452

453
454

455
456
457

458

459

461
462

464

466

467
468

A Probability Distribution of Communities and Bipartites

Theorem A.1. Given a graph G and an ordering m, assuming there is a deterministic function that
provides the corresponding high-level graphs in a hierarchical order as {G*,GL=1, ..., G}, then:

p(G =G5 m) =p({G".¢" ", ... ¢} m) = p(G" . m [{G" 71, ...6°)) .. p(G" | G°) p(G")

p(G"
= H 7Gx p(G?) ©)

Proof. The factorization is derived by applying the chain rule of probability and last equality holds
as the graphs at the coarser levels are produced by a partitioning function acting on the finer level
graphs. Overall, this hierarchical generative model exhibits a Markovian structure. O

A.1 Proof of Theorem[3.1]
Lemma A.2. Given the sum of counting variables in the groups, the groups are independent and
each of them has multinomial distribution:

M

p(w = [uy, .., up]l{v1, ..., v }) = H Mu(Vin, Am)
m=1
0.,

Where.' Am = ﬁ

Here, probability vector (parameter) A\, is the normalized multinomial probabilities of the counting
variables in the m-th group.

Proof.
o p(W) 4T _ 4T
p(W{v1, ...,V }) = m](vl =1"uy, ..,viy = 1" uy)
1y
=TT, 6.
= i= IWZ' - I(Vl = 1T ug, ...,Vpr =].T llM)
HAI Vi ! H =1 Oszl
B HE71W|0W1 0%}2
— HM — '(lT 01)v1 (lT 0M)VM
VM' o
)\1 ui,; X . N)\M’,llM,q,
1uu Zl_[l ! HE”{ Upy,;! 11_[1 '

= Mu(vl, Al) Lo X MU(VM, A]V[)
O

In a hierarchical graph, the edges has non-negative integer valued weights while the sum of all the
edges in community C! and bipartite graph Bl are determined by their corresponding edges in the

-1

parent graph, i.e. w,;; = and w ! respectively. Let the random vector w := [we], ¢ g(gt) denote the

set of weights of all edges of gl such that wy = 17 w, its joint probability can be described as a
multinomial distribution:

1£(GY]
wq! ! we]
W~ Mu(w | wg, 0') = ———==—— [[(0™, (10)
MY wielt 2

13

469
470
471

472

473

474

475
476

477

478

479

480
481
482
483

484

486
487

489
490

491
492

493
494

where {6'[e] € [0,1], s.t. 176" = 1} are the parameters of the multinomial distribution Therefore,
based on lemma these components are conditionally independent and each of them has a
multinomial distribution:

p@ 16~ [Mu(wdece w0l x T Mufwdec s v, 65)
i€ V(@) (i,5)€ £(G'—1)

where {0},[e] € [0,1], s.t. 176}, = 1|V (i,7) € £(G'™")} are the parameters of the model.

Therefore, the log-likelihood of G' can be decomposed as the log-likelihood of its sub-structures:

logpy (GG = > logpu(Ci1G")+ > logpu(B ¢ A

iEVg171 (ivj)eggl—l
O

Bipartite distribution: Let’s denote the set of weights of all candidate edges of the bipartite Béj by
a random vector w := [w¢], ¢ £(Bt) » its probability can be described as

-1 l£(B})
-1 pl wi; ! Uy wlel
w ~ Mu(w | w;; ,0i;) = —EE (0;5le]) (12)
eer well e=1

where {6};[e] | 0},[e] > 0, > 6!;[e] = 1} are the parameter of the distribution, and the multinomial

|€(B;;)
w

coefficient H;‘Vi'[e], is the number of ways to distribute the total weight wi;l => 0 [e] into

all candidate edges of BY;.

Community distribution: Similarly, the probability distribution of the set of candidate edges for
each community can be modeled jointly by a multinomial distribution but as our objective is to model
the generative probability of communities in each level as an autoregressive process we are interested
to decomposed this probability distribution accordingly.

A.2 Proof of Theorem|[3.3]

For a random counting vector w € Zf with multinomial distribution Mu(w, 6), let’s split it into

M disjoint groups w = [uy, ...,ups| where u,, € me , 2%21 E,, = E, and also split the

probability vector as @ = [0, ..., 0,/]. Additionally, let’s define sum of all weights in m-th group by

. E
a random variable v,,, 1= Y " Uy e.

Lemma A.3. Sum of the weights in the groups, u,, € me , Zf:l FE,, = E has multinomial
distribution:
p({v1,...,var}) = Mu(w, [aq, ..., an])
where: a, = Z 0,.[i]. (13)
In the other words, the multinomial distribution is preserved when its counting variables are combined
Siegrist| (2017).

Theorem A.4. Given the aforementioned grouping of counts variables, the multinomial distribution
can be modeled as a chain of binomials and multinomials:

M
Mu(w,0 = (61, ...,00]) = [] Bilw = > vi, mv,) Mt(Viy Am), (14)
m=1 i<m
17 0,, N _ Om
1-%,.,,176," "™ 1786,
*It is analogous to the random trial of putting 7 balls into %k boxes, where the joint probability of the number
of balls in all the boxes follows the multinomial distribution.

where: 1, =

14

495

496
497

498
499

500

501

502
503

505
506
507
508
509

511
512
513
514
515
516
517

518
519
520
521
522
523
524

525
526
527
528
529

530

532
533

Proof. Since sum of the weights of the groups, v,,, are functions of the weights in the group:

p(w) =p(w,{vi,....var}) = p(Wl{v1, ..., var Dp({v1, -, Var })

According to lemma[A.3] sum of the weights of the groups is a multinomial and by lemma([3.2} it can
be decomposed to a sequence of binomials:

M
p({vla ceey VM}) = Mu(w’ [0517 70[]\/[]) = Hl B](’LU - Zi<m Vi?ﬁ’m)a
Qe
1 - Zi<e QOm

Also based on lemma given the sum of the wights of all groups, the groups are independent and
has multinomial distribution:

where: o, = 17 0,,, 7. =

M
WV, s vard) = [Mu(vim, Am)

m=1

0

where: A\, = 1To.

B Graph Neural Network (GNN) architectures

To overcome limitations in the sparse message passing mechanism, Graph Transformers (GTs)
(Dwivedi & Bresson!|2020) have emerged as a recent solution. One key advantage of GTs is the
ability for nodes to attend to all other nodes in a graph, known as global attention, which addresses
issues such as over-smoothing, over-squashing, and expressiveness bounds|Rampasek et al.|(2022).
GraphGPS provide a recipe for creating a more expressive and scalable graph transformer by making
a hybrid message-passing graph neural networks (MPNN)+Transformer architecture. Additionally,
recent GNN models propose to address the limitation of standard MPNNs in detecting simple
substructures by adding features that they cannot capture on their own, such as the number of cycles.
A framework for selecting and categorizing different types of positional and structural encodings,
including local, global, and relative is provided in Rampasek et al.|(2022). Positional encodings, such
as eigenvectors of the adjacency or Laplacian matrices, aim to indicate the spatial position of a node
within a graph, so nodes that are close to each other within a graph or subgraph should have similar
positional encodings. On the other hand, structural encodings, such as degree of a node, number of
k-cycles a node belong to or the diagonal of the m-steps random-walk matrix, aim to represent the
structure of graphs or subgraphs, so nodes that share similar subgraphs or similar graphs should have
similar structural encodings.

In order to encode the node features of the augmented graphs in our model, we customized GraphGPS
in various ways. We incorporated distinct initial edge features to distinguish augmented (candidate)
edges from real edges. Furthermore, for bipartite generation, we apply a mask on the attention scores

of the transformers of the augmented graph G! to restrict attention only to connected communities.
Specifically, the ¢-th row of the attention mask matrix is equal to 1 only for the index of the nodes
that belong to the same community or the nodes of the neighboring communities that are linked by a
bipartite, and O (i.e., no attention to those positions) otherwise.

The time and memory complexity of GraphGPS can be reduced to O(n + m) per layer by using
linear Transformers such as Performer (Choromanski et al.}|2020) for global graph attention, while
they can be as high quadratic in the number of nodes if the original Transformer architecture is
employed. Since our datasets are composed of graphs smaller than 1000 nodes, we leverage the
original Transformer architecture.

C Experimental details

Datasets: For the benchmark datasetst, graph sizes, denoted as Dgstaset
(|V‘max7 |V|avga |6|maz7 ‘5|avg)s are: D;m“otein = (50072587 1575,646), DEgo
(399, 144,1062, 332), Dpoint—cioud = (5.03k, 1.4k, 10.9k, 3k),

15

534
535
536
537
538

539
540
541
542

544
545
546

547
548
549

550
551

552
553
554

555

556
557
558

559
560
561
562

563

564
565
566
567
568

Before training the models, we applied Louvain algorithm to obtain hierarchical graph structures for
all of datasets and then trimmed out the intermediate levels to achieve uniform depth of L = 2. In
case of HG s with varying heights, empty graphs can be added at the root levels of those HGs with
lower heights to avoid sampling them during training. An 80%-20% split was randomly created for
training and testing and 20% of the training data was used for validation purposes.

Model Architecture: In our experiments, the GraphGPS models consisted of 8 layers, while each
level of hierarchical model has its own GNN parameters. The input node features were augmented
with positional and structural encodings, which included the first 8 eigenvectors corresponding to
the smallest non-zero eigenvalues of the Laplacian matrices and the diagonal of the random-walk
matrix up to 8 steps. We leverage the original Transformer architecture for all detests except Point
Cloud dataset which use Performer. The hidden dimensions were set to 64 for the Protein, Ego, and
Point Cloud datasets, and 128 for the Stochastic Block Model and Enzyme datasets. The number of
mixtures was set to K=20.

In comparison, the GRAN models utilized 7 layers of GNNs with hidden dimensions of 128 for the
Stochastic Block Model, Ego, and Enzyme datasets, 256 for the Point Cloud dataset, and 512 for the
Protein dataset. Despite having smaller model sizes, HiGen achieved better performance than GRAN.

For training, the HiGen models used the Adam optimizer|Kingma & Ba|(2014) with a learning rate
of 5e-4 and default settings for 51 (0.9), 52 (0.999), and € (1e-8).

The experiments for the Enzyme and Stochastic Block Model datasets were conducted on a MacBook
Air with an M2 processor and 16GB RAM, while the rest of the datasets were trained using an
NVIDIA L4 Tensor Core GPU with 24GB RAM as an accelerator.

D Additional Results

Table presents the results of various metrics for HiGen models on all benchmark datasets. The
structural statistics are evaluated using the Total Variation kernel as the Maximum Mean Discrepancy
(MMD) metric.

In addition, the table includes the average of random-GNN-based metrics (Thompson et al.}2022)
over 10 random Graph Isomorphism Network (GIN) initializations. The reported metrics are MMD
with RBF kernel (GNN MMD), the harmonic mean of improved precision+recall (GNN F1 PR) and
harmonic mean of density+coverage (GNN F1 PR).

Table 2: Various graph generative perfoprmance metrics for HiGen models on all benchmark datasets.

Model Deg. | Clus. | Orbit] Spec.| GNNMMD | GNNF1PR?T GNNF1DC*t
Enzyme

HiGen-m 6.61e-03 2.65¢-02 2.15¢-03 8.75e-03 2.15e-02 9.70e-01 8.97e-01
HiGen 2.31e-03 2.08e-02 1.51e-03 9.56e-03 1.80e-02 9.78e-01 9.83e-01
Protein

HiGen-m 0.0041 0.109 0.0472 0.0061 6.71e-02 9.79¢-01 9.85e-01
HiGen 0.0012 0.0435 0.0234 0.0025 6.71e-02 9.79¢-01 9.85e-01
Stochastic block model

HiGen-m 0.0017 0.0503 0.0604 0.0068 1.54e-01 9.12e-01 0.83
HiGen 0.0019 0.0498 0.0352 0.0046 4.32e-02 9.86e-01 1.07
Ego

HiGen-m 0.011 0.063 0.021 0.013 4.20e-02 0.87 0.68
HiGen 1.9¢-3 0.049 0.029 0.004 5.20e-02 0.88 0.69

D.1 Point Cloud

We also evaluated HiGen on the Point Cloud dataset, which consists of 41 simulated 3D point clouds
of household objects.This dataset consists of large graphs of approximately 1.4k nodes on average
with maximum of over S5k nodes. In this dataset, each point is mapped to a node in a graph, and edges
are connecting the k-nearest neighbors based on Euclidean distance in 3D space (Neumann et al.|
2013).

16

569
570
571
572
573
574

575

577

578

580

581
582
583
584

585

586
587

588
589
590
591
592
593
594

595
596

However, due to the quadratic growth of the number of candidate edges in the augmented graph Gl -
the graph composed of all the communities and the candidate edges of all bipartites used in section
[3.2]for bipartite generation — memory limitations can arise when dealing with large graphs in the
point cloud dataset. To address this issue, we can sample sub-graphs and generate one (or a subset of)
bipartites at a time to fit the available memory. In our experimental study, we generated bipartites
sequentially, sorting them based on the index of their parent edges in the parent level. In this case,
the augmented graph G' used for obtaining the node features of 3! ; consists of all the communities

{C! Vk < max(i,)} and all the bipartites {B.,,, V(m,n) < (i,)}, augmented with the candidate
edges of ij. This model is denoted by HiGen-s in table
The GraphGPS models that was used for this experiment have employed Performer (Choromanski

et al.}|2020) which offers linear time and memory complexity. The results in Tablehighlights the
performance improvement of HiGen-s in both local and global properties of the generated graphs.

Table 3: Comparison of generation metrics on benchmark 3D point cloud. The baseline results are obtained
from (Liao et al.}|2019).

3D Point Cloud
Model H Deg. | Clus. | Orbit]. Spec. |

Erdos-Renyi || 3.1e-01 1.22 1.27 4.26e-02
GRAN 1.75e-02 5.1e-01 2.1e-01 7.45e-03
HiGen-s 3.48e-02 2.82e-01 3.45e-02 5.46e-03

An alternative approach is to sub-sample a large graph such that each augmented sub-graph consists
of a bipartite ij and its corresponding pair of communities C/, Cé. This approach allows for
parallel generation of bipartite sub-graphs but does not consider the connectivity between neighboring

bipartites.

D.2 Ablation studies

In this section, two ablation studies were conducted to evaluate the sensitivity of HiGen with different
node orderings and graph partitioning functions.

Node Ordering In our experimental study, the nodes in the communities of all levels are ordered
using breadth first search (BFS) node ordering while the BFS queue are sorted by the total weight
of edges between a node in the queue and predecessor nodes plus its self-edge. To compare the
sensitivity of the proposed generative model against GRAN, we trained the models with default node
ordering and random node ordering. The performance results, presented in Table confirm that
the proposed model is significantly less sensitive to the node ordering whereas the performance of
GRAN drops considerably with non-optimal orderings.

Table 4: Ablation study on node ordering. Baseline HiGen used the BFS ordering and baseline GRAN used
DFS ordering. 71, w2 and 73 are default, random and 73 node ordering, respectively. Total variation kernel is
used as MMD metrics of structural statistics. Also, the average of random-GNN-based metrics aver 10 random
GIN initialization are reported for MMD with RBF kernel (GNN MMD), the harmonic mean of improved
precision+recall (GNN F1 PR) and harmonic mean of density+coverage (GNN F1 PR).

Enzyme
Model Deg.| Clus.| Orbit] Spec.] GNNMMD | GNNFIPR1 GNNFIDC*
GRAN 8.45e-03 2.62e-02 3.46e-02 2.11e-02 6.63e-02 9.50e-01 8.32e-01
GRAN (7) || 1.75e-02 2.89e-02 3.78e-02 2.03e-02 6.51e-02 8.24e-01 6.69e-01
GRAN (73) || 3.90e-02 3.24e-02 3.81e-02 2.38e-02 1.26e-01 8.31e-01 6.72e-01
HiGen 2.31e-03 2.08e-02 1.51e-03 9.56e-03 1.80e-02 9.78e-01 9.83e-01
HiGen (71) || 1.83e-03 2.21e-02 6.75¢-04 7.08e-03 1.78e-02 9.84-01 9.77e-01
HiGen (72) || 3.31e-03 2.34e-02 2.06e-03 9.10e-03 2.04e-02 9.47-01 8.81e-01
HiGen (73) || 1.34e-03 2.13e-02 6.94e-04 6.56e-03 1.90e-02 9.61e-01 9.74e-01

Different Graph Partitioning In this experimental study, we evaluated the performance of HiGen
using different graph partitioning functions. Firstly, to assess the sensitivity of the hierarchical gener-

17

597
598
599
600

601
602
603
604
605

606
607

608

609

ative model to random initialization in the Louvain algorithm, we conducted the HiGen experiment
three times with different random seeds on the Enzyme dataset. The average and standard deviation
of performance metrics are reported in Table[5]which demonstrate that HiGen consistently achieves
almost similar performance across different random initializations.

Additionally, we explored spectral clustering (SC), which is a relaxed formulation of k-min-cut
partitioning (Shi & Malik|[2000), as an alternative partitioning method. To determine the number
of clusters, we applied SC to partition the graphs over a range of 0.7v/n < k < 1.3y/n, where n
represents the number of nodes in the graph. We computed the modularity score of each partition and
selected the value of k that yielded the maximum score.

The results presented in Table demonstrate the robustness of HiGen against different graph parti-
tioning functions.

Table 5: Multiple initialization of Louvain partitioning algorithm and also min-cut partitioning

Enzyme
Model H Deg. | Clus. | Orbit| Spec. | GNNMMD | GNNFI1PRT GNNFIDC7?T
HiGen 2.64e-03+47e4 2.09e-02+40e4 7.46e-04t4.4e4 1.74e-02+15e3 2.00e-0243.1e3 98+4.6e3 96t1.0e2
HiGen (SC) 2.24e-03 2.10e-02 5.5%-04 8.30e-03 2.00e-02 98 94,

D.3 Graph Samples

Generated hierarchical graphs sampled from HiGen models are presented in this section.

Protein Stochastic Block Model

Train

GRAN

SPECTRE

HiGen

Figure 3: Samples from HiGen trained on Protein and SBM. Communities are distinguished with different colors
and both levels are depicted. The samples for GRAN and SPECRE are obtained from (Martinkus et al.|[2022).

18

Figure 4: Samples from HiGen trained on Protein and SBM. Communities are distinguished with different colors
and both levels are depicted.

3D Point Cloud

Train

GRAN

HiGen-s

Figure 5: Samples from HiGen trained on 3D Point Cloud. Communities are distinguished with different colors

and both levels are depicted. The samples for GRAN are obtained from 2019).

19

