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ABSTRACT

Training neural networks with verifiable robustness guarantees is challenging.
Several existing approaches utilize linear relaxation based neural network output
bounds under perturbation, but they can slow down training by a factor of hundreds
depending on the underlying network architectures. Meanwhile, interval bound
propagation (IBP) based training is efficient and significantly outperforms linear
relaxation based methods on many tasks, yet it may suffer from stability issues
since the bounds are much looser especially at the beginning of training. In this
paper, we propose a new certified adversarial training method, CROWN-IBP,
by combining the fast IBP bounds in a forward bounding pass and a tight linear
relaxation based bound, CROWN, in a backward bounding pass. CROWN-IBP is
computationally efficient and consistently outperforms IBP baselines on training
verifiably robust neural networks. We conduct large scale experiments on MNIST
and CIFAR datasets, and outperform all previous linear relaxation and bound
propagation based certified defenses in `∞ robustness. Notably, we achieve 7.02%
verified test error on MNIST at ε = 0.3, and 66.94% on CIFAR-10 with ε = 8/255.

1 INTRODUCTION

The success of deep neural networks (DNNs) has motivated their deployment in some safety-critical
environments, such as autonomous driving and facial recognition systems. Applications in these areas
make understanding the robustness and security of deep neural networks urgently needed, especially
their resilience under malicious, finely crafted inputs. Unfortunately, the performance of DNNs are
often so brittle that even imperceptibly modified inputs, also known as adversarial examples, are able
to completely break the model (Goodfellow et al., 2015; Szegedy et al., 2013). The robustness of
DNNs under adversarial examples is well-studied from both attack (crafting powerful adversarial
examples) and defence (making the model more robust) perspectives (Athalye et al., 2018; Carlini
& Wagner, 2017a;b; Goodfellow et al., 2015; Madry et al., 2018; Papernot et al., 2016; Xiao et al.,
2019a; 2018b;c; Eykholt et al., 2018; Chen et al., 2018; Xu et al., 2018; Zhang et al., 2019b). Recently,
it has been shown that defending against adversarial examples is a very difficult task, especially
under strong and adaptive attacks. Early defenses such as distillation (Papernot et al., 2016) have
been broken by stronger attacks like C&W (Carlini & Wagner, 2017b). Many defense methods have
been proposed recently (Guo et al., 2018; Song et al., 2017; Buckman et al., 2018; Ma et al., 2018;
Samangouei et al., 2018; Xiao et al., 2018a), but their robustness improvement cannot be certified
– no provable guarantees can be given to verify their robustness. In fact, most of these uncertified
defenses become vulnerable under stronger attacks (Athalye et al., 2018; He et al., 2017).

Several recent works in the literature seeking to give provable guarantees on the robustness perfor-
mance, such as linear relaxations (Wong & Kolter, 2018; Mirman et al., 2018; Wang et al., 2018a;
Dvijotham et al., 2018b; Weng et al., 2018; Zhang et al., 2018), interval bound propagation (Gowal
et al., 2018), ReLU stability regularization (Xiao et al., 2019b), and distributionally robust optimiza-
tion (Sinha et al., 2018) and semidefinite relaxations (Raghunathan et al., 2018a; Dvijotham et al.).
Linear relaxations of neural networks, first proposed by Wong & Kolter (2018), is one of the most
popular categories among these certified defences. They use the dual of linear programming or several
similar approaches to provide a linear relaxation of the network (referred to as a “convex adversarial
polytope”) and the resulting bounds are tractable for robust optimization. However, these methods
are both computationally and memory intensive, and can increase model training time by a factor
of hundreds. On the other hand, interval bound propagation (IBP) is a simple and efficient method
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that can also be used for training verifiable neural networks (Gowal et al., 2018), which achieved
state-of-the-art verified error on many datasets. However, since the IBP bounds are very loose during
the initial phase of training, the training procedure can be unstable and sensitive to hyperparameters.

In this paper, we first discuss the strengths and weakness of existing linear relaxation based and
interval bound propagation based certified robust training methods. Then we propose a new certified
robust training method, CROWN-IBP, which marries the efficiency of IBP and the tightness of a linear
relaxation based verification bound, CROWN (Zhang et al., 2018). CROWN-IBP bound propagation
involves a IBP based fast forward bounding pass, and a tight convex relaxation based backward
bounding pass (CROWN) which scales linearly with the size of neural network output and is very
efficient for problems with low output dimensions. Additional, CROWN-IBP provides flexibility for
exploiting the strengths of both IBP and convex relaxation based verifiable training methods.

The efficiency, tightness and flexibility of CROWN-IBP allow it to outperform state-of-the-art methods
for training verifiable neural networks with `∞ robustness under all ε settings on MNIST and CIFAR-
10 datasets. In our experiment, on MNIST dataset we reach 7.02% and 12.06% IBP verified error
under `∞ distortions ε = 0.3 and ε = 0.4, respectively, outperforming the state-of-the-art baseline
results by IBP (8.55% and 15.01%). On CIFAR-10, at ε = 2

255 , CROWN-IBP decreases the verified
error from 55.88% (IBP) to 46.03% and matches convex relaxation based methods; at a larger ε,
CROWN-IBP outperforms all other methods with a noticeable margin.

2 RELATED WORK AND BACKGROUND

2.1 ROBUSTNESS VERIFICATION AND RELAXATIONS OF NEURAL NETWORKS

Neural network robustness verification algorithms seek for upper and lower bounds of an output
neuron for all possible inputs within a set S, typically a norm bounded perturbation. Most importantly,
the margins between the ground-truth class and any other classes determine model robustness.
However, it has already been shown that finding the exact output range is a non-convex problem
and NP-complete (Katz et al., 2017; Weng et al., 2018). Therefore, recent works resorted to giving
relatively tight but computationally tractable bounds of the output range with necessary relaxations of
the original problem. Many of these robustness verification approaches are based on linear relaxations
of non-linear units in neural networks, including CROWN (Zhang et al., 2018), DeepPoly (Singh
et al., 2019), Fast-Lin (Weng et al., 2018), DeepZ (Singh et al., 2018) and Neurify (Wang et al.,
2018b). We refer the readers to (Salman et al., 2019b) for a comprehensive survey on this topic. After
linear relaxation, they bound the output of a neural network fi(·) by linear upper/lower hyperplanes:

Ai,:∆x + bL ≤ fi(x0 + ∆x) ≤ Ai,:∆x + bU (1)

where a row vector Ai,: = W
(L)
i,: D(L−1)W(L−1) · · ·D(1)W(1) is the product of the network weight

matrices W(l) and diagonal matrices D(l) reflecting the ReLU relaxations for output neuron i; bL
and bU are two bias terms unrelated to ∆x. Additionally, Dvijotham et al. (2018c;a); Qin et al. (2019)
solve the Lagrangian dual of verification problem; Raghunathan et al. (2018a;b); Dvijotham et al.
propose semidefinite relaxations which are tighter compared to linear relaxation based methods, but
computationally expensive. Bounds on neural network local Lipschitz constant can also be used
for verification (Zhang et al., 2019c; Hein & Andriushchenko, 2017). Besides these deterministic
verification approaches, randomized smoothing can be used to certify the robustness of any model in
a probabilistic manner (Cohen et al., 2019; Salman et al., 2019a; Lecuyer et al., 2018; Li et al., 2018).

2.2 ROBUST OPTIMIZATION AND VERIFIABLE ADVERSARIAL DEFENSE

To improve the robustness of neural networks against adversarial perturbations, a natural idea is to
generate adversarial examples by attacking the network and then use them to augment the training
set (Kurakin et al., 2017). More recently, Madry et al. (2018) showed that adversarial training can
be formulated as solving a minimax robust optimization problem as in (2). Given a model with
parameter θ, loss function L, and training data distribution X , the training algorithm aims to minimize
the robust loss, which is defined as the maximum loss within a neighborhood {x+ δ|δ ∈ S} of each
data point x, leading to the following robust optimization problem:

min
θ

E
(x,y)∈X

[
max
δ∈S

L(x+ δ; y; θ)

]
. (2)
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Madry et al. (2018) proposed to use projected gradient descent (PGD) to approximately solve the
inner max and then use the loss on the perturbed example x + δ to update the model. Networks
trained by this procedure achieve state-of-the-art test accuracy under strong attacks (Athalye et al.,
2018; Wang et al., 2018a; Zheng et al., 2018). Despite being robust under strong attacks, models
obtained by this PGD-based adversarial training do not have verified error guarantees. Due to the
nonconvexity of neural networks, PGD attack can only compute the lower bound of robust loss (the
inner maximization problem). Minimizing a lower bound of the inner max cannot guarantee (2) is
minimized. In other words, even if PGD-attack cannot find a perturbation with large verified error,
that does not mean there exists no such perturbation. This becomes problematic in safety-critical
applications since those models need certified safety.

Verifiable adversarial training methods, on the other hand, aim to obtain a network with good
robustness that can be verified efficiently. This can be done by combining adversarial training
and robustness verification—instead of using PGD to find a lower bound of inner max, certified
adversarial training uses a verification method to find an upper bound of the inner max, and then
update the parameters based on this upper bound of robust loss. Minimizing an upper bound of the
inner max guarantees to minimize the robust loss. There are two certified robust training methods
that are related to our work and we describe them in detail below.

Linear Relaxation Based Verifiable Adversarial Training. One of the most popular verifiable
adversarial training method was proposed in (Wong & Kolter, 2018) using linear relaxations of
neural networks to give an upper bound of the inner max. Other similar approaches include Mirman
et al. (2018); Wang et al. (2018a); Dvijotham et al. (2018b). Since the bound propagation process
of a convex adversarial polytope is too expensive, several methods were proposed to improve its
efficiency, like Cauchy projection (Wong et al., 2018) and dynamic mixed training (Wang et al.,
2018a). However, even with these speed-ups, the training process is still slow. Also, this method
may significantly reduce a model’s standard accuracy (accuracy on natural, unmodified test set). As
we will demonstrate shortly, we find that this method tends to over-regularize the network during
training, which is harmful for obtaining good accuracy.

Interval Bound Propagation (IBP). Interval Bound Propagation (IBP) uses a very simple rule to
compute the pre-activation outer bounds for each layer of the neural network. Unlike linear relaxation
based methods, IBP does not relax ReLU neurons and does not consider the correlations between
weights of different layers and treat each layer individually, yielding much looser bounds. Mirman
et al. (2018) proposed to use “Hybrid Zonotope Domain” which is effectively IBP to scale up linear
relaxation based training. Gowal et al. (2018) first demonstrated that IBP could outperform many
state-of-the-art results by a large margin after careful tuning. However, IBP can be unstable to use
and hard to tune in practice, since the bounds can be very loose especially during the initial phase
of training, posing a challenge to the optimizer. To mitigate instability, Gowal et al. (2018) use a
mixture of regular and minimax robust cross-entropy loss as the model’s training loss.

3 METHODOLOGY

Notation. We define an L-layer feed-forward neural network recursively as:

f(x) = z(L) z(l) = W(l)h(l−1) + b(l) W(l) ∈ Rnl×nl−1 b(l) ∈ Rnl

h(l) = σ(l)(z(l)), ∀l ∈ {1, . . . , L− 1},

where h(0)(x) = x, n0 represents input dimension and nL is the number of classes, σ is an element-
wise activation function. We use z to represent pre-activation neuron values and h to represent
post-activation neuron values. Consider an input example xk with ground-truth label yk, we define
a set of S(xk, ε) = {x|‖x − xk‖∞ ≤ ε} and we desire a robust network to have the property
yk = argmaxj [f(x)]j for all x ∈ S. We define element-wise upper and lower bounds for z(l) and

h(l) as z(l) ≤ z(l) ≤ z(l) and h(l) ≤ h(l) ≤ h(l).

Verification Specifications. Neural network verification literature typically defines a specification
vector c ∈ RnL , that gives a linear combination for neural network output: c>f(x). In robustness
verification, typically we set ci = 1 where i is the ground truth class label, cj = −1 where j is the
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Dataset ε (`∞ norm) CAP verified error CROWN verified error IBP verified error

MNIST

0.1 8.90% 7.05% 5.83%
0.2 45.37% 24.17% 7.37%
0.3 97.77% 65.26% 10.68%
0.4 99.98% 99.57% 16.76%

Fashion-MNIST 0.1 44.64% 36.85% 23.49%

CIFAR-10 2/255 62.94% 60.83% 58.75%
8/255 91.44% 82.68% 73.34%

Table 1: IBP trained models have low IBP verified errors but when verified with a typically much
tighter bound, including convex adversarial polytope (CAP) (Wong et al., 2018) and CROWN (Zhang
et al., 2018), the verified errors increase significantly. CROWN is generally tighter than convex
adversarial polytope however the gap between CROWN and IBP is still large, especially at large ε.

attack target label and other elements in c are 0. This represents the margin between class i and class
j. For an nL class classifier and a given label y, we define a specification matrix C ∈ RnL×nL as:

Ci,j =


1, if j = y, i 6= y (output of ground truth class)
−1, if i = j, i 6= y (output of other classes, negated)
0, otherwise (note that the y-th row contains all 0)

(3)

Importantly, each element in vector m := Cf(x) ∈ RnL gives us margins between class y and all
other classes. We define the lower bound of Cf(x) for all x ∈ S(xk, ε) as m(xk, ε), which is a very
important quantity: when all elements of m(xk, ε) > 0, xk is verifiably robust for any perturbation
with `∞ norm less than ε. m(xk, ε) can be obtained by a neural network verification algorithm, such
as convex adversarial polytope, IBP, or CROWN. Additionally, Wong & Kolter (2018) showed that
for cross-entropy (CE) loss:

max
x∈S(xk,ε)

L(f(x); y; θ) ≤ L(f(−m(xk, ε)); y; θ). (4)

(4) gives us the opportunity to solve the robust optimization problem (2) via minimizing this tractable
upper bound of inner-max. This guarantees that maxx∈S(xk,ε) L(f(x), y) is also minimized.

3.1 ANALYSIS OF IBP AND LINEAR RELAXATION BASED VERIFIABLE TRAINING METHODS

Interval Bound Propagation (IBP) Interval Bound Propagation (IBP) uses a simple bound propa-
gation rule. For the input layer we set xL ≤ x ≤ xU element-wise. For affine layers we have:

z(l) = W(l)h
(l−1)

+ h(l−1)

2
+ |W(l)|h

(l−1) − h(l−1)

2
+ b(l) (5)

z(l) = W(l)h
(l−1)

+ h(l−1)

2
− |W(l)|h

(l−1) − h(l−1)

2
+ b(l) (6)

where |W(l)| takes element-wise absolute value. Note that h
(0)

= xU and h(0) = xL. And for
element-wise monotonic increasing activation functions σ,

h
(l)

= σ(z(l)) h(l) = σ(z(l)). (7)

We found that IBP can be viewed as training a simple augmented ReLU network which is friendly to
optimizers (see Appendix A for more discussions). We also found that a network trained using IBP
can obtain good verified errors when verified using IBP, but it can get much worse verified errors
using linear relaxation based verification methods, including convex adversarial polytope (CAP)
by Wong & Kolter (2018) (equivalently, Fast-Lin by Weng et al. (2018)) and CROWN (Zhang et al.,
2018). Table 1 demonstrates that this gap can be very large on large ε.

However, IBP is a very loose bound during the initial phase of training, which makes training unstable
and hard to tune; purely using IBP frequently leads to divergence. Gowal et al. (2018) proposed to
use a ε schedule where ε is gradually increased during training, and a mixture of robust cross-entropy
loss with natural cross-entropy loss as the objective to stabilize training:

min
θ

E
(x,y)∈X

[
κL(x; y; θ) + (1− κ)L(−mIBP(x, ε); y; θ)

]
, (8)
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Issues with linear relaxation based training. Since IBP hugely outperforms linear relaxation
based methods in the recent work (Gowal et al., 2018) in many settings, we want to under-
stand what is going wrong with linear relaxation based methods. We found that, empirically, the
norm of the weights in the models produced by linear relaxation based methods such as (Wong
& Kolter, 2018) and (Wong et al., 2018) does not change or even decreases during training.
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Figure 1: Verified error and 2nd CNN
layer’s `∞ induced norm for a model
trained using (Wong et al., 2018) and
CROWN-IBP. ε is increased from 0 to
0.3 in 60 epochs.

In Figure 1 we train a small 4-layer MNIST model and
we linearly increase ε from 0 to 0.3 in 60 epochs. We plot
the `∞ induced norm of the 2nd CNN layer during the
training process of CROWN-IBP and (Wong et al., 2018).
The norm of weight matrix using (Wong et al., 2018)
does not increase. When ε becomes larger (roughly at ε =
0.2, epoch 40), the norm even starts to decrease slightly,
indicating that the model is forced to learn smaller norm
weights. Meanwhile, the verified error also starts to ramp
up possibly due to the lack of capacity. We conjecture
that linear relaxation based training over-regularizes the
model, especially at a larger ε. However, in CROWN-IBP,
the norm of weight matrices keep increasing during the
training process, and verifiable error does not significantly
increase when ε reaches 0.3.

Another issue with current linear relaxation based train-
ing or verification methods, including convex adversarial
polytope and DiffAI (Mirman et al., 2018), is their high
computational and memory cost, and poor scalability. For the small network in Figure 1, convex
adversarial polytope (with 50 random Cauchy projections) is 8 times slower and takes 4 times more
memory than CROWN-IBP (without using random projections). Convex adversarial polytope scales
even worse for larger networks; see Appendix H for a comparison.

3.2 THE PROPOSED ALGORITHM: CROWN-IBP

Overview. We have reviewed IBP and linear relaxation based methods above. As shown in Gowal
et al. (2018), IBP has better learning power at larger ε and can achieve much smaller verified error.
However, it can be hard to tune due to its very imprecise bound at the beginning of training; on the
other hand, linear relaxation based methods give tighter lower bounds which stabilize training, but it
over-regularizes the network and forbids us to achieve good accuracy. We propose CROWN-IBP, a
new certified defense where we optimize the following problem (θ represents the network parameters):

min
θ

E
(x,y)∈X

[
κL(x; y; θ)︸ ︷︷ ︸

natural loss

+(1− κ)L
(
− (

IBP bound︷ ︸︸ ︷
(1− β)mIBP(x, ε) +

CROWN-IBP bound︷ ︸︸ ︷
(βmCROWN-IBP(x, ε)); y; θ

)︸ ︷︷ ︸
robust loss

]
,

(9)
where our lower bound of margin m(x, ε) is a combination of two bounds with different natures:
IBP, and a CROWN-style bound; L is the cross-entropy loss. Note that the combination is inside the
loss function and is thus still a valid lower bound; thus (4) still holds and we are within the minimax
robust optimization theoretical framework. Similar to IBP and TRADES (Zhang et al., 2019a), we
use a mixture of natural and robust training loss with parameter κ, allowing us to explicitly trade-off
between clean accuracy and verified accuracy.

In a high level, the computation of the lower bounds of CROWN-IBP (mCROWN-IBP(x, ε)) consists
of IBP bound propagation in a forward bounding pass and CROWN-style bound propagation in a
backward bounding pass. We discuss the details of CROWN-IBP algorithm below.

Forward Bound Propagation in CROWN-IBP. In CROWN-IBP, we first obtain z(l) and z(l) for
all layers by applying (5), (6) and (7). Then we will obtain mIBP(x, ε) = z(L) (assuming C is merged
into W(L)). The time complexity is comparable to two forward propagation passes of the network.

Linear Relaxation of ReLU neurons Given z(l) and z(l) computed in the previous step, we first
check if some neurons are always active (z(l)k > 0) or always inactive (z(l)k < 0), since they are
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effectively linear and no relaxations are needed. For the remaining unstable neurons, Zhang et al.
(2018); Wong & Kolter (2018) give a linear relaxation for ReLU activation function:

αkz
(l)
k ≤ σ(z

(l)
k ) ≤

z
(l)
k

z
(l)
k − z

(l)
k

z
(l)
k −

z
(l)
k z

(l)
k

z
(l)
k − z

(l)
k

, for all k ∈ [nl] and z(l)k < 0 < z
(l)
k , (10)

where 0 ≤ αk ≤ 1; Zhang et al. (2018) propose to adaptively select αk = 1 when z(l)k > |z(l)k |
and 0 otherwise, which minimizes the relaxation error. Following (10), for an input vector z(l), we
effectively replace the ReLU layer with a linear layer, giving upper or lower bounds of the output:

D(l)z(l) ≤ σ(z(l)) ≤ D
(l)
z(l) + c

(l)
d (11)

where D(l) and D
(l)

are two diagonal matrices representing the “weights” of the relaxed ReLU
layer. Other general activation functions can be supported similarly. In the following we focus on
conceptually presenting the algorithm, while more details of each term can be found in the Appendix.

Backward Bound Propagation in CROWN-IBP. Unlike IBP, CROWN-style bounds start bound-
ing from the last layer, so we refer it as backward bound propagation (not to be confused with
the back-propagation algorithm to obtain gradients). Suppose we want to obtain the lower bound
[mCROWN-IBP(x, ε)]i := z

(L)
i (we assume the specification matrix C has been merged into W(L)).

The input to layer W(L) is σ(z(L−1)), which can be bounded linearly by Eq. (11). CROWN-style
bounds choose the lower bound of σ(z

(L−1)
k ) (LHS of (11)) when W

(L)
i,k is positive, and choose the

upper bound when W
(L)
i,k is negative. We then merge W(L) and the linearized ReLU layer together

and define:

A
(L−1)
i,: = W

(L)
i,: Di,(L−1), where D

i,(L−1)
k,k =

{
D

(L−1)
k,k , if W(L)

i,k > 0

D
(L−1)
k,k , if W(L)

i,k ≤ 0
(12)

Now we have a lower bound z
(L)
i = A

(L−1)
i,: z(L−1) + b

(L−1)
i ≤ z

(L)
i where b

(L−1)
i =∑

k,W
(L)
i,k <0

W
(L)
i,k c

(l)
k + b(L) collects all terms not related to z(L−1). Note that the diagonal matrix

Di,(L−1) implicitly depends on i. Then, we merge A(L−1)
i,: with the next linear layer, which is straight

forward by plugging in z(L−1) = W(L−1)σ(z(L−2)) + b(L−1):

z
(L)
i ≥ A

(L−1)
i,: W(L−1)σ(z(L−2)) + A

(L−1)
i,: b(L−1) + b

(L−1)
i .

Then we continue to unfold the next ReLU layer σ(z(L−2)) using its linear relaxations, and compute
a new A(L−2) ∈ RnL×nL−2 matrix, with A

(L−2)
i,: = A

(L−1)
i,: W(L−1)Di,(L−2) in a similar manner

as in (12). Along with the bound propagation process, we need to compute a series of matrices,
A(L−1), · · · ,A(0), where A

(l)
i,: = A

(l+1)
i,: W(l+1)Di,(l) ∈ RnL×n(l) , and A

(0)
i,: = A

(1)
i,: W

(1) =

W
(L)
i,: Di,(L−1)W(L−2)Di,(L−2)A(L−2) · · ·Di,(1)W(1). At this point, we merged all layers of the

network into a linear layer: z(L)i ≥ A
(0)
i,: x + b, where b collects all terms not related to x. A lower

bound for z(L)i with xL ≤ x ≤ xU can then be easily given as

[mCROWN-IBP]i ≡ z(L)i = A
(0)
i,: x + b ≥

∑
k,A

(0)
i,k<0

A
(0)
i,kxU,k +

∑
k,A

(0)
i,k>0

A
(0)
i,kxL,k + b (13)

For ReLU networks, convex adversarial polytope (Wong & Kolter, 2018) uses a very similar bound
propagation procedure. CROWN-style bounds allow an adaptive selection of αi in (10), thus often
gives better bounds (e.g., see Table 1). We give details on each term in Appendix I.

Computational Cost. Ordinary CROWN (Zhang et al., 2018) and convex adversarial poly-
tope (Wong & Kolter, 2018) use (13) to compute all intermediate layer’s z(m)

i and z(m)
i (m ∈ [L]),

by considering W(m) as the final layer of the network. For each layer m, we need a different set of
mA matrices, defined as Am,(l), l ∈ {m− 1, · · · , 0}. This causes three computational issues:
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• Unlike the last layer W(L), an intermediate layer W(m) typically has a much larger output
dimension nm � nL thus all Am,(l) ∈ {Am,(m−1), · · · ,Am,(0)} have large dimensions Rnm×nl .

• Computation of all Am,(l) matrices is expensive. Suppose the network has n neurons for all L− 1
intermediate and input layers and nL � n neurons for the output layer (assuming L ≥ 2), the time
complexity of ordinary CROWN or convex adversarial polytope is O(

∑L−2
l=1 ln3 + (L− 1)nLn

2) =
O((L− 1)2n3 + (L− 1)nLn

2) = O(Ln2(Ln+ nL)). A ordinary forward propagation only takes
O(Ln2) time per example, thus ordinary CROWN does not scale up to large networks for training,
due to its quadratic dependency in L and extra Ln times overhead.

• When both W(l) and W(l−1) represent convolutional layers with small kernel tensors K(l) and
K(l−1), there are no efficient GPU operations to form the matrix W(l)D(l−1)W(l−1) using K(l)

and K(l−1). Existing implementations either unfold at least one of the convolutional kernels to fully
connected weights, or use sparse matrices to represent W(l) and W(l−1). They suffer from poor
hardware efficiency on GPUs.

In CROWN-IBP, we use IBP to obtain bounds of intermediate layers, which takes only twice the
regular forward propagate time (O(Ln2)), thus we do not have the first and second issues. The time
complexity of the backward bound propagation in CROWN-IBP is O((L− 1)nLn

2), only nL times
slower than forward propagation and significantly more scalable than ordinary CROWN (which is Ln
times slower than forward propagation, where typically n� nL). The third convolution issue is also
not a concern, since we start from the last specification layer W(L) which is a small fully connected
layer. Suppose we need to compute W(L)D(L−1)W(L−1) and W(L−1) is a convolutional layer
with kernel K(L−1), we can efficiently compute (W(L−1)>(D(L−1)W(L)>))> on GPUs using the
transposed convolution operator with kernel K(L−1), without unfolding any convoluational layers.
Conceptually, the backward pass of CROWN-IBP propagates a small specification matrix W(L)

backwards, replacing affine layers with their transposed operators, and activation function layers with
a diagonal matrix product. This allows efficient implementation and better scalability.

Benefits of CROWN-IBP. Tightness, efficiency and flexibility are unique benefits of CROWN-IBP:

• CROWN-IBP is based on CROWN, a tight linear relaxation based lower bound which can greatly
improve the quality of bounds obtained by IBP to guide verifiable training and improve stabability;
• CROWN-IBP avoids the high computational cost of convex relaxation based methods : the time
complexity is reduced from O(Ln2(Ln + nL)) to O(Ln2nL), well suited to problems where the
output size nL is much smaller than input and intermediate layers’ sizes; also, there is no quadratic
dependency on L. Thus, CROWN-IBP is efficient on relatively large networks;
• The objective (9) is strictly more general than IBP and allows the flexibility to exploit the strength
from both IBP (good for large ε) and convex relaxation based methods (good for small ε). We can
slowly decrease β to 0 during training to avoid the over-regularization problem, yet keeping the initial
training of IBP more stable by providing a much tighter bound; we can also keep β = 1 which helps
to outperform convex relaxation based methods in certain small ε (e.g., ε = 2/255 on CIFAR-10).

4 EXPERIMENTS

Models and training schedules. We evaluate CROWN-IBP on three models (small, medium,
large) that are similar to the models used in (Gowal et al., 2018) on MNIST and CIFAR-10 datasets
with different `∞ perturbation norms. During training, we first warm up (regular training without
robust loss) for a fixed number of epochs and then increase ε from 0 to εtrain in using a ramp-up
schedule of R epochs. Similar techniques are also used in many other works (Wong et al., 2018;
Wang et al., 2018a; Gowal et al., 2018). For both IBP and CROWN-IBP, a natural cross-entropy (CE)
loss with weight κ (as in Eq (9)) may be added, and κ is scheduled to linearly decrease from κstart to
κend within R ramp-up epochs. Gowal et al. (2018) used κstart = 1 and κend = 0.5. To understand
the trade-off between verified accuracy and standard (clean) accuracy, we explore two more settings:
κstart = κend = 0 (without natural CE loss) and κstart = 1, κend = 0. For β, a linear schedule
during the ramp-up period is used, but we always set βstart = 1 and βend = 0, except that we set
βstart = βend = 1 for CIFAR-10 at ε = 2

255 . Detailed model structures and training hyperparameters
are in Appendix B.
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Metrics. Verified error is the percentage of test examples where at least one element in the lower
bounds m(xk, ε) is < 0. It is an guaranteed upper bound of test error under any `∞ perturbations.
We obtain m(xk, ε) using IBP or CROWN-IBP (Eq. 13). We also report standard (clean) errors and
errors under 200-step PGD attack. PGD errors are lower bounds of test errors under `∞ perturbations.

Comparison to IBP. Table 2 represents the standard, verified and PGD errors under different ε for
each dataset with different κ settings. Here we only report the large model structure as it performs
best under all setttings; small and medium models are deferred to Table B in the Appendix. When
both κstart = κend = 0, no natural CE loss is added and the model focuses on minimizing verified
error, but the lack of natural CE loss may lead to unstable training, especially for IBP; the κstart = 1,
κend = 0.5 setting emphasizes on minimizing standard error, usually at the cost of slightly higher
verified error rates. κstart = 1, κend = 0 typically achieves the best balance. We can observe that
under the same κ settings, CROWN-IBP outperforms IBP in both standard error and verified error.
The benefits of CROWN-IBP is significant especially when model is large and ε is large. We highlight
that CROWN-IBP reduces the verified error rate obtained by IBP from 8.21% to 7.02% on MNIST at
ε = 0.3 and from 55.88% to 46.03% on CIFAR-10 at ε = 2/255 (it is the first time that an IBP based
method outperforms results from (Wong et al., 2018), and our model also has better standard error).
We also note that we are the first to obtain verifiable bound on CIFAR-10 at ε = 16/255.
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Figure 2: Standard and verified errors
of IBP and CROWN-IBP with differ-
ent κstart and κend values.

Trade-off Between Standard Accuracy and Verified Ac-
curacy. To show the trade-off between standard and ver-
ified accuracy, we evaluate the large CIFAR-10 model with
εtest = 8/255 under different κ settings, while keeping
all other hyperparameters unchanged. For each κend =
{0.5, 0.25, 0}, we uniformly choose 11 κstart ∈ [1, κend]
while keeping all other hyper-parameters unchanged. A
larger κstart or κend tends to produce better standard errors,
and we can explicitly control the trade-off between standard
accuracy and verified accuracy. In Figure 2 we plot the stan-
dard and verified errors of IBP and CROWN-IBP trained
models with different κ settings. Each cluster on the figure
has 11 points, representing 11 different κstart values. Models
with lower verified errors tend to have higher standard er-
rors. However, CROWN-IBP clearly outperforms IBP with
improvement on both standard and verified accuracy, and
pushes the Pareto front towards the lower left corner, indicating overall better performance. To reach
the same verified error of 70%, CROWN-IBP can reduce standard error from roughly 55% to 45%.

Training Stability. To discourage hand-tuning on a small set of models and demonstrate the
stability of CROWN-IBP over a broader range of models, we evaluate IBP and CROWN-IBP on
a variety of small and medium sized model architectures (18 for MNIST and 17 for CIFAR-10),
detailed in Appendix D. To evaluate training stability, we compare verified errors under different ε
ramp-up schedule length (R = {30, 60, 90, 120} on CIFAR-10 and R = {10, 15, 30, 60} on MNIST)
and different κ settings. Instead of reporting just the best model, we compare the best, worst and
median verified errors over all models. Our results are presented in Figure 3: (a) is for MNIST
with ε = 0.3; (c),(d) are for CIFAR with ε = 8/255. We can observe that CROWN-IBP achieves
better performance consistently under different schedule length. In addition, IBP with κ = 0 cannot
stably converge on all models when ε schedule is short; under other κ settings, CROWN-IBP always
performs better. We conduct additional training stability experiments on MNIST and CIFAR-10
dataset under other model and ε settings and the observations are similar (see Appendix F).

5 CONCLUSIONS

We propose a new certified defense method, CROWN-IBP, by combining the fast interval bound
propagation (IBP) bound and a tight linear relaxation based bound, CROWN. Our method enjoys
high computational efficiency provided by IBP while facilitating the tight CROWN bound to stabilize
training under the robust optimization framework, and provides the flexibility to trade-off between the
two. Our experiments show that CROWN-IBP consistently outperforms other IBP baselines in both
standard errors and verified errors and achieves state-of-the-art verified test errors for `∞ robustness.
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Table 2: The verified, standard (clean) and PGD attack errors for models trained using IBP and
CROWN-IBP on MNIST and CIFAR. We only present performance on Large models here due to
limited space (see Table B for a full comparison). CROWN-IBP outperforms IBP under all κ settings,
and also achieves state-of-the-art performance on both MNIST and CIFAR datasets for all ε.

Dataset ε (`∞ norm) Training Method κ schedules Model errors (%) Best errors reported in literature (%)
κstart κend Standard Verified PGD Source Standard Verified

MNIST

IBP
0 0 1.13 2.89 2.24 Gowal et al. (2018) 1.06 2.921

1 0.5 1.08 2.75 2.02 Dvijotham et al. (2018b) 1.2 4.44
εtest = 0.1 1 0 1.14 2.81 2.11 Xiao et al. (2019b) 1.05 4.4
εtrain = 0.2

CROWN-IBP
0 0 1.17 2.36 1.91 Wong et al. (2018) 1.08 3.67
1 0.5 0.95 2.38 1.77 Mirman et al. (2018) 1.0 3.4
1 0 1.17 2.24 1.81

IBP
0 0 3.45 6.46 6.00 Gowal et al. (2018) 1.66 4.531

1 0.5 2.12 4.75 4.24 Xiao et al. (2019b) 1.9 10.21
εtest = 0.2 1 0 2.74 5.46 4.89
εtrain = 0.4

CROWN-IBP
0 0 2.9 5.34 4.85
1 0.5 1.88 4.22 3.87
1 0 2.64 4.99 4.58

IBP
0 0 3.45 9.76 8.42 Gowal et al. (2018) 1.66 8.211

1 0.50 2.12 8.47 6.78 Wong et al. (2018) 14.87 43.1
εtest = 0.3 1 0 2.74 8.73 7.37 Xiao et al. (2019b) 2.67 19.32
εtrain = 0.4

CROWN-IBP
0 0 2.9 7.85 6.79
1 0.5 1.88 7.01 5.88
1 0 2.64 7.63 6.42

IBP
0 0 3.45 16.19 12.73 Gowal et al. (2018) 1.66 15.011

1 0.5 2.12 15.37 11.05
εtest = 0.4 1 0 2.74 14.80 11.14
εtrain = 0.4

CROWN-IBP
0 0 2.9 13.01 10.41
1 0.5 1.88 12.88 9.60
1 0 2.64 12.84 9.16

CIFAR-10

εtest = 2
255

εtrain = 2.2
255

3

IBP
0 0 38.54 55.21 49.72 Mirman et al. (2018) 38.0 47.8
1 0.5 33.77 58.48 50.54 Gowal et al. (2018) 29.84 55.881

1 0 39.22 55.19 50.40 Wong et al. (2018) 31.72 46.11

CROWN-IBP
0 0 28.48 46.03 40.28 Xiao et al. (2019b) 38.88 54.07
1 0.5 26.19 50.53 40.24
1 0 28.91 46.43 40.27

εtest = 8
255

εtrain = 8.8
255

3

IBP
0 0 59.41 71.22 68.96 Gowal et al. (2018) 50.51 (68.442 )
1 0.5 49.01 72.68 68.14 Dvijotham et al. (2018b) 51.36 73.33
1 0 58.43 70.81 68.73 Xiao et al. (2019b) 59.55 79.73

CROWN-IBP
0 0 54.02 66.94 65.42 Wong et al. (2018) 71.33 78.22
1 0.5 45.47 69.55 65.74
1 0 55.27 67.76 65.71

εtest = 16
255

εtrain = 17.6
255

3

IBP
0 0 68.97 78.12 76.66

None, but our best verified test error (76.80%)
and standard test error (66.06%) are both better
than Wong et al. (2018) at ε = 8

255 , despite our
ε being twice larger.

1 0.5 59.46 80.85 76.97
1 0 68.88 78.91 76.95

CROWN-IBP
0 0 67.17 77.27 75.76
1 0.5 56.73 78.20 74.87
1 0 66.06 76.80 75.23

1 Verified errors reported in Table 4 of Gowal et al. (2018) are evaluated using mixed integer programming (MIP) and linear programming (LP), which are

strictly smaller than IBP verified errors but computationally expensive. For a fair comparison, we use the IBP verified errors reported in their Table 3.
2 According to direct communication with the authors of Gowal et al. (2018), achieving 68.44% IBP verified error requires to adding an extra PGD

adversarial training loss. Without adding PGD, the achievable verified error is 72.91% (LP/MIP verified) or 73.52% (IBP verified).
3 Although not explicitly mentioned, the CIFAR-10 models in (Gowal et al., 2018) are trained using εtrain = 1.1εtest. We thus follow their settings.

(a) MNIST, ε = 0.3, best 7.46% (b) CIFAR, ε = 8
255

, best 70.51% (c) CIFAR, ε = 2
255

, best 52.52%

Figure 3: Verified error vs. schedule length on 8 medium MNIST models and 8 medium CIFAR-10
models. The solid bars show median values of verified errors. κstart = 1.0 except for the κ = 0
setting. The upper and lower bound of an error bar are the worst and best verified error, respectively.
For each schedule length, three color groups represent three different κ settings.
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A IBP AS AN AUGMENTED NETWORK

Despite achieving great success, it is still an open question why IBP based methods significantly
outperform convex relaxation based methods, despite the fact that the latter one usually provides
significantly tighter bounds. We conjecture that IBP performs better because the bound propagation
process can be viewed as a ReLU network with the same depth as the original network, and the IBP
training process is effectively training this equivalent network for standard accuracy, as explained
below.

Given a fixed neural network (NN) f(x), IBP gives a very loose estimation of the output range of
f(x). However, during training, since the weights of this NN can be updated, we can equivalently
view IBP as an augmented neural network, which we denote as an IBP-NN (Figure A). Unlike a
usual network which takes an input xk with label yk, IBP-NN takes two points xL = xk − ε and
xU = xk + ε as input (where xL ≤ x ≤ xU , element-wisely). The bound propagation process can
be equivalently seen as forward propagation in a specially structured neural network, as shown in
Figure A. After the last specification layer C (typically merged into W(L)), we can obtain m(xk, ε).
Then, −m(xk, ε) is sent to softmax layer for prediction. Importantly, since [m(xk, ε)]yk = 0 (due
to the yk-th row in C is always 0), the top-1 prediction of the augmented IBP network is yk if and
only if all other elements of m(xk, ε) are positive, i.e., the original network will predict correctly for
all xL ≤ x ≤ xU . When we train the augmented IBP network with ordinary cross-entropy loss and
desire it to predict correctly on an input xk, we are implicitly doing robust optimization (Eq. (2)).
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Figure A: Interval Bound Propagation viewed as training an augmented neural network (IBP-NN).
The inputs of IBP-NN are two images xk + ε and xk − ε. The output of IBP-NN is a vector of
lower bounds of margins (denoted as m) between ground-truth class and all classes (including the
ground-truth class itself) for all xk − ε ≤ x ≤ xk + ε. This vector m is negated and sent into a
regular softmax function to get model prediction. The top-1 prediction of softmax is correct if and
only if all margins between the ground-truth class and other classes (except the ground truth class)
are positive, i.e., the model is verifiably robust. Thus, an IBP-NN with low standard error guarantees
low verified error on the original network.

On the other hand,

B MODELS AND HYPERPARAMETERS FOR COMPARISON TO IBP

The goal of these experiments is to reproduce the performance reported in (Gowal et al., 2018) and
demonstrate the advantage of CROWN-IBP under the same experimental settings. Specifically, to
reproduce the IBP results, for CIFAR-10 we train using a large batch size and long training schedule
on TPUs. For model performance on a comprehensive set of small and medium sized models trained
on a single GPU, please see the training stability experiments in Section 4 and Section F.

The models structures (Small, Medium and Large) used in Table B and Table 2 are listed in Table A.
We use the same small and medium models as listed in Gowal et al. (2018). The large model is slightly
different - the FC layer has 512 neurons rather than 200. The best CIFAR model in Gowal et al.
(2018) was produced by a model with a 512-neuron FC layer according to personal communication
with an author of (Gowal et al., 2018).
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Small Medium Large

CONV 16 4×4+2 CONV 32 3×3+1 CONV 64 3×3+1
CONV 32 4×4+1 CONV 32 4×4+2 CONV 64 3×3+1

FC 100 CONV 64 3×3+1 CONV 128 3×3+2
CONV 64 4×4+2 CONV 128 3×3+1

FC 512 CONV 128 3×3+1
FC 512 FC 512

Table A: Model Architecture. “CONV k w×h+s” represents a 2D convolutional layer with k filters
of size w×h using a stride of s in both dimensions. “FC n” = fully connected layer with n outputs.
Last fully connected layer is omitted. All networks use ReLU activation functions.• For MNIST IBP results, we follow exact the same set of hyperparameters as in (Gowal

et al., 2018). We train 100 epochs (60K steps) with a batch size of 100, and use a warm-up
and ramp-up duration of 2K and 10K steps. Learning rate for Adam optimizer is set to
1× 10−3 and decayed by 10X at steps 15K and 25K. Our IBP results match their reported
numbers. Note that we always use IBP verified errors rather than MIP verified errors. We
use the same schedule for CROWN-IBP with εtrain = 0.2 (εtest = 0.1) in Table B and Table 2.
For εtrain = 0.4, this schedule can obtain verified error rates 4.22%, 7.01% and 12.84% at
εtest = {0.2, 0.3, 0.4} using the large model, respectively.
• For MNIST CROWN-IBP with εtrain = 0.4 in Table B and Table 2, we train 200 epochs

with a batch size of 256. We use Adam optimizer and set learning rate to 5 × 10−4. We
warm up with 10 epochs’ regular training, and gradually ramp up ε from 0 to εtrain in 50
epochs. We reduce the learning rate by 10X at epoch 130 and 190. Using this schedule,
IBP’s performance deteriorates (by about 1-2% in all settings), but this schedule improves
verified error for CROWN-IBP at εtest = 0.4 from 12.84% to to 12.06% and does do affect
verified errors at other εtest levels.
• For CIFAR-10, we follow the setting in Gowal et al. (2018) and train 3200 epochs on 32

TPU cores. We use a batch size of 1024, and a learning rate of 5 × 10−4. We warm up
for 320 epochs, and ramp-up ε for 1600 epochs. Learning rate is reduced by 10X at epoch
2600 and 3040. We use random horizontal flips and random crops as data augmentation,
and normalize images according to per-channel statistics. Note that this schedule is slightly
different from the schedule used in (Gowal et al., 2018); we use a smaller batch size due to
TPU memory constraints (we used TPUv2 which has half memory capacity as TPUv3 used
in (Gowal et al., 2018)), and also we decay learning rates late. We found that this schedule
improves both IBP baseline performance and CROWN-IBP performance by around 1%; for
example, at ε = 8/255, this improved schedule can reduce verified error from 73.52% to
72.68% for IBP baseline (κstart = 1.0, κend = 0.5) using the large model. In Table 2 and
Table B we compare CROWN-IBP with this improved baseline.

C OMITTED EXPERIMENTAL RESULTS ON SMALL AND MEDIUM MODELS

Table B presents the verified, standard (clean) and PGD attack errors for all three models structures
(small, medium, large) trained on MNIST and CIFAR datasets. We evaluate IBP and CROWN-
IBP under different κ schedules. We can see that given any model structure and any κ schedule,
CROWN-IBP consistently outperforms IBP.

D HYPERPARAMETERS AND MODEL STRUCTURES FOR TRAINING STABILITY
EXPERIMENTS

In all our training stability experiments, we use relatively small (but a much larger amount) models
and train them on a single GPU. We use the following hyperparameters:

• For MNIST, we train 100 epochs with batch size 256. We use Adam optimizer and the
learning rate is 5× 10−4. The first epoch is standard training for warming up. We gradually
increase ε linearly per batch in our training process with a ε schedule length of 60. We reduce
the learning rate by 50% every 10 epochs after ε schedule ends. No data augmentation
technique is used and the whole 28 × 28 images are used (normalized to 0 - 1 range).
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Table B: The verified, standard (clean) and PGD attack errors for 3 models (small, medium, large)
trained on MNIST and CIFAR test sets. We evaluate IBP and CROWN-IBP under different κ
schedules. CROWN-IBP outperforms IBP under the same κ setting, and also achieves state-of-the-art
results for `∞ robustness on both MNIST and CIFAR datasets for all ε.

Dataset ε (`∞ norm) Training Method κ schedules Small model’s err. (%) Medium model’s err. (%) Large model’s err. (%)
κstart κend Standard Verified PGD Standard Verified PGD Standard Verified PGD

MNIST

IBP
0 0 1.92 4.16 3.88 1.53 3.26 2.82 1.13 2.89 2.24
1 0.5 1.68 3.60 3.34 1.46 3.20 2.57 1.08 2.75 2.02

εtest = 0.1 1 0 2.14 4.24 3.94 1.48 3.21 2.77 1.14 2.81 2.11
εtrain = 0.2

CROWN-IBP
0 0 1.59 2.99 2.81 1.49 2.92 2.53 1.11 2.98 2.08
1 0.5 1.28 2.97 2.65 1.31 3.22 2.50 0.98 3.05 2.00
1 0 1.47 3.21 2.99 1.31 2.92 2.38 1.12 2.92 2.03

IBP
0 0 5.08 9.80 9.36 3.68 7.38 6.77 3.45 6.46 6.00
1 0.5 3.83 8.64 8.06 2.55 5.84 5.33 2.12 4.75 4.24

εtest = 0.2 1 0 6.25 11.32 10.84 3.89 7.21 6.68 2.74 5.46 4.89
εtrain = 0.4

CROWN-IBP
0 0 3.78 6.61 6.40 3.84 6.65 6.42 2.84 5.15 4.90
1 0.5 2.96 6.11 5.74 2.37 5.35 4.90 1.82 4.13 3.81
1 0 3.55 6.29 6.13 3.16 5.82 5.44 2.17 4.31 3.99

IBP
0 0 5.08 14.42 13.30 3.68 10.97 9.66 3.45 9.76 8.42
1 0.50 3.83 13.99 12.25 2.55 9.51 7.87 2.12 8.47 6.78

εtest = 0.3 1 0 6.25 16.51 15.07 3.89 10.4 9.17 2.74 8.73 7.37
εtrain = 0.4

CROWN-IBP
0 0 3.78 9.60 8.90 3.84 9.25 8.57 2.84 7.65 6.90
1 0.5 2.96 9.44 8.26 2.37 8.54 7.74 1.82 7.02 6.05
1 0 3.55 9.40 8.50 3.16 8.62 7.65 2.17 7.03 6.12

IBP
0 0 5.08 23.40 20.15 3.68 18.34 14.75 3.45 16.19 12.73
1 0.5 3.83 24.16 19.97 2.55 16.82 12.83 2.12 15.37 11.05

εtest = 0.4 1 0 6.25 26.81 22.78 3.89 16.99 13.81 2.74 14.80 11.14
εtrain = 0.4

CROWN-IBP
0 0 3.78 15.21 13.34 3.84 14.58 12.69 2.84 12.74 10.39
1 0.5 2.96 16.04 12.91 2.37 14.97 12.47 1.82 12.59 9.58
1 0 3.55 15.55 13.11 3.16 14.19 11.31 2.17 12.06 9.47

CIFAR-10

εtest = 2
255

εtrain = 2.2
255

3

IBP
0 0 44.66 56.38 54.15 39.12 53.86 49.77 38.54 55.21 49.72
1 0.5 38.90 57.94 53.64 34.19 56.24 49.63 33.77 58.48 50.54
1 0 44.08 56.32 54.16 39.30 53.68 49.74 39.22 55.19 50.40

CROWN-IBP
0 0 39.43 53.93 49.16 32.78 49.57 44.22 28.48 46.03 40.28
1 0.5 34.08 54.28 51.17 28.63 51.39 42.43 26.19 50.53 40.24
1 0 38.15 52.57 50.35 33.17 49.82 44.64 28.91 46.43 40.27

εtest = 8
255

εtrain = 8.8
255

3

IBP
0 0 61.91 73.12 71.75 61.46 71.98 70.07 59.41 71.22 68.96
1 0.5 54.01 73.04 70.54 50.33 73.58 69.57 49.01 72.68 68.14
1 0 62.66 72.25 70.98 61.61 72.60 70.57 58.43 70.81 68.73

CROWN-IBP
0 0 59.94 70.76 69.65 59.17 69.00 67.60 54.02 66.94 65.42
1 0.5 53.12 73.51 70.61 48.51 71.55 67.67 45.47 69.55 65.74
1 0 60.84 72.47 71.18 58.19 68.94 67.72 55.27 67.76 65.71

εtest = 16
255

εtrain = 17.6
255

3

IBP
0 0 70.02 78.86 77.67 67.55 78.65 76.92 68.97 78.12 76.66
1 0.5 63.43 81.58 78.81 60.07 81.01 77.32 59.46 80.85 76.97
1 0 67.73 78.71 77.52 70.28 79.26 77.43 68.88 78.91 76.95

CROWN-IBP
0 0 67.42 78.41 76.86 68.06 77.92 76.89 67.17 77.27 75.76
1 0.5 61.47 79.62 77.13 59.56 79.30 76.43 56.73 78.20 74.87
1 0 68.75 78.71 77.91 67.94 78.46 77.21 66.06 76.80 75.23

1 Verified errors reported in Table 4 of Gowal et al. (2018) are evaluated using mixed integer programming (MIP).
For a fair comparison, we use the IBP verified errors reported in Table 3 of Gowal et al. (2018).

2 According to direct communication with the authors of Gowal et al. (2018), achieving 68.44% IBP verified error
requires to adding an extra PGD adversarial training loss. Without adding PGD, the achievable verified error is
72.91% (LP/MIP verified) or 73.52% (IBP verified).

3 Although not explicitly mentioned, the best CIFAR-10 models in (Gowal et al., 2018) also use εtrain = 1.1εtest.

• For CIFAR, we train 200 epoch with batch size 128. We use Adam optimizer and the learning
rate is 0.1%. The first 10 epochs are standard training for warming up. We gradually increase
ε linearly per batch in our training process with a ε schedule length of 120. We reduce the
learning rate by 50% every 10 epochs after ε schedule ends. We use random horizontal
flips and random crops as data augmentation. The three channels are normalized with mean
(0.4914, 0.4822, 0.4465) and standard deviation (0.2023, 0.1914, 0.2010). These numbers
are per-channel statistics from the training set used in (Gowal et al., 2018).

For all experiments, we set β = 1 when the ε schedule starts. We decrease β linearly to 0 when ε
finishes its increasing schedule and reaches εmax. We did not tune the schedule for parameter β, and
it always has the same schedule length as the ε schedule. All verified error numbers are evaluated
on the test set, using IBP, since the networks are trained using IBP (β = 0 after ε reaches the target
εtrain).

Table C gives the 18 model structures used in our training stability experiments. Most CIFAR
models share the same structures as MNIST models (unless noted on the table) except that their input
dimensions are different. Model A is too small for CIFAR thus we remove it for CIFAR experiments.
Models A - J are the “small models” reported in Figure 3. Models K - T are the “medium models”
reported in Figure 3. For results in Table 1, we use a small model (model structure B) for all three
datasets. These MNIST, CIFAR-10 models are trained on a single NVIDIA RTX 2080 Ti GPU.
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Name Model Structure (all models have a last FC 10 layer, which are omitted)

A (MNIST Only) Conv 4 4× 4+2, Conv 8 4× 4+2, FC 128
B Conv 8 4× 4+2, Conv 16 4× 4+2, FC 256
C Conv 4 3× 3+1, Conv 8 3× 3+1, Conv 8 4× 4+4, FC 64
D Conv 8 3× 3+1, Conv 16 3× 3+1, Conv 16 4× 4+4, FC 128
E Conv 4 5× 5+1, Conv 8 5× 5+1, Conv 8 5× 5+4, FC 64
F Conv 8 5× 5+1, Conv 16 5× 5+1, Conv 16 5× 5+4, FC 128
G Conv 4 3× 3+1, Conv 4 4× 4+2, Conv 8 3× 3+1, Conv 8 4× 4+2, FC 256, FC 256
H Conv 8 3× 3+1, Conv 8 4× 4+2, Conv 16 3× 3+1, Conv 16 4× 4+2, FC 256, FC 256
I Conv 4 3× 3+1, Conv 4 4× 4+2, Conv 8 3× 3+1, Conv 8 4× 4+2, FC 512, FC 512
J Conv 8 3× 3+1, Conv 8 4× 4+2, Conv 16 3× 3+1, Conv 16 4× 4+2, FC 512, FC 512
K Conv 16 3× 3+1, Conv 16 4× 4+2, Conv 32 3× 3+1, Conv 32 4× 4+2, FC 256, FC 256
L Conv 16 3× 3+1, Conv 16 4× 4+2, Conv 32 3× 3+1, Conv 32 4× 4+2, FC 512, FC 512
M Conv 32 3× 3+1, Conv 32 4× 4+2, Conv 64 3× 3+1, Conv 64 4× 4+2, FC 512, FC 512
N Conv 64 3× 3+1, Conv 64 4× 4+2, Conv 128 3× 3+1, Conv 128 4× 4+2, FC 512, FC 512
O(MNIST Only) Conv 64 5× 5+1, Conv 128 5× 5+1, Conv 128 4× 4+4, FC 512
P(MNIST Only) Conv 32 5× 5+1, Conv 64 5× 5+1, Conv 64 4× 4+4, FC 512
Q Conv 16 5× 5+1, Conv 32 5× 5+1, Conv 32 5× 5+4, FC 512
R Conv 32 3× 3+1, Conv 64 3× 3+1, Conv 64 3× 3+4, FC 512
S(CIFAR Only) Conv 32 4× 4+2, Conv 64 4× 4+2, FC 128
T(CIFAR Only) Conv 64 4× 4+2, Conv 128 4× 4+2, FC 256

Table C: Model structures used in all of our training stability experiments. We use ReLU activations
for all models. To save space, we omit the last fully connected layer as its output dimension is always
10. In the table, “Conv k w × w + s” represents to a 2D convolutional layer with k filters of size
w × w and a stride of s.
E REPRODUCIBILITY

To further test the training stability of CROWN-IBP, we run each MNIST experiment (using models
in Table C) 5 times on 10 small models. The mean and standard deviation of the verified and standard
errors on test set are presented in Appendix E. Standard deviations of verified errors are very small,
giving us further evidence of good stability. We run CROWN-IBP on 10 small MNIST models, 5

ε error model A model B model C model D model E model F model G model H model I model J

0.1 std. err. (%) 2.57± .04 1.45± .05 3.02± .04 1.77± .04 2.13± .08 1.35± .05 2.03± .08 1.32± .08 1.77± .04 1.45± .05
verified err. (%) 6.85± .04 4.88± .04 6.67± .1 5.10± .1 4.82± .2 4.18± .008 5.23± .2 4.59± .08 5.92± .09 5.40± .09

0.2 std. err. (%) 3.87± .04 2.43± .04 4.40± .2 2.32± .04 3.45± .3 1.90± 0 2.67± .1 2.00± .07 2.22± .04 1.65± .05
verified err. (%) 12.0± .03 6.99± .04 10.3± .2 7.37± .06 9.01± .9 6.05± .03 7.50± .1 6.45± .06 7.50± .3 6.31± .08

0.3 std. err. (%) 5.97± .08 3.20± 0 6.78± .1 3.70± .1 3.85± .2 3.10± .1 4.20± .3 2.85± .05 3.67± .08 2.35± .09
verified err. (%) 15.4± .08 10.6± .06 16.1± .3 11.3± .1 11.7± .2 9.96± .09 12.2± .6 9.90± .2 11.2± .09 9.21± .3

0.4 std. err. (%) 8.43± .04 4.93± .1 8.53± .2 5.83± .2 5.48± .2 4.65± .09 6.80± .2 4.28± .1 5.60± .1 3.60± .07
verified err. (%) 24.6± .1 18.5± .2 24.6± .7 19.2± .2 18.8± .2 17.3± .04 20.4± .3 16.3± .2 18.5± .07 15.2± .3

Table D: Mean and standard deviation of different CROWN-IBP models’ verified and standard error
rates on MNIST test set. The architectures of the models are presented in Table C. We run each model
5 times to compute the mean and standard deviation.

times each, and report the mean and standard deviation of standard and verified errors in Table D. We
can observe that the results from multiple runs are very similar with small standard deviations, so
reproducibility is not an issue for CROWN-IBP.

F TRAINING STABILITY EXPERIMENTS ON OTHER ε

Similar to our experiments in Section 4, we compare the verified errors obtained by CROWN-IBP and
IBP under different ε schedule lengths (10, 15, 30, 60) on MNIST and (30,60,90,120) on CIFAR-10.
We present the best, worst and median verified errors over all 18 models for MNIST in Figure C, D
at ε ∈ {0.1, 0.2, 0.3} and 9 small models for CIFAR-10 in Figure B. The upper and lower bound of
an error bar are the worst and best verified error, respectively, and the solid bars represent median
values. CROWN-IBP can improve training stability, and consistently outperform IBP under different
schedule length and κ settings.
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(a) small models, ε = 2/255, best 52.22% (b) small models, ε = 8/255, best 70.77%

Figure B: Verified error vs. schedule length (30, 60, 90, 120) on 9 small CIFAR models with on
CIFAR-10. The solid bars show median values of verified errors. κstart = 1.0 except for the κ = 0
setting. The upper and lower bound of an error bar are worst and best verified error, respectively.

(a) ε = 0.1, best 3.55% (b) ε = 0.2, best 4.98%

Figure C: Verified error vs. ε schedule length (10, 15, 30, 60) on 8 medium MNIST models. The
upper and lower ends of a vertical bar represent the worst and best verified error, respectively. The
solid bars represent the median values of the verified error. For a small ε, using a shorter schedule
length improves verified error due to early stopping, which prevents overfitting. All best verified
errors are achieved by CROWN-IBP regardless of schedule length.

G OVERFITTING ISSUE WITH SMALL ε

We found that on MNIST for a small ε, the verified error obtained by IBP based methods are
not as good as linear relaxation based methods (Wong et al., 2018; Mirman et al., 2018). Gowal
et al. (2018) thus propose to train models using a larger ε and evaluate them under a smaller ε, for
example εtrain = 0.4 and εeval = 0.3. Instead, we investigated this issue further and found that many

(a) ε = 0.1, best 3.84% (b) ε = 0.2, best 6.11% (c) ε = 0.3, best 8.87%

Figure D: Verified error vs. ε schedule length (10, 15, 30, 60) on 10 small MNIST models. The upper
and lower ends of a vertical bar represent the worst and best verified error, respectively. All best
verified errors are achieved by CROWN-IBP regardless of schedule length.
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CROWN-IBP trained models achieve very small verified errors (close to 0 and sometimes exactly 0)
on training set (see Table E). This indicates possible overfitting during training. As we discussed in
Section 3, linear relaxation based methods implicitly regularize the weight matrices so the network
does not overfit when ε is small. Inspired by this finding, we want to see if adding an explicit `1
regularization term in CROWN-IBP training helps when ε = 0.1 or 0.2. The verified and standard
errors on the training and test sets with and without regularization can be found in Table E. We can
see that with a small `1 regularization added (λ = 5 × 10−5) we can reduce verified error on test
set significantly. This makes CROWN-IBP results comparable to the numbers reported in convex
adversarial polytope (Wong et al., 2018); at ε = 0.1, the best model using convex adversarial polytope
training can achieve 3.67% certified error, while CROWN-IBP achieves 3.60% best certified error
on the models presented in Table E. The overfitting is likely caused by IBP’s strong learning power
without over-regularization, which also explains why IBP based methods significantly outperform
linear relaxation based methods at larger ε values. Using early stopping can also improve verified
error on test set; see Figure C.

ε Model Name λ: `1 regularization Training Test
(see Appendix D) standard error verified error standard error verified error

0.1

P 0 0.01% 0.01% 1.05% 5.63%
P 5× 10−5 0.32% 0.98% 1.30% 3.60%
O 0 0.02% 0.05% 0.82% 6.02%
O 5× 10−5 0.38% 1.34% 1.43% 4.02%

0.2

P 0 0.35% 1.40% 1.09% 6.06%
P 5× 10−5 1.02% 3.73% 1.48% 5.48%
O 0 0.31% 1.54% 1.22% 6.64%
O 5× 10−5 1.09% 4.08% 1.69% 5.72%

Table E: `1 regularized and unregularized models’ standard and verified errors on training and test set.
At a small ε, CROWN-IBP may overfit and adding regularization helps robust generalization; on the
other hand, convex relaxation based methods (Wong et al., 2018) provides implicitly regularization
which helps generalization under small ε but deteriorate model performance at larger ε.

H TRAINING TIME

In Table F we present the training time of CROWN-IBP, IBP and convex adversarial polytope (Wong
et al., 2018) on several representative models. All experiments are measured on a single RTX
2080 Ti GPU with 11 GB RAM. We can observe that CROWN-IBP is practically 2 to 7 times
slower than IBP (theoretically, CROWN-IBP is up to nL = 10 times slower than IBP); convex
adversarial polytope (Wong et al., 2018), as a representative linear relaxation based method, can be
over hundreds times slower than IBP especially on deeper networks. Note that we use 50 random
Cauchy projections for (Wong et al., 2018). Using random projections alone is not sufficient to
scale purely linear relaxation based methods to larger datasets, thus we advocate a combination of
IBP bounds with linear relaxation based methods as in CROWN-IBP, which offers good scalability,
stability and representation power. We also note that the random projection based acceleration can
also be applied to the backward bound propagation (CROWN-style bound) in CROWN-IBP to further
speed CROWN-IBP up.

Data MNIST CIFAR
Model Name A C G L O B D H S M

IBP (s) 245 264 290 364 1032 734 908 1048 691 1407
CROWN-IBP (s) 423 851 748 1526 7005 1473 3351 2962 1989 6689

Convex adv (Wong et al., 2018) (s) 1708 9263 12649 35518 160794 2372 12688 18691 6961 51145

Table F: IBP and CROWN-IBP’s training time on different models in seconds. For IBP and CROWN-
IBP, we use a batchsize of 256 for MNIST and 128 for CIFAR. For convex adversarial polytope, we
use 50 random Cauchy projections, and reduce batch size if necessary to fit into GPU memory.
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I EXACT FORMS OF THE CROWN-IBP BACKWARD BOUND

CROWN (Zhang et al., 2018) is a general framework that replaces non-linear functions in a neural
network with linear upper and lower hyperplanes with respect to pre-activation variables, such that
the entire neural network function can be bounded by a linear upper hyperplane and linear lower
hyperplane for all x ∈ S (S is typically a norm bounded ball, or a box region):

Ax+ b ≤ f(x) ≤ Ax+ b

CROWN achieves such linear bounds by replacing non-linear functions with linear bounds, and
utilizing the fact that the linear combinations of linear bounds are still linear, thus these linear bounds
can propagate through layers. Suppose we have a non-linear vector function σ, applying to an input
(pre-activation) vector z, CROWN requires the following bounds in a general form:

Aσz + bσ ≤ σ(z) ≤ Aσz + bσ

In general the specific bounds Aσ,bσ,Aσ,bσ for different σ needs to be given in a case-by-case
basis, depending on the characteristics of σ and the preactivation range z ≤ z ≤ z. In neural network
common σ can be ReLU, tanh, sigmoid, maxpool, etc. Convex adversarial polytope (Wong et al.,
2018) is also a linear relaxation based techniques that is closely related to CROWN, but only for
ReLU layers. For ReLU such bounds are simple, where Aσ,Aσ are diagonal matrices, bσ = 0:

Dz ≤ σ(z) ≤ Dz + c (14)

where D and D are two diagonal matrices:

Dk,k =


1, if zk > 0, i.e., this neuron is always active
0, if zk < 0, i.e., this neuron is always inactive
α, otherwise, any 0 ≤ α ≤ 1

(15)

Dk,k =


1, if zk > 0, i.e., this neuron is always active
0, if zk < 0, i.e., this neuron is always inactive
zk

zk−zk
, otherwise

(16)

ck =


0, if zk > 0, i.e., this neuron is always active
0, if zk < 0, i.e., this neuron is always inactive
zkzk
zk−zk

, otherwise
(17)

Note that CROWN-style bounds require to know all pre-activation bounds z(l) and z(l). We assume
these bounds are valid for x ∈ S. In CROWN-IBP, these bounds are obtained by interval bound
propagation (IBP). With pre-activation bounds z(l) and z(l) given (for x ∈ S), we rewrite the
CROWN lower bound for the special case of ReLU neurons:

Theorem I.1 (CROWN Lower Bound). For a L-layer neural network function f(x) : Rn0 → RnL ,
∀j ∈ [nL], ∀x ∈ S, we have fj(x) ≤ fj(x), where

fj(x) = A
(0)
j,: x +

L∑
l=1

A
(l)
j,: (b

(l) + bj,(l)), (18)

A
(l)
j,: =

{
e>j if l = L;

A
(l+1)
j,: W(l+1)Dj,(l) if l ∈ {0, · · · , L− 1}.
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and ∀i ∈ [nk], we define diagonal matrices Dj,(l), bias vector b(l):

Dj,(0) = I, bj,(L) = 0

D
j,(l)
k,k =


1 if A(l+1)

j,: W
(l+1)
:,i ≥ 0, z

(l)
k > |z(l)k |, l ∈ {1, · · · , L− 1};

0 if A(l+1)
j,: W

(l+1)
:,i ≥ 0, z

(l)
k < |z(l)k |, l ∈ {1, · · · , L− 1};

z
(l)
k

z
(l)
k −z

(l)
k

if A(k+1)
j,: W

(k+1)
:,i < 0, l ∈ {1, · · · , L− 1}.

b
j,(l)
k =

0 if A(l+1)
j,: W

(l+1)
:,i ≥ 0; l ∈ {1, · · · , L− 1}

z
(l)
k z

(l)
k

z
(l)
k −z

(l)
k

if A(l+1)
j,: W

(l+1)
:,i < 0 l ∈ {1, · · · , L− 1}.

ej ∈ RnL is a standard unit vector with j-th coordinate set to 1.

Note that unlike the ordinary CROWN (Zhang et al., 2018), in CROWN-IBP we only need the lower
bound to compute m and do not need to compute the A matrices for the upper bound. This save
half of the computation cost in ordinary CROWN. Also, W represents any affine layers in a neural
network, including convolutional layers in CNNs. In Section 3.2, we discussed how to use transposed
convolution operators to efficiently implement CROWN-IBP on GPUs.

Although in this paper we focus on the common case of ReLU activation function, other general
activation functions (sigmoid, max-pooling, etc) can be used in the network as CROWN is a general
framework to deal with non-linearity. For a more general derivation we refer the readers to (Zhang
et al., 2018) and (Salman et al., 2019b).
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