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Abstract

Estimating Transfer Entropy (TE) between time
series is a highly impactful problem in fields such
as finance and neuroscience. The well-known near-
est neighbor estimator of TE potentially fails if
temporal dependencies are noisy and long ranged,
primarily because it estimates TE indirectly rely-
ing on the estimation of joint entropy terms in
high dimensions, which is a hard problem in itself.
Other estimators, such as those based on Copula
entropy or conditional mutual information have
similar limitations. Leveraging the successes of
modern discriminative models that operate in high
dimensional (noisy) feature spaces, we express TE
as a difference of two conditional entropy terms,
which we directly estimate from conditional like-
lihoods computed in-sample from any discrimina-
tor (timeseries forecaster) trained per maximum
likelihood principle. To ensure that the in-sample
log likelihood estimates are not overfit to the data,
we propose a novel perturbation model based on
locality sensitive hash (LSH) functions, which reg-
ularizes a discriminative model to have smooth
functional outputs within local neighborhoods of
the input space. Our estimator is consistent, and
its variance reduces linearly in sample size. We
also demonstrate its superiority w.r.t. state-of-the-
art estimators through empirical evaluations on a
synthetic as well as real world datasets from the
neuroscience and finance domains.

1 INTRODUCTION

Information theory plays a central role in modern machine
learning for tasks like clustering, feature selection, represen-
tation learning, autoencoding, generative modeling, fairness,
etc. [Shannnon, 1948, Cover, 1999, Cicalese et al., 2019,

Figure 1: Three different time series are shown in order
to illustrate transfer entropy (TE). There is a clear pattern
of TE from the second time series (green) to the first one
(yellow), i.e. predictability of the observations in the first
time series given the knowledge of the second one. Similarly,
there is TE from the third time series (navy) to the second
one, though the dependencies are relatively complex.

Kingma and Welling, 2019, Song et al., 2019, Song and
Kingma, 2021]. A relatively new concept in information the-
ory, introduced by Schreiber [2000], is transfer entropy (TE)
that quantifies the reduction in uncertainty about one time
series given another (see Fig. 1). TE is theoretically and
practically appealing for various domains, including finance
and neuroscience [Vicente et al., 2011, Jizba et al., 2012,
Ver Steeg and Galstyan, 2012, Ursino et al., 2020, Restrepo
et al., 2020, Sipahi and Porfiri, 2020].

With the recent rapid advance of simultaneous high-density
recordings of neural activities across multiple brain areas
[Siegle et al., 2021, Steinmetz et al., 2021], it is essential to
have a scalable and robust model for estimating TE between
neural ensembles in the presence of sparse signal and large
noise due to ubiquitous neuron-to-neuron or trial-to-trial
variance [Steinmetz et al., 2018, Kass et al., 2018]. In the
finance domain, given the low-signal-to-noise ratio, empiri-
cal models leverage advances in TE estimation by filtering
out very weak explanatory time series [Dimpfl and Peter,
2013, Sandoval, 2014].

In practice, it is challenging to estimate TE especially un-
der long-ranged & noisy temporal dependencies [Lindner
et al., 2011, Barnett and Bossomaier, 2012, Zhang et al.,
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(a) kNN or Copula Estimator. (b) ITENE Estimator.

Figure 2: Limitations of Estimators. The yellow dots rep-
resent the past (Yt−1) and the present (Yt) of timeseries Y
and the green ones are for the past (X t−1) of timeseries X.
Present observation for timestep t has noisy dependencies
w.r.t. its own past and of X. In 2(a), kNN based estimation
of TE requires estimation of four joint entropy terms in high
dimensions which is a harder problem, unwarranted, and
susceptible to dependency based noise. Same limitation ap-
plies to ITENE in 2(b), as it computes TE as a difference of
two mutual information terms in high dimensions.

2019]. A popular technique for estimating TE is based on
the k nearest neighbors (kNN) method [Kraskov et al., 2004,
Lindner et al., 2011]. However, this measures TE indirectly,
through joint entropy (Kozachenko and Leonenko [1987],
Singh and Póczos [2016]). This becomes problematic when
temporal dependencies are noisy. A related approach is to
estimate TE via Copula joint entropy or conditional mutual
information [Ma, 2019, Zhang et al., 2019], which is also
susceptible to dependency based noise. See Fig. 2.

Noting that TE is represented by two conditional entropy
components, in this paper, we propose a discriminative
learning approach to the problem. Specifically, we obtain
in-sample estimates of conditional likelihoods from a dis-
criminative model to estimate the conditional entropy terms
directly. This allows us to exploit modern machine learning
methods to predict a low dimensional variable, conditioned
on a very high dimensional variable, even when many of the
dimensions are noisy. Any discriminative model, trained as
per the maximum likelihood principle, can obtain in-sample
estimates of the conditional log likelihood.

For instance, deep neural nets trained with mean squared
error as the loss function provide estimates of the condi-
tional log likelihood for free, if errors are assumed to be
Gaussian distributed. In our approach, one can also employ
any probabilistic regression model for obtaining the condi-
tional likelihoods [Dabney et al., 2018, Alexandrov et al.,
2020, Guen and Thome, 2020, Rasul et al., 2021, Gouttes
et al., 2021, Tang and Matteson, 2021, Pal et al., 2021, Yoon
et al., 2022, Das et al., 2022]. Though we advocate for the
simpler approach mentioned above as it accommodates a
large variety of time series forecasters [Bai et al., 2018, Ore-
shkin et al., 2019, Kitaev et al., 2019, Benidis et al., 2020,
Zeng et al., 2021, Fan et al., 2021, Gu et al., 2021, Challu
et al., 2022]. For discrete-valued time series, one simple and
generic choice is to obtain conditional log likelihood from
any classifier trained with cross-entropy loss.

We must ensure that the in-sample estimates of conditional
log likelihood are not overfit to the time series. This is partic-
ularly relevant when the estimate is for quantifying whether
additional information from another time series improves
the (in-sample) predictability of a given time series. Intu-
itively, a highly expressive discriminator (timeseries fore-
caster) tends to learn a non-smooth function overfitting w.r.t.
training data points sparsely populated in high-dimensional
space. For this aspect, we take inspiration from the liter-
ature on adversarial learning for deep neural nets, where
high susceptibility of models to small noise, imperceptible
to humans, is a common problem. Such a phenomenon is
observed despite standard regularization techniques, such
as weight decay, dropout, batch normalization, etc. Quot-
ing Yoshida and Miyato [2017], “adversarial training is
designed to achieve insensitivity to the perturbation of train-
ing data" [Goodfellow et al., 2015, Zhao et al., 2020, Dong
et al., 2020]. While for the problem of TE estimation, there
is neither an “adversary”, nor a need to generalize to unseen
domains [Volpi et al., 2018], the important takeaway is that
the functional outputs of an expressive discriminator must
be regularized to be consistent w.r.t. the perturbations of its
input, thus ensuring local Lipschitz-like properties of the
output function [Yang et al., 2020, Jiang et al., 2020]. This
allows a safe and robust in-sample estimation of TE.

The challenge is to select an appropriate perturbation model.
Adding Gaussian noise is a popular choice. We argue in
favor of an even more general perturbation model, which
may be agnostic to the data distribution while respecting the
underlying data manifold locally (since the desired smooth-
ness of model outputs is local in input space), and preferably
non-stationary w.r.t. input space. Accordingly, we propose a
novel perturbation model, based on locality sensitive hash-
ing (LSH), which is a well known technique for finding
nearest neighbors in high dimensions [Indyk and Motwani,
1998, Kulis and Grauman, 2009, Grauman and Fergus, 2013,
Zhao et al., 2014, Wang et al., 2017]. As per the theory of
LSH, a hashcode represents a local neighborhood in the
input space, characterizing the underlying data manifold
locally. We propose that the outputs of a discriminative
model should be consistent within a hashcode bin (one can
think of it as a histogram bin in high dimensions), which is
accomplished by generating perturbations local to a bin.

Sampling perturbations from a hashcode bin doesn’t intro-
duce any bias since the hashcode bins correspond to data-
driven histograms capable of characterizing the underlying
true data distribution [Lugosi and Nobel, 1996] as we show
in our theoretical analysis of the estimator (Sec. 3.2). For
practical purposes, perturbations are generated from a con-
vex combination of the existing data points from the same
bin (i.e. sampling from within a convex hull of datapoints);
see Fig. 3. Furthermore, we define a simple yet effective
information theoretic measure to ensure the consistency
of the model outputs, i.e. minimize conditional entropy of



the model output given the locality sensitive hashcodes of
perturbed inputs.

The rest of this paper is organized as follows. After
discussing the basics of TE and related works in Sec. 2,
we present a novel TE estimator in Sec. 3, along with
theoretical guaranties (Sec. 3.2). A thorough empiri-
cal analysis using a synthetic dataset, a neuroscience
dataset of activity in different brain regions, and two
financial datasets of high frequency trading activity in
US stocks is provided in Sec. 4. Code is availed here:
github.com/morganstanley/MSML/papers/
Direct_Estimate_Transfer_Entropy.

2 BACKGROUND

Transfer entropy, introduced originally by Schreiber [2000],
refers to the reduction in uncertainty for forecasting a time
series given the knowledge of another time series.

Let X , Y be two discrete- or real-valued time series. Let
Xt, Yt be the random variables denoting X , Y at time t re-
spectively, where t ∈ {0, 1, . . . , }, and let xt, yt be their ob-
served values. Furthermore, let Yt denote the t-dimensional
vector Yt ≡ (Y0, · · · ,Yt); and let yt be a realization of Yt.
Then, the conditional entropy of Yt, given its past observa-
tions, i.e., the uncertainty in forecasting Y for the current
timestep, conditioned on its history, is represented as

H(Yt|Yt−1) ≡ Eyt−1∼Yt−1
[log p(yt|yt−1)] . (1)

Uncertainty when forecasting time series Y, given the knowl-
edge of both its own past as well as X’s previous realiza-
tions, is expressed as the following conditional entropy:
H(Yt|Yt−1,X t−1). Mathematically, TE is the difference
between the two conditional entropy terms, measuring the
additional information on Yt available in the past realiza-
tions of X , that is not already present in the past of Y .

TX→Y = H(Yt|Yt−1)−H(Yt|Yt−1,X t−1) ≥ 0 (2)

A popular approach for estimating TE is based on k nearest
neighbors [Lindner et al., 2011, Zhu et al., 2015], which
measures TE indirectly through joint entropy [Kozachenko
and Leonenko, 1987], so Eq. 2 must be re-written as,

TX→Y = H(Yt|Yt−1)−H(Yt|Yt−1,X t−1)

= H(Yt)−H(Yt−1)−H(Yt,X t−1)+H(Yt−1,X t−1).

Due to significantly different scales of distances across these
four terms, the error biases do not cancel each other. At-
tempts to correct the compounding of biases by estimating
joint entropy terms together, using nearest neighbors in the
joint space of all the variables, cannot adequately address
vulnerability to the dependency based noise [Kraskov et al.,
2004], Lindner et al. [2011]. The above formulation is par-
ticularly problematic when Y has a long memory, and con-
sequently, the conditional random variable, Yt−1, is high di-
mensional, with noisy dependencies w.r.t. the target variable

(a) 2-D space. (b) 2-D manifold.

Figure 3: This figure illustrates the concept of hashcode-
based perturbations to regularize the output function. In
3(a), data points (Red or Yellow dots) are dispersed in 2-D
space; the lines represent hash functions, and their inter-
sections correspond to hashcode bins. Each bin represents
a local neighborhood in the input space, data points in a
bin being neighbors of each other. Owing to the locality of
a hashcode bin w.r.t. the data manifold, perturbations are
generated (Blue dots) in a bin from randomly sampled con-
vex combinations of the existing data points. We propose
that model outputs for the perturbations within a hashcode
bin should be consistent w.r.t. each other. In 3(b), hashcode
bins from 3(a) are shown on a manifold embedded in 3-
D space, illustrating how hashcode bins represent the data
manifold locally, thereby leading to a non-stationary per-
turbation function. For instance, the bin corresponding to
yellow dots has a data distribution of highest entropy, thus
implying perturbations of the greatest magnitude in the bin.

Yt; for example, when only a few of the many dimensions
in Yt−1 explain Yt, while the other ones are noise compo-
nents. Same applies for noisy dependencies of X t−1 w.r.t.
Yt, when estimatingH(Yt|Yt−1,X t−1). When estimating
TE between time series from real world domains like finance
and neuroscience, it is natural to expect such long ranged,
noisy temporal dependencies. In a recent work, Ma [2019]
shows TE to be equivalent to Copula entropy, but their es-
timator also relies upon estimating joint entropy terms in
high dimensions. Kernel density or histogram-based estima-
tors [Ver Steeg and Galstyan, 2012, Zuo et al., 2013] also
suffer from dependency based noise. Even without noise,
these estimators are efficient only in low dimensions.

TE can also be expressed as conditional mutual information:

TX→Y = I(X t−1 : Yt)− I(X t−1 : Yt−1). (3)

While theoretically appealing, it is notoriously difficult
to estimate mutual information between two high dimen-
sional variables. Zhang et al. [2019] propose to estimate TE
through Eq. 3 using the deep neural nets based estimator of
mutual information (MINE) due to Belghazi et al. [2018].
McAllester and Stratos [2020] show that MINE has high
variance which increases with true mutual information value
itself, which renders it unsuitable for estimating TE. Next,
we introduce a novel estimator of TE in Sec. 3.

github.com/morganstanley/MSML/papers/Direct_Estimate_Transfer_Entropy
github.com/morganstanley/MSML/papers/Direct_Estimate_Transfer_Entropy


3 DIRECT ESTIMATE OF TE

We propose a direct empirical estimate of TE leveraging
upon highly expressive timeseries forecasting models such
as in deep learning. While the key idea is simple and general,
we discuss how and why this approach should work well
in practice despite potential concerns such as model mis-
specification, mis-calibration, etc. Moreover, we introduce a
novel perturbation based regularization model for ensuring
a robust estimate of TE. In Sec. 3.2, we establish that the
estimator is consistent with low variance.

Referring back to Eq. 2 in Sec. 2, we propose to estimate TE
via the direct estimation of the conditional entropy terms.
H(Yt|Yt−1) is expressed as,

Ĥ(Yt|Yt−1) = − 1

n

n∑
i=1

log p(y
(i)
t |y

(i)
t−1). (4)

Identical estimation logic applies for H(Yt|Yt−1,X t−1).
Here, we make an important observation: a discriminative
model that is trained by maximizing the conditional log
likelihood of the target variable given the input variable can
be employed as an estimator of conditional entropy.

For discrete-valued time series with support set Z, a classi-
fier trained by cross entropy loss can provide an empirical
estimate of conditional entropy itself.

Ĥq(Yt|Yt−1) =
1

n

n∑
i=1

−
∑
z∈Z

I
y
(i)
t =z

log fz(y
(i)
t−1) (5)

=
1

n

n∑
i=1

− log q(y
(i)
t |y

(i)
t−1), (6)

where I(.) is an indicator function; f(y
(i)
t−1) is output of

the classifier, a multinomial vector of inferred class prob-
abilities; log q(y

(i)
t |y

(i)
t−1) is an estimate of conditional log

likelihood. By Jensen’s inequality, it is well known that a
proposal distribution q(.) for p(.) upper bounds the cor-
responding entropy function, Hq ≥ Hp, with the error
bias being KL-divergence between the two distributions,
DKL(p(.|.)||q(.|.)) > 0 [Cover, 1999].

For continuous valued time series, any regression model
trained with mean squared error as the loss function can
be employed to estimate conditional entropy if errors are
assumed to be Gaussian distributed: yt ∼ N (f(yt−1), σ).
f(yt−1) can be a highly expressive deep neural net which
can essentially approximate any functional relationship be-
tween target yt and input yt−1.

Besides the above two simple and generic choices which
are prevalent in literature of supervised deep learning, any
deterministic discriminator (timeseries forecaster) trained
with maximum likelihood objective or a probabilistic dis-
criminator is equally applicable here.

As per the above, a discriminator can act as a conditional
entropy estimator with the advantage of being efficient even
in very high dimensional noisy feature spaces. The empirical
estimate of TE is directly expressible in terms of the ratio
of the two conditional likelihood terms, q(yt|yt−1,xt−1))
and q(yt|yt−1). The estimator has an error bias naturally
inherited by the model bias in the discriminator. The choice
of model including its hyperparameters, q(.|.), is the same
for estimating the two terms. This should help reducing the
model bias since the empirical estimate relies only on the
ratio of the two terms.

Furthermore, since the goal is to quantify the decrease in
uncertainty and not to maximize the accuracy of the original
model for forecasting, from many choices of neural archi-
tectures for timeseries forecasting such as TCNs, RNNs,
Transformers, etc., one which is known to be more robust
to overfitting, model mis-calibration, is preferred. One can
even use more lightweight versions of neural architectures
than those used for forecasting, and employ standard gen-
eralization techniques such as weight decay, dropout, early
stopping, small batch size, etc.

In theory, the error bias for estimating TE with conditional
likelihood q(.|.) stemming from a discriminator, as opposed
to true conditional likelihood p(.|.), is as below.

T q
X→Y − TX→Y = DKL(p(yt|yt−1)||q(yt|yt−1))

−DKL(p(yt|yt−1,xt−1)||q(yt|yt−1,xt−1)) (7)

The two terms in the r.h.s. are KL-divergence terms which
are error biases of Hq(Yt|Yt−1) and Hq(Yt|Yt−1,X t−1)
respectively. Since both terms are non-negative, D(.||.)) ≥
0, they counteract each other leading to a smaller magnitude
of the overall error bias of TE. Theoretically, one should
expect the error bias of Hq(Yt|Yt−1,X t−1) to be larger
than or equal to its counterpart due to the conditioning upon
a higher number of dimensions; this should lead to a net
negative error bias. In addition, there is also a bias due to the
finite sample size for both of the conditional entropy terms,
which could be positive or negative; we analyze variance of
the estimates due to finite samples size in Sec. 3.2.

For practical purposes, we suggest normalizing TE with the
first conditional entropy term in Eq. 2, quantifying relative
decrease in uncertainty. This measure is more robust to a
potential issue of model mis-calibration.

For ensuring a robust estimate of TE, we also propose a
perturbations based regularizer.

3.1 REGULARIZE VIA LSH-PERTURBATIONS

Machine learning literature provides a plethora of discrim-
inative models for time series modeling which can be em-
ployed in our TE estimator. The challenge, however, is that
an expressive discriminator like a deep neural net, with an
ability to learn any function, can overfit to training data, even



under standard generalization techniques such as weight
decay, dropout, etc. In sparsely populated regions of the
underlying manifold of model inputs, the output function
may be non-smooth.

Inspired by recent works in adversarial training of deep
neural nets [Goodfellow et al., 2015, Zhao et al., 2020,
Dong et al., 2020], we propose to accomplish Lipschitz-
like smoothness of the output function by ensuring that
model outputs are consistent w.r.t. perturbations in inputs.
A good choice for a perturbation model should be able to
characterize the underlying data manifold locally, since the
perturbations are supposed to be local w.r.t. inputs.

The general concept of data perturbations based regulariza-
tion can be formalized as below.

ȳ ∼ g(y) (8)

Here, g(.) is a model that generates perturbations for a given
input y. An explicit way to ensure that the model output
function, f(.), is consistent w.r.t. perturbations in input, i.e.,
f(y) = f(ȳ), is to define a regularization penalty for incon-
sistent model outputs on perturbations. Later in this section,
we present an information theoretic regularization criterion
which expects model outputs on perturbations of a given
input to be of low entropy. One can even employ a non-
invasive regularization by tuning the hyper-parameters of a
model. An implicit way to ensure consistency is to augment
the training data with perturbed data points. Data augmenta-
tion is not used here to generalize to unseen domains, but to
ensure that the learned model output function is smooth in
the local vicinity of training data points, especially if those
points were sparsely populated in the input space.

A perturbation model challenges the primary (discrimina-
tive) model by perturbing its inputs locally in the data mani-
fold. It can be parametric or non-parametric: perturbations
based on Gaussian noise are described in [Rothfuss et al.,
2019, Maaten et al., 2013, Bishop, 1995]. A good choice of
perturbation model should characterize the data manifold
locally, whereas the primary model may be inefficient at
modeling the local manifold. While not necessary for practi-
cal purposes, if the perturbation model can also characterize
the underlying true data distribution, p(yt−1, yt), it would
theoretically ensure that there is no error bias from using the
perturbations based regularization or data augmentations for
estimating TE as we show in Sec. 3.2.

We propose a perturbation model based upon locality sensi-
tive hashing (LSH), which perturbs inputs in local neighbor-
hoods of input space. Such neighborhoods are defined from
the hashcodes that split the input space into different regions.
LSH is a randomized algorithm, that is proven to be efficient
in finding nearest neighbors in very high dimensions [In-
dyk and Motwani, 1998, Zhao et al., 2014, Wang et al.,
2017]. The core idea is that similar data points according to
some distance metric are assigned the same hashcodes with
probability inversely proportional to the distance metric.

This theoretical property of hashcodes implies that a hash-
code bin represents a local neighborhood (manifold) in input
space. We propose a hashcode-based regularization such
that model outputs are smooth w.r.t. perturbations of inputs
within a hashcode bin. We generate perturbations from ran-
domly sampled convex combinations of the existing data
points in a bin; see Fig. 3 for an illustration. In essence,
LSH plays the role of histograms in high dimensions. In his-
togram bins, one has explicit boundaries of bins, so sampling
from within a bin is easier. Whereas in a high dimensional
setting, the boundaries of a bin can only be estimated, as an
example from the convex hull of the data points in that bin.

One advantage of this approach is that the perturbation
model is non-stationary w.r.t. the input space, since the per-
turbations are generated locally w.r.t. hashcode bins. Further-
more, the perturbation model does not make any parametric
assumption about the global distribution of data or the data
manifold. Mathematically, Eq. 8 can be re-expressed for the
hashcodes based perturbation function as follows.

ȳ ∼ g(c) s.t. h(y) = h(ȳ) = c, (9)

where, h(.) is an LSH function, represented by a set of H
hash functions, each outputting one bit, mapping an input
y to its hashcode c ∈ {0, 1}H . The perturbation model
g(.) samples a perturbation w.r.t. a hashcode bin, and not
a single input. In practice, it is efficient to sample all the
perturbations together across all the hashcode bins.

A pseudo code is presented in Alg. 1. The input data points
(y(1), · · · ,y(n)) are the inputs of a model that we regular-
ize, i.e. a discriminator for our problem. First, we compute
hashcodes for all the data points and arrange the data into
their corresponding unique hashcode bins. For each bin, a
Dirichlet distribution is then initialized with hyperparameter
α, and of dimension equal to the number of data points in
the bin. For ni data points in the ith bin, we sample nib
number of perturbations from that bin. Each perturbation is
sampled in-turn by randomly drawing a multinomial vec-
tor from the Dirichlet distribution, which acts as a random
convex combination of all the points in the bin.

Since we are interested in local smoothness given by hash-
codes bins representing local neighborhoods, we propose a
regularization criterion based on information theory. In par-
ticular, we minimize the conditional entropy of the model
outputs given the hashcode representation of the inputs:

min
f(.)
H(f(Y)|h(Y)). (10)

Although f(.) & h(.) are deterministic, both f(Y) & h(Y)
are stochastic given their dependence on Y . Empirical esti-
mate of this regularization term is easy and cheap to com-
pute. For each hashcode bin, we compute the model outputs
for existing as well as the sampled perturbations from Alg. 1,
and then we compute an empirical estimate of entropy of



Algorithm 1 Generate Perturbations via LSH

Require: {y(1), · · · ,y(n)}, α, b
1: c(1), · · · , c(n) ← computeHashcode(y(1), · · · ,y(n))
2: Y(1), · · · ,Y(m) ← hashcodeBin({(y(1), c(1))}ni=1)

% Y(i) has all the inputs from ist hashcode bin
3: for i = 0→ m do
4: ni ← countSamplesInBin(Y(i))
5: n̄i ← ni ∗ b % no. of perturbations in ith bin
6: for j = 0→ n̄i do
7: πj ∼ Dir(α1ni

) % sample convex combination

8: ȳ
(i)
j ← πj ∗Y(i) % perturbation in the bin

9: end for
10: end for
11: Return {(ȳ(i)

j , c
(i)
j )}m,ni

i=1,j=1

those outputs within the bin. Since the target variable is one-
dimensional in our problem, i.e. observation yt for timestep
t, computing entropy of the model outputs is easy even for
the case of conditionals densities; one can, for example, use
non-parametric estimators like histograms. This way, we
iterate through all the bins to finally compute the conditional
entropy term,H(f(Y)|h(Y)).

We use the regularization criterion in Eq. 10 in a non-
invasive manner to either tune the vast space of hyperpa-
rameters of a model like GBM, or for data augmentation to
regularize the model with LSH perturbations. As for tuning
LSH model, both the type and number of hash functions
can be tuned independently of the TE estimation problem.
It’s valuable to keep the mean (minimum) number of data
points per bin above a certain threshold. The threshold val-
ues can be decided intuitively so as to impose the desired
regularization upon the neural output function.

While our approach admits any LSH algorithm, we also
propose a novel (greedy) algorithm for unsupervised learn-
ing of locality sensitive hash functions and use it for our
experiments. See supplementary material for details.

3.2 THEORETICAL ANALYSIS

As discussed above, we use locality sensitive hashing (LSH)
based regularization for learning the conditional log like-
lihood estimates by perturbing the inputs within the same
hashcode bin. Perturbation may lead to a different distri-
bution than the data distribution, and thus the conditional
likelihood estimates derived from this distribution may be bi-
ased. We establish the conditions under which the perturbed
distribution yields consistent estimates. Let gn,H(.) denote
the histogram distribution obtained by using H locality sen-
sitive hash functions and n samples. We will see LSH based
data generation as sampling from a data-driven histogram.
Using this insight, results from Lugosi and Nobel [1996]

and a proof technique similar to Rothfuss et al. [2019], we
demonstrate consistency of our sampling approach under
some regularity conditions.

Theorem 1. Let limn→∞
2H

n → 0, limn→∞
tH logn

n → 0
and the input space, y ∈ Rt is bounded. Consider any
function, f : y → (0,∞) with log f having finite second
order moment w.r.t to p and gn,H . Then,

lim
n→∞

|Ep [− log f(y)]− Eg[− log f(y)]| → 0. (11)

The above result establishes that the perturbed distribution
will yield same estimates in expectation as n becomes large.
As a corollary, we can establish the consistency of our TE
estimator. We can rewrite,

T q
X→Y = Ep log

q(yt|yt−1,xt−1)

q(yt|yt−1)
, (12)

and the TE estimated using gn,H be,

T q,g
X→Y = Eg log

q(yt|yt−1,xt−1)

q(yt|yt−1)
. (13)

Corollary 1. If the conditions in Thm. 1 hold, and the model
distribution, q > 0 everywhere. Then letting f(yt,xt−1) =
q(yt|yt−1,xt−1)

q(yt|yt−1)
, we have,

lim
n→∞

|T q
X→Y − T

q,g
X→Y | → 0. (14)

Remark: To find a good discriminator q, we op-
timize the LSH regularized MLE objectives, i.e.,
minq −Egn,H

log q(yt|.). As n becomes large, this is the
same as computing expectation over data distribution p due
to Thm 1, minq −Ep log q(yt|.). If the function class is ex-
pressive enough, such as a neural network for which the
universal approximation theorem holds, the optimal discrim-
inator would correspond to the correct conditional distribu-
tion derived from population distribution [Lu and Lu, 2020].

The above results characterize the distribution of perturbed
samples and the behaviour of estimates under that distribu-
tion. Another aspect of our approach is that it relies on finite
sample size, and thus, we next characterize sample complex-
ity of our estimator to obtain high-confidence estimates.

Theorem 2. For some data distribution p and conditional
model distribution q and − log q(yt|.) ∈ [−Q,Q]. Let
T̂ q
X→Y denote the n-sample estimate of transfer entropy.

Then with probability 1− δ (δ > 0), we have

|T̂ q
X→Y − T

q
X→Y | ≤ 2Q

√
(2/n) ln(4/δ). (15)

As a consequence of the above result, we can bound the
error variance as below:

E(T̂ q
X→Y − T

q
X→Y )2 ≤ 4Q2((1− δ) 2

n
ln

4

δ
+ δ). (16)

The first term is the dominant term in above expression and
thus, the variance of the estimator reduces at the rate of 1

n .



4 EMPIRICAL EVALUATION

First, to demonstrate the efficacy of the proposed estimator
when the ground truth is known, we evaluate on a synthetic
dataset (Sec. 4.1). We also perform extensive analysis on two
real world examples: a neuroscience dataset (Sec. 4.2) and
a dataset representing US stock market activity (Sec. 4.3).

Estimators for Comparison We evaluate four different
baseline estimators of TE from the literature: (i) kNN estima-
tor: kNN; (ii) Conditional kernel density estimation: CKDE;
(iii) Copula entropy based estimator of Ma [2019], referred
as Copent. (iv) Conditional mutual information based esti-
mator of Zhang et al. [2019], referred as ITENE. To estimate
TE in terms of conditional entropies directly using a dis-
criminative model, we employ two neural models: Temporal
Convolution Networks (TCN) and N-Beats, as well as Gradi-
ent Boosted Machines (GBM). LSH indicates that it is a per-
turbation model based on locality sensitive hashing (LSH):
LSH-RC imposes regularization penalty for inconsistent
model outputs, while LSH-A involves data augmentation.
The GBM model uses LSH-RC for tuning a large set of
hyper-parameters (GBM-LSH-RC*). For neural models, we
use LSH-A (TCN-LSH-A* & NBeats-LSH-A*). For the
baseline of Gaussian noise as a perturbation model, we
likewise have GN-RC and GN-A. If no perturbation model
is used, it is referred to as “No Reg.", another baseline.
Standard regularization techniques like weight decay and
dropout are used for all models, including “No Reg.". For
continuous time series, the models are used as regressors
trained with mean squared loss, and for discrete-valued time
series as classifier with cross entropy loss. Each model has
its own strength depending on the nature of data, so in some
cases, we present results for the best of the three discrimina-
tive models (GBM, TCN, NBeats) accordingly.

Parameter Settings In regards to tuning a discrimina-
tor (timeseries forecaster), hyperparameters are tuned for
q(yt|yt−1) alone, which is then used for q(yt|yt−1,xt−1)
as well. For instance, if we want to compute transfer entropy
from every timeseries j to a given timeseries i, we tune the
hyperparameters of the discriminator only once, just using
timeseries i. In the perturbation model, we generate new
samples 10 times the original number of samples, i.e. b=10
in Alg. 1 (for LSH-A, b = 3). For sampling from Dirichlet
distribution in Alg. 1, α=0.1. Number of hash functions
for LSH is 15, H = 15. These parameters do not require
fine-tuning, so they were set manually. We explored various
values of k for kNN estimator; k = 1, 3, 5 were equally good
across all experiments, compared to a higher value of k.

4.1 EVALUATION ON SYNTHETIC DATA

Our algorithm for generating binary valued synthetic data
is as follows. First we draw 3000 samples for the target

(a) Noisy Dependency, t=10 (b) Noisy Dependency, t=20

(c) t=5 (d) t=10

Figure 4: Estimates of TE are plotted w.r.t. the groundtruth
for a synthetic dataset; t refers to the time lag for how
far back we look into the past to forecast for the current
timestep. In 4(a) and 4(b), yt has dependence w.r.t. only one
of the dimensions of xt−1 whereas in Fig. 4(c) and Fig. 4(d),
all the dimensions of xt−1 have dependence w.r.t. yt. The
suffix “*" refers to the proposed TE estimator.

variable, yt, s.t. p(yt = 1) = 0.5. We assume zero tempo-
ral dependencies within time series Y, i.e. H(Yt|Yt−1) =
H(Yt) = log(2). Next, we randomly select one of the
t dimensions of the conditioned variable xt−1, denoted
by xr, such that it depends on the target yt, and the rest
of the t − 1 dimensions are independent of yt; p(xr =
1|yt = 1) = q, p(xr = 1|yt = 0) = 1 − q. This implies,
H(Yt|X t−1,Yt−1) = −q log q−(1−q) log(1−q), which
is basically the entropy of a biased coin with probability of
head equal to q. Overall, TX→Y = log(2)− q log q − (1−
q) log(1− q). For q = 0 or q = 1, TX→Y attains its maxi-
mum value of log(2). For q = 0.5, that is using an unbiased
coin to sample xr given yt, there is no transfer of entropy,
TX→Y = 0. We generate synthetic data for varying values
of q, from q = 0 to q = 0.5. The most important aspect
of this data generation step is that only one of the many
dimensions in xt−1 is dependent on yt, while the others are
not. In Sec. 2, we referred to this as noisy dependency.

In Fig. 4, we present experimental results for the estimation
of TE in the synthetic dataset.1 Here, we only use GBM
model as a discriminator. The figures differ by the dimension
of the conditioned variables (t = 20, t = 10, t = 5), xt−1 or
yt−1, i.e. how far back we look into the past for forecasting
time series Y .

1Copent estimator is excluded from the figure since its esti-
mates are way beyond the range of true TE.



0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 0.0

0.6 0.3 0.1 0.0 0.1

0.3 0.1 0.0 0.0 0.0

0.4 0.2 0.1 0.1 0.0

V1 LM RL AL AM

AM

AL

RL

LM

V1

0

0.2

0.4

0.6

Source

T
a
r
g
e
t

(a) NBeats-LSH-A*

2.6 2.0 1.9 1.7 1.9

2.0 2.4 1.8 1.7 1.9

1.8 1.7 2.4 1.6 1.7

1.7 1.6 1.6 1.8 1.6

1.8 1.9 1.7 1.6 1.9

V1 LM RL AL AM

AM

AL

RL

LM

V1

1.8

2.1

2.4

(b) kNN

10.1 7.6 3.7 2.3 6.3

3.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.1 0.9 1.4 0.1 0.4

8.0 4.4 5.4 4.3 9.3

V1 LM RL AL AM

AM

AL

RL

LM

V1

0

3

6

9

(c) Copent

0.0 0.2 0.0 0.0 0.0

0.1 0.0 0.0 0.2 0.2

0.2 0.3 0.0 0.0 0.2

0.2 0.0 0.0 0.0 0.1

0.2 0.0 0.0 0.0 0.0

V1 LM RL AL AM

AM

AL

RL

LM

V1

0

0.1

0.2

(d) ITENE

Figure 5: Estimates of TE between mouse visual areas. The matrices shows the TE values TSource→Target with source regions
along columns and target regions along rows. The brain regions are sorted by ascending hierarchical order from left to right
and top to bottom. V1 can be seen as the gateway of the visual system. The result of our method in (a) reveals the brain
structure that matches current knowledge of the visual system, while others do not.

In reference to Fig. 4(a) and Fig. 4(b), the kNN-based esti-
mator provides a severe overestimate of TE, and is almost
agnostic to the dependency of xr on yt, driven significantly
by noisy signal from all the other 2t−1 dimensions. Its error
reduces when dependency between xr and yt approaches
the highest value. Despite the popularity of the estimator, the
results are unsurprising for the aforementioned technical rea-
sons. CKDE estimates correlate to the ground truth values
of TE, but with a significant error bias. ITENE obtains the
TE estimates with very low error bias. Our approach of LSH-
RC* also has very low estimation errors, although there are
a few instances where it is high. One challenge is to opti-
mize the trade-off between the log likelihood objective and
the regularization term. In contrast, the baseline approaches
of directly using a discriminator without regularization (No
Reg.), and the Gaussian noise based data augmentation are
both completely unsuccessful. Regularization using Gaus-
sian noise based data perturbation model (GN-RC) seems
to work for smaller time lag of t = 10.

Besides the above settings of noisy dependency, in Fig. 4(c)
and Fig. 4(d), we present results for the case of yt being
dependent w.r.t. all the dimensions of xt−1. In this setting,
while our model obtains the best estimates, the baseline
models perform relatively better than the former setting.

It is worth noting that the above described process of gen-
erating synthetic data is not artificial, but recreates highly
noisy temporal dependencies observed between and within
time series from domains such as neuroscience and finance.

4.2 EVALUATION ON NEUROSCIENCE DATA

Next, we applied the method to the neuroscience
dataset, Allen Brain Observatory–Visual Coding Neuropix-
els [Siegle et al., 2021], by offering a metric from infor-
mation theory perspective to discover the structure of the
mouse brain and verify whether the results agree with the
current findings of the visual system. Both anatomical and
functional studies have shown that the brain visual system

is hierarchically organized and the visual information prop-
agates across the cortical areas in order accordingly [Siegle
et al., 2021, Harris et al., 2019]. During the early visual
process, it is expected to see that the activities of low-order
regions drive those of high-order regions.

Fig. 5 presents the results, showing estimated TEs between
regions. The columns indicate the source regions and the
rows indicate the target regions. The hierarchical order of
the brain regions, from low to high, is V1, LM, RL, AL,
and AM [Harris et al., 2019, Siegle et al., 2021], which are
sorted along rows and columns. A larger value indicates the
source region contributes more significantly to the target
region’s entropy, which implies the direction of information
flow and the source region has an impact on the activity
of the downstream target region. In Fig. 5(a), all large val-
ues concentrate in the bottom left triangle, which means
the low-order regions impact the high-order regions, thus
the conclusion agrees with the hierarchical order found by
other anatomical or functional methods. In contrast, other
methods in Fig. 5(b), (c), and (d) do not properly reveal
the hierarchical relationships among the visual areas, es-
pecially they present many large positive TE values in the
top right triangle matrix. For example, these methods show
TAM→V1 > 0, meaning AM impacts V1, which is not rea-
sonable bio-physically.

4.3 EVALUATION ON US STOCK DATA

We consider the top 64 most actively traded stocks in the US,
and define two sets of time series for TE estimation. The
first concerns the frequency of order arrivals during regular
intervals: for a fixed interval of 100 milliseconds, we count
the number of all orders for each stock over the course of 6
trading days. The second set of time series constitutes the
observed mid-price (MP) changes over 1 second intervals
for each of the same 64 stock, over a 14 day-period. In
both settings, we consider context size of 120 timesteps to
forecast the current timestep (t = 120).



(a) Liquidity: Influenced (b) Mid-Price: Influenced (c) Liquidity: Influencer (d) Mid-Price: Influencer

Figure 6: US Stocks: Average precision is computed as a measure of consistency between transfer entropy estimates from
two adjacent time windows. The suffix “*" refers to the proposed TE estimators.

We use a window of 3000 timesteps (5 minutes) for estimat-
ing transfer entropy between each pair of 64 stocks; for the
case of mid-price temporal dynamics, a window is of one
hour (3600 timesteps). We construct many such windows
of identical size during the period of 6 days (or 14 days),
so that the time gap between two subsequent windows in-
creases exponentially in time. We expect transfer entropy
estimations from two windows close in time to be similar/
consistent to each other, and significantly different, or incon-
sistent, as they are further apart in time (due to the inherent
heteroskedasticity of competitive markets).

In this context, transfer entropy can be represented as a
sequence of 64-by-64 matrices. We use two criteria for such
an evaluation of consistency versus inconsistency. For a
given security, we evaluate if the top 8 securities influenced
by it are consistent between two adjacent windows (row-
wise consistency). Denoting transfer entropy matrices from
two adjacent windows as T (1) and T (2), we set the top 8
values in each row of T (1) as a positive label and the rest
as negative labels, and then we use T (2) as scores w.r.t. the
labels from T (1), so as to compute Average Precision (AP)
of the top 8 influenced securities. We expect this score to
drop as we increase the time gap between two adjacent
windows, as the list of top securities influenced by a security
should change as market conditions evolve.

In Fig. 6(a) and 6(b), we present the results for this eval-
uation criterion. For a slide size of up to 1000 timesteps
between two adjacent windows, we expect a very high
AP score (high consistency), since it is reasonably small
compared to the window size of 3000 timesteps (or 3600
timesteps). As we increase the size to be a large multiple of
the window size, average precision should drop, and then
it may remain small or decrease further. NBeats-LSH-A*
outperforms all other estimators, following the expected
pattern of consistency for the criterion explained above. (We
exclude CKDE from this evaluation since it doesn’t scale
to high dimensions, and performs poorly on the synthetic
datasets.) Estimations with no regularization or Gaussian
noise based perturbation (GN-RC & GN-A) lead to low
consistency regardless of the slide size; in Fig. 6(a), GN-A

seems to provide high consistency for all the slide sizes
which is not a desired pattern of consistency either. The
consistency scores for the kNN estimator remain high for
small slide sizes, but drops sharply, although sometimes it
provides high consistency even at large slide sizes. Copent
and ITENE estimators have consistency scores almost con-
stant w.r.t. slide size, indicating their vulnerability to noise.
The choice of the underlying discriminator in our estima-
tion approach depends upon the phenomenon of interest; for
instance, GBM-LSH-RC* performs well for modeling the
order activity (discrete valued time series) whereas TCN-
LSH-A* is better suited for modeling the temporal dynamics
of mid-prices of stocks (continuous valued time series).

Another criterion for evaluation is to see if the top 8 secu-
rities influencing a given security are consistent between
two adjacent windows. Similar to the previous exercise, we
compute average precision but column-wise instead. Results
shown in Fig. 6(c) and Fig. 6(d), exhibit similar patterns of
superiority of our proposed estimator w.r.t. the baselines.

Overall, the experimental results suggest that transfer en-
tropy estimation can be unreliable when dealing with long
ranged and noisy temporal dependencies, as observed in
real world domains like finance and neuroscience. Our pro-
posed estimator, regularized using an LSH based perturba-
tion model, shows robustness in the selected experiments.

5 CONCLUSIONS

We established that empirical estimation of transfer entropy
between time series is a challenging problem, especially
if temporal dependencies are long ranged and noisy. Such
noise is common in domains such as finance and neuro-
science, though difficult to characterize. We explained the-
oretical reasons for why well known estimators are prone
to such noise, and propose a novel method - a discriminator
regularized using a perturbation model based on locality
sensitive hashing. We proved consistency of the estimator,
and that it’s variance decreases linearly in sample size. It is
also shown to be efficient empirically in synthetic as well as
real world settings of neuroscience and finance domain.
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