ f) +
√

1− Util1(h ◦ f)

≤
√

3(1− Util0(h ◦ f) + 1− Util1(h ◦ f) + 1− PrivA(H ◦ f))

=
√

3
(
3− (Util0(h ◦ f) + Util1(h ◦ f) + PrivA(H ◦ f))

)
.

Taking square at both sides and then rearrange the terms then completes the proof. �

Theorem 4.2. Assume the conditions in Theorem 4.1 hold. If PrivA(H ◦ f) ≥ 1−DJS(DY0 ,DY1 ),
then ∀h ∈ H, Err0(h ◦ f) + Err1(h ◦ f) ≥ 1

2

(
dJS(DY0 ,DY1 )−

√
1− PrivA(H ◦ f)

)2
.

Proof. Similarly, using the key lemma, we have:

dJS(DY0 ,DY1 ) ≤ dJS(DY0 ,D
h◦f
0 ) + dJS(D0,D1) + dJS(Dh◦f1 ,DY1 )

≤
√

Err0(h ◦ f) +
√

1− PrivA(H ◦ f) +
√

Err1(h ◦ f)

Under the assumption that PrivA(H ◦ f) ≥ 1 − DJS(DY0 ,DY1 ), we have dJS(DY0 ,DY1 ) ≥√
1− PrivA(H ◦ f), hence by AM-GM inequality:√
2
(
Err0(h ◦ f) + Err1(h ◦ f)

)
≥
√

Err0(h ◦ f) + Err1(h ◦ f) ≥ dJS(DY0 ,DY1 )−
√

1− PrivA(H ◦ f).

Taking square at both sides then completes the proof. �
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C MULTI-ATTRIBUTE DEFENSE

Although our discussion in the paper only focuses on the case where there is only one sensitive
attribute that the data vendor would like to protect, our optimization framework is flexible enough
to extend to the setting where multiple sensitive attributes need to be preserved simultaneously. For
instance, in online advertising, the data vendor often needs to keep the personal information about
specific users secret, e.g., age range, demographic group, income level, etc. To this end, let {Ai}Ki=1
be K sensitive attributes that the data vendor would like to protect.

Define εi := PrS(h′i(f(X)) = 0 | Ai = 1) + PrS(h′i(f(X)) = 1 | Ai = 0) to simplify the notation.
Similar to the optimization formulation in (1), the following general optimization formulation handles
the setting of multi-attribute defense:

Hard version: min
h∈H,f

max
h′1,...,h

′
K∈H

Êrr(h ◦ f) + λ max
i∈[K]

(−εi) (6)

Problem (6) is still a minimax optimization problem. If we initialize all the functions, including
f, h and {h′i}Ki=1 using deep neural networks, then (6) turns into a nonconvex minimax optimization
problem. Inspired by Ganin et al. (2016), we can use the gradient reversal layer to effectively
implement (6) by backpropagation. Essentially, with the gradient reversal layer, we use the Gradient
Descent/Ascent (GDA) (Daskalakis & Panageas, 2018) algorithm to optimize all the model parame-
ters, as opposed to the alternative gradient algorithm, which is known to be unstable in the nonconvex
setting (Goodfellow et al., 2014).

One notable drawback of (6) is that in each iteration, the forward evaluation phase requires computa-
tion over all the K adversaries, while in the backward propagation phase only one of them is being
utilized due to the hard max operator. This is rather data-inefficient and can waste our computational
resources in the forward evaluation phase. To avoid this problem, we propose a smoothed formulation
of (6) using the fact that 1

γ log
∑
i∈[K] exp(−γεi)→ maxi∈[K](−εi) as γ →∞:

Smooth version: min
h∈H,f

max
h′1,...,h

′
K∈H

Êrr(h ◦ f) +
λ

γ
log

∑
i∈[K]

exp(−γεi) (7)

We call the one in (6) as hard version multi-attribute defense and (7) as the smooth version multi-
attribute defense. Let θ denote the model parameters of f . Take the derivative w.r.t. θ, we have:

∂

∂θ

1

γ
log

∑
i∈[K]

exp(−γεi) = −
∑
i∈[K]

exp(−γεi)∑
j∈[K] exp(−γεj)

∂εi
∂θ

.

Compared with the hard version, the smooth version not only avoids the data-inefficiency problem,
but also provides an adaptive way to combine the feedback from all the K adversaries by convex
combination. Intuitively, the above formulation suggests that during optimization, the larger the error
from one adversary, the smaller the combination weight in the ensemble. This is consistent with
Proposition 2.2 where we can see that a larger error essentially corresponds to a better protection of
the corresponding sensitive attribute, hence a smaller combination weight.

To demonstrate that the effectiveness of multi-attribute protection, we also evaluate both the hard and
smooth versions of our multi-attribute defense on UTKFace dataset. We compare both versions with
no defense for both attributes and defenses for single attribute, as none of the other competitors has a
multi-attribute defense extension. The results are shown in Figure 4.

In Figure 4, we can see that both the hard and smooth variants help to protect two private attributes,
indicated by the low private accuracies in both cases. Notably, the target accuracy does not degrade
too much as compared to the one in single-attribute defense. Among the two variants, the smooth
variant is slightly more effective, possibly due to the adaptive combination property.

D DETAILED EXPERIMENTS

In this section, we provide more details of the experiments. First we provide the details of different
existing methods we evaluate. Then we elaborate more dataset description, model architecture and
training parameters in different experiments.
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Figure 4: Classification accuracy of multi-attribute defense on the UTKFace dataset. For target
accuracy, the larger accuracy the better. For private accuracy, the smaller accuracy the better.

D.1 DETAILS ON METHODS

We provide a detailed description of each method here:

1). Privacy Partial Least Squares (PPLS): It learns n×Xd matrix for the feature transformation. The
matrix is learned by maximizing the covariance of the learned representation and target attribute
while minimizing the covariance of the learned representation and private attribute.

2). Privacy Linear Discriminant Analysis (PLDA): It learns n × Xd matrix for the feature trans-
formation. The matrix is learned by maximizing the Fisher’s linear discriminability of the learned
representation and target attribute while minimizing the Fisher’s linear discriminability of the learned
representation and private attribute.

3). Minimax filter with alternative update (ALT-UP): The representation is learn via optimizing
Equation 3 in an alternative way, first we update the parameters of the feature transformation module
and the target attribute classifier, and then accordingly update the private attribute classifier.

4). Gradient Reversal Layer (GRL): The objective equation is the same as ALT-UP, and we train the
feature transformation module by adding a gradient reversal layer between the feature transformation
module and the private attribute classifier.

5). Principal Component Analysis (PCA): It generates a n×Xd matrix for the feature transformation
where the rows of the matrix are the n largest eigenvectors of the input dataset X .

6). No defense (NO-DEF): It is equivalent to normal training by setting λ = 0 in Equation 3.

7). Differential Privacy (DP): Standard Laplace mechanism of differential privacy, where the noise is
added to the raw representation for erasing the information of the private attribute.

D.2 DETAILS ON UCI ADULT DATASET EVALUATION

UCI Adult dataset is a benchmark machine learning dataset for income prediction. Each data record
contains 14 categorical or numerical attributes, such as occupation, education and gender, to predict
whether individual annual income exceeds $50K/year. The dataset is divided into training set (24130
examples), validation (6032 examples), and test set (15060 examples). We choose gender, age, and
education as the private attributes, respectively.

We process each private attribute as binary label for each experiment: for age label, 0 if the person
is no greater than 35 years old and 1 otherwise; for education label, 0 if the person has not entered
college or receive higher education than college, and 1 otherwise. In the mean time, we also remove
corresponding private attribute from the input, so the dimension of input data for each experiment is
different. The input dimensions for income-gender experiment, income-age experiment, and income-
education experiment are 113, 104 and 99, respectively. Table 2, Table 3 and Table 4 summarize the
data distribution of UCI Adult dataset for protecting different private attributes.
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Table 2: Data distribution of income (Y )
and gender (A) in UCI Adult dataset.

Y = 0 Y = 1

A = 0 20988 9539
A = 1 13026 1669

Table 3: Data distribution of income (Y )
and age (A) in UCI Adult dataset.

Y = 0 Y = 1

A = 0 18042 2473
A = 1 15972 8735

Table 4: Data distribution of income (Y )
and education (A) in UCI Adult dataset.

Y = 0 Y = 1

A = 0 20447 4248
A = 1 13567 6960

We use the two-layer ReLU-based neural net for f and one-layer neural net for h. The output
dimensions of f are 100, 100 and 95 when the private attributes are gender, race and education,
respectively. We train all methods using SGD with the initial learning late 0.001 and momentum 0.9
for 40 epochs. Among all methods, we report the one achieving the best performance on the target
task in the validation set. We run the experiments for five times and compute the average.

D.3 DETAILS ON UTKFACE DATASET EVALUATION

UTKFace dataset is a large scale face dataset with annotations of age (range from 0 to 116 years
old), gender (male and female), and ethnicity (White, Black, Asian, Indian, and Others). It contains
23,705 64×64 aligned and cropped RGB face images and we split the dataset into training set (15171
examples), validation set (3793 examples) and test set (4741 examples), respectively. We further
process age label and ethnicity label as binary labels: 0 if the person is not greater than 35 years old
for age label (is white for ethnicity label), and 1 if the the person is greater than 35 years old for
age label (is non-white for ethnicity label). Table 5 and Table 6 summarize the data distribution of
UTKFace dataset for protecting different private attributes.

Table 5: Data distribution of gender (Y )
and race (A) in UTKFace dataset.

Y = 0 Y = 1

A = 0 5477 4601
A = 1 6914 6713

Table 6: Data distribution of gender (Y )
and age (A) in UTKFace dataset.

Y = 0 Y = 1

A = 0 6889 8218
A = 1 5502 3096

Since NO-DEF, ALT-UP, GRL and DP can directly enjoy the benefits of using the state-of-the-art
neural network architecture as feature extraction module, so we use the feature extraction module of
Wide Residual Network (Zagoruyko & Komodakis, 2016) for the (non-linear) feature transformation
module, while PPLS, PLDA, and PCA learn 12288× 2048 matrix filter for f . We train all methods
using SGD with the initial learning late 0.01 and momentum 0.9 for 50 epochs. The learning rate is
decayed by a factor of 0.1 for every 20 epochs. Among all methods, we report the one achieving the
best performance on the target task in the validation set. We run the experiments for three times and
compute the average.

For the experiment of multi-attribute defense, we choose λ to be 3 for both hard and smooth variants.
We find that this is a reasonable choice of λ since λ cannot be too large (otherwise it will cause
gradient explosion during training) and cannot be too small (otherwise the private task accuracy is
still too high) in this learning task. All other parameter settings are the same as the ones described
before.
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