
Appendix

A Optimal Path Search

For the optimal route search we want to find the shortest path in a modified graph. We adapt the
standard Dijkstra’s algorithm for the same. A priority queue is maintained for all the unvisited nodes.
Each unvisited node is mapped to the minimum cost to reach that node from the source node, using
the visited ones. In each iteration the minimum element is popped from the queue and it’s neighbours
are updated using the negative log likelihoods found from the model and added to the queue (lines
7-11).

Note that computing all the edge weights apriori instead of when needed might turn out to be faster,
since a GPU might be able to compute all weights in one forward pass faster than individual forward
passes in each iteration.

Algorithm 1: Optimal Route Search
Input : Query q : 〈s, d, t〉
Output : Most likely pathR∗

1 for each v ∈ V do
2 dist[v]←∞
3 parent[v]← None
4 dist[s]← 0
5 Q← V
6 while Q 6= ∅ do
7 u← EXTRACT-MIN(Q)
8 for each (u, v) ∈ E do
9 if dist[v] > dist[u]− log (Pr((v, u) | u, d, t)) then

10 dist[v] = dist[u]− log (Pr((v, u) | u, d, t))
11 parent[v]← u
12 R∗ ← {d}
13 curr ← d
14 while curr 6= s do
15 curr ← parent[curr]
16 R∗ ← {curr} ∪ R∗
17 returnR∗

B Greedy Route Search

Algorithm 2: Greedy Route Search
Input : Query q : 〈s, d, t〉, hyper-parameter ∆
Output : Most likely pathR∗

1 R∗ ← ∅ , curr ← s
2 currDist← Haversine(curr, d)
3 minDist← currDist
4 while curr 6= d and currDist ≤ ∆×minDist do
5 N← {v ∈ V | v 6∈ R∗, (curr, v) ∈ E}
6 curr ← arg maxv∈N {Pr((curr, v) | curr, d, t)}
7 R∗ ←R∗ ∪ {v}
8 currDist← Haversine(curr, d)
9 if minDist < currDist then

10 minDist← currDist
11 returnR∗
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C Proof of Lemma 1

PROOF. We need to show that (1) d(u, v) = d(v, u), (2) d(u, v) ≥ 0, (3) d(u, v) = 0 iff u = v and
(4) d(u, v) ≤ d(u,w) + d(w, v). We omit the proofs of first three properties since they are trivial.
We prove triangular inequality through contradiction. Let us assume

d(u, v) > d(u,w) + d(w, v) (9)
or, sp(u, v) + sp(v, u) > sp(u,w) + sp(w, u) + sp(w, v) + sp(v, w)

From the definition of shortest paths,
sp(u, v) ≤ sp(u,w) + sp(w, v) (10)

and, sp(v, u) ≤ sp(v, w) + sp(w, u)

Consequently, Eq. 9 is a contradiction. �

The exact algorithm to construct an O(log2 |V|)-dimensional Lipschitz embedding of O(log |V|)
distortion is described in [13].

D NEUROMLR Training Algorithm

Algorithm 3: Training Algorithm
Input :G = (V, E , δ, τt),D, hyper-parameters : L (GCN layer), k (traffic representation

dimensionality), hidden dimension df in GCN, LM (number of layers in MLP)
Output : Parameter set Θ

1 ∀u ∈ V, h0
u ← Lipschitz(u)

2 V ← top-k eigenvectors on raw traffic vectors
3 while Training is true do
4 for l = [1, · · · , L] do
5 for ∀u ∈ V do

6 hl
u ← σ

(
Wl

∑
v∈N(u)∪u

hl−1
v√

(|N(v)|+1)(|N(u)|+1)

)
7 Loss(Θ)← 0
8 B ← minibatch from D
9 for ∀R ∈ B do

10 d← last node inR
11 t← start time ofR
12 for i ∈ [1, · · · , |R|] do
13 curr ← R.vi
14 trueNextNode ← R.vi+1

15 zcurr ← hL
curr

16 zd ← hL
d

17 zt ← rt V
18 for ∀v ∈ N(curr) do
19 zv ← hL

v
20 z ← Concatenate(zcurr, zv, zd, zt)
21 g0 ← z

22 for l = [1, · · · , LM ] do
23 gl ← ReLU

(
WM

l gl−1 + bMl
)

24 f(v, curr, d, t)← gLM

25 Q((curr, trueNextNode)|curr, d, t; Θ)← exp(f(trueNextNode, curr, d, t))∑
v′∈N(curr) exp(f(v′,curr, d, t))

26 Loss(Θ)← Loss(Θ) + log Q((curr, trueNextNode)|curr, d, t; Θ)

27 LossB(Θ)← Loss(Θ)
|B|

28 Θ← Adam(Θ,∇ΘLossB(Θ))
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E Computational Complexity analysis of NEUROMLR

We extract the node embeddings zcurr, zd, and zv for each neighbor v ∈ N(curr). The node
embeddings are pre-computed and stored. The traffic representation at any time t is independent of
the query and is thus maintained separately. Consequently, all these embeddings can be fetched in
O(g) time, where g is the average degree in the road network. Computing the transition probability
now requires a forward pass through the MLP module for each neighbor of curr.

If df and k are the dimensions of the node and traffic representations respectively, then the input
to the MLP module has size in O (df + k). Let the hidden dimension be dh. In the MLP, LM
linear transformations are applied, with intermediate point-wise non linearities; LM is the number of
layers in the MLP. The first and last linear transformation take O ((df + k)× dh) and O (dh) time
respectively. Each intermediate linear transformation consumes O

(
(dh)2

)
time. Assuming dh and k

to be in O (df ), the total complexity of the MLP module is O
(
LM × d2

f

)
.

The total time complexity of predicting Pr(e = (curr, v) | curr, d, t) is therefore O(g × LM × d2
f ).

For the pseudocode, refer to Alg 2. Recall that our model estimates Pr(e|curr, d, t) as
Q(e|curr, d, t; Θ).

F System Configuration Details

All experiments are performed on a machine running Intel Xeon E5-2698v4 processor with 40 cores,
having 1 Nvidia Tesla V100-DGXS GPU card with 32GB GPU memory, and 256 GB RAM with
Ubuntu 16.04.

G Parameters

The default parameter values for NEUROMLR are summarized in Table 4.

Parameter Value
∆ in Alg. 2 2
Number of eigenvectors for traffic representation k 10
Hidden dimension dh 128
Number of convolutional layers in GCN 2
Number of MLP layers 3
Learning Rate 10−3

Table 4: Default parameter values in NEUROMLR.

H Frequency Distribution of Edges

The frequency distribution of edges is shown in Figs. 6a-6c.
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Figure 6: (a-c) Frequency distribution of edge popularity

I Impact of Trip Length

In Fig. 7, we study the impact of trip length on performance of various algorithms on the Harbin and
CityIndia datasets.
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Figure 7: Impact of trip length on accuracy and reachability. (a,b) Harbin dataset (c,d) CityIndia
dataset. The bins for CityIndia were altered since food deliveries operate only for a certain distance
radius around each restaurant, causing a low percentage of long trips.

J Ablation study

Impact of GCN and Lipschitz Embeddings: In Figures 8a-8d, we quantify this impact using two
more datasets.

Impact of traffic: We study the impact of removing the traffic component on NEUROMLR-Greedy’s
performance. As visible in Table. 5, there is minimal change in performance. Similar results were
observed for all datasets. Although this result appears surprising, similar trends have been reported in
the literature [10]. This indicates that although traffic may alter speed, they do not significantly alter
the transition distributions.

Precision (%) Recall (%) Reachability (%) Reachability Distance (km)
Traffic 75.6 74.5 99.1 0.013
W/O Traffic 75.4 74.5 99.2 0.016

Table 5: Impact of traffic information on NEUROMLR-Greedy’s performance in Beijing dataset.

17



5 10 15 20 25 30 35 40 45 50
Number of epochs

35

40

45

50

55

60

65

70

75

F
1-

sc
or

e
(%

)

Lipschitz+GCN
Random+GCN

Lipschitz
Random

(a) Harbin

5 10 15 20 25 30 35 40 45 50
Number of epochs

0

10

20

30

40

50

60

70

80

90

100

R
ea

ch
ab

ili
ty

(%
)

Lipschitz+GCN
Random+GCN

Lipschitz
Random

(b) Harbin

5 10 15 20 25 30 35 40 45 50
Number of epochs

35

40

45

50

55

60

65

70

75

F
1-

sc
or

e
(%

)

Lipschitz+GCN
Random+GCN

Lipschitz
Random

(c) Porto

5 10 15 20 25 30 35 40 45 50
Number of epochs

0

10

20

30

40

50

60

70

80

90

100

R
ea

ch
ab

ili
ty

(%
)

Lipschitz+GCN
Random+GCN

Lipschitz
Random

(d) Porto

Figure 8: Impact of Lipschitz embeddings and GCN on accuracy and performance of NEUROMLR-
Greedy in (a,b) Harbin dataset and (c,d) Porto dataset.

K Impact of Parameters

Size of hidden dimension: In Fig. 9a, we measure how the size of the hidden dimension impacts the
performance of NEUROMLR-Greedy. Generally, with larger dimensions, we expect the performance
to improve as it empowers the model with a larger set of parameters. This trend is visible in Fig. 9a,
where the accuracy improves dramatically till 32, and saturates at 128. This result motivates us to set
128 as the default size of hidden dimensions.

Impact of hidden layers in GCN: We next examine how the number of convolutional layers in
GCN impacts the performance, Fig. 9b presents the results. We observe that the the performance
improves till 2 layers, after which it starts to deteriorate. The number of layers determine the extent
of information diffusion in the road network. When the number of layers is L, the embedding of a
node is impacted by those that are up to L-hops away. While sharing of information is needed to
generalize to unseen nodes, the information may become noisy when it is received from nodes that
are very far away. Consequently, we see the pattern visible in Fig. 9b.

Impact of hidden layers in MLP: In general, a greater number of hidden layers in MLP is expected
to improve performance due to an increase in the capacity of the model. This trend is visible in
Fig. 9c.

L Experiments on remaining datasets

Table 6 presents the performance of the various algorithms across the two smaller datasets, Chengdu
(CHG) and Porto (PT). Both versions of NEUROMLR continue to outperform all baseline algorithms
in both prediction accuracy and reachability. The Porto dataset does not contain time information.
Hence, all experiments on Porto ignore the traffic component.
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Figure 9: Impact of (a) hidden dimension size, (b) number of GCN layers and (c) number of MLP
hidden layers on the performance of NEUROMLR-Greedy. All plots in this figure use the Beijing
dataset.

Algorithm Precision (%) Recall (%) Reachability (%) Reachability Distance(km)
CHG PT CHG PT CHG PT CHG PT

NEUROMLR-D 86.7 79.2 84.2 70.9 — — — —
NEUROMLR-G 86.1 77.3 83.8 70.7 99.9 99.6 0.0002 0.001
CSSRNN 84.5 70.6 83.2 71.5 99.4 98.1 0.009 0.046
DEEPST 52.9 55.3 41.6 30.3 13.8 7.0 1.023 1.211
SP 60.3 58.2 55.1 47.7 — — — —
QP 57.7 — 54.7 — — — — —

Table 6: Comparison of NEUROMLR against the benchmarked algorithms on the four different
metrics of average precision, average recall, percentage of trips that reached destination, and average
distance from the true destination. The best performance for each dataset is highlighted in bold. QP
is undefined in Porto since this dataset does not contain timestamps.

M Performance of DEEPST

Deviation from results in DEEPST [10]

We observe the following differences. (1) The performance of CSSRNN is significantly better than
reported in [10]. (2) The performance of DEEPST is weaker in our experiments than reported in [10],
(3) CSSRNN performs better than DEEPST in our evaluation.

While it is hard to pin-point the exact reasons, one possible reason could be that the map-matching
algorithms used are different. We note that although the raw datasets of Chengdu and Harbin are the
same, the mean number of road segments in our map-matched datasets is close to two times more
than in DEEPST (14 vs. 23 in Chengdu and 24 vs. 57 in Harbin).

Poor reachability of DEEPST

In order to effectively share the statistical strength across trips, DEEPST adopts a clustering-inspired
approach where where all nodes are partitioned into K disjoint groups; K being a hyperparameter.
Now, consider queries q1 : 〈s, d1, t〉 and q2 : 〈s, d2, t〉. Although q1 and q2 are different due to two
different destinations, they may map to the same input parameters for the neural architecture if d1

and d2 share the same group. Consequently, although DEEPST guides the recommended route in the
correct direction, it rarely reaches the destination.

N Attention module

The importance of each of the input factors - current node curr, destination d, traffic condition at time
t, and the transition node v can be learnt through an attention module. To highlight the importance of
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attention, consider a node where the transition probabilities are invariant to traffic conditions. Here,
the attention of zt should be low. Similarly, if there is only one outgoing edge from a node, the
importance zd is low. We mathematically capture these hyper-local intricacies as follows.

We denote exy as the importance of input y for input x.

exy = a(zx, zy) (11)

The output representation z̃i ∈ S = {zcurr, zv, zd, zt} for each input is a linear combination of
all inputs where the weights correspond to these importance scores. The raw importances exy are
normalised using the softmax function to obtain final weights αx,y .

αxy =
exp(exy)∑
i∈S exp(exi)

(12)

The function a : Rdf × Rdf → R is a single-layer feed-forward neural network, which maps the
input representations to their relative importance score. Mathematically,

exy = a(zx, zy) = ReLU(a · [zx||zy])) (13)

a(zx, zy) is parameterised by a row matrix a ∈ R1×2df . || denotes the concatenation operator.
df denotes the dimension of each input representation zi ∈ S. Finally, the attention-weighted
representation of each input representation zx ∈ S is computed as:

z̃x = σ

(∑
zi∈S

αxi · zi
)

(14)

where σ is the ReLU activation function. The final output from the attention module is the concate-
nated attention-weighted input vectors.

z̃ = [z̃curr||z̃n||z̃d||z̃t] (15)

For employing this attention module, z was replaced with z̃ in line 21 of Alg. 3. Since we did not
observe any significant improvement with this change, we performed all our experiments with the
concatenation approach (line 20 of Alg. 3).

O Inductive Learning Experiments on other Datasets

In Figures 10 and 11, we demonstrate the benefits of inductive learning on two more datasets,
CityIndia and Harbin respectively. We investigate how the performance of NEUROMLR and CSSRNN
varies with the popularity of source and destination nodes of test trips. Our key observations are
highlighted below.

1. NEUROMLR continues to adapt more gracefully in all cases.
2. Similar to the trends observed with the Beijing dataset, the performance of CSSRNN on the P-U

category trips undergoes a substantial decline.
3. For a food delivery dataset with source nodes (restaurants) being much more frequent than

destination nodes (delivery locations), the percentage of trips in P-U category is expected to be
higher than U-P and U-U categories. This trend is visible in Fig. 10a. Consequently, the aggregate
performance metrics of CSSRNN on CityIndia are poor (Table 2).
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Figure 10: All these experiments were performed on the CityIndia dataset. (a) Percentage of test
data trips in P-U, U-P and U-U categories. (b) Percentage of nodes in the road network marked as
unpopular as a function of threshold frequency. (c-h) Variation of Reachability & F1-score with the
threshold frequency for different popularity categories.
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Figure 11: All these experiments were performed on the Harbin dataset. (a) Percentage of test data
trips in P-U, U-P and U-U categories. Note that the percentages for P-U and U-P are very similar
for all the thresholds and hence the overlapping plots. (b) Percentage of nodes marked as unpopular
as a function of threshold frequency. (c-h) Variation of Reachability & F1-score with the threshold
frequency for different popularity categories.
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P Justification of Low Absolute Performance

In a traditional prediction setup (such as classification or regression), for a specific input, there is
only one correct output. In route recommendations that is not the case; for the same input (source-
destination pair), we may have different outputs (routes). If the likelihood distribution of the output
space for a given input has high entropy, then the problem gets more difficult.

To substantiate this claim with real data, we formulate the idea of a majority-route. Given a pair of
source and destination nodes (s, t), the majority-route selects the route that is taken most frequently
to go from source s to destination t in the trajectory database. The probability of the majority-route is
simply

frequency of majority-route for (s, t)

number of routes from s to t in trajectory database

In Table 7, we plot the cumulative distribution of the percentage of source-destination pairs against
the probability of the majority-route. For example, in the Harbin row, the entry for column 0.6
indicates that the majority-route of 75.3%. source-destination pairs have a probability of 0.6 or below.

Overall, it is amply clear from the data, that route recommendation is indeed a difficult problem since
even the most likely route for a given input often occurs with a low probability.

City 0.2 0.4 0.6 0.8 1.0
Beijing 0.1 3.2 35.7 41.8 100
Chengdu 2.2 17.9 55.5 70.4 100
CityIndia 0.8 9.1 60.4 67.6 100
Harbin 2.8 19.0 75.3 82.7 100
Porto 4.1 20.7 61.3 72.8 100

Table 7: Cumulative distribution of the percentage of source-destination pairs against the probability
of the majority-route.
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