
A Probability Distribution of Communities and Bipartites452

Theorem A.1. Given a graph G and an ordering ⇡, assuming there is a deterministic function that453

provides the corresponding high-level graphs in a hierarchical order as {GL,GL�1, ...,G0}, then:454

p(G = GL,⇡) = p({GL,GL�1, ...,G0},⇡) = p(GL,⇡ | {GL�1, ...,G0}) ... p(G1,⇡ | G0) p(G0)

=
LY

l=0

p(Gl,⇡ | Gl�1)⇥ p(G0) (9)

Proof. The factorization is derived by applying the chain rule of probability and last equality holds455

as the graphs at the coarser levels are produced by a partitioning function acting on the finer level456

graphs. Overall, this hierarchical generative model exhibits a Markovian structure.457

A.1 Proof of Theorem 3.1458

Lemma A.2. Given the sum of counting variables in the groups, the groups are independent and459

each of them has multinomial distribution:460

p(w = [u1, ...,uM ]|{v1, ..., vM}) =
MY

m=1

Mu(vm, �m)

where: �m =
✓m

1T ✓m

Here, probability vector (parameter) �m is the normalized multinomial probabilities of the counting461

variables in the m-th group.462

Proof.

p(w|{v1, ..., vM}) = p(w)

p({v1, ..., vM})I(v1 = 1T u1, ..., vM = 1T uM )

=

w!QE
i=1 wi!

QE
i=1 ✓i

wi

w!QM
i=1 vi!

QM
i=1 ↵i

vi
I(v1 = 1T u1, ..., vM = 1T uM )

=

w!QE
i=1 wi!

✓w1
1 ...✓wE

E

w!QM
i=1 vi!

(1T ✓1)v1 ...(1T ✓M )vM

=
v1!QE1

i=1 u1,i!

E1Y

i=1

�1,i
u1,i ⇥ ...⇥ vM !

QEM

i=1 uM,i!

E1Y

i=1

�M,i
uM,i

= Mu(v1, �1)⇥ ...⇥ Mu(vM , �M )

463

In a hierarchical graph, the edges has non-negative integer valued weights while the sum of all the464

edges in community Cl
i and bipartite graph Bl

ij are determined by their corresponding edges in the465

parent graph, i.e. wl�1
ii and wl�1

ij respectively. Let the random vector w := [we]e 2 E(Gl) denote the466

set of weights of all edges of Gl such that w0 = 1T w, its joint probability can be described as a467

multinomial distribution:468

w ⇠ Mu(w | w0,✓
l) =

w0!
Q|E(Gl)|

e=1 w[e]!

|E(Gl)|Y

e=1

(✓l[e])
w[e]

, (10)
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where {✓l[e] 2 [0, 1], s.t. 1T✓l = 1} are the parameters of the multinomial distribution.4 Therefore,469

based on lemma A.2 these components are conditionally independent and each of them has a470

multinomial distribution:471

p(Gl | Gl�1) ⇠
Y

i 2 V(Gl�1)

Mu([we]e 2 Cl
i
| wl�1

ii ,✓l
ii)⇥

Y

(i,j)2 E(Gl�1)

Mu([we]e 2 Bl
ij
| wl�1

ij ,✓l
ij)

where {✓l
ij [e] 2 [0, 1], s.t. 1T✓l

ij = 1 | 8 (i, j) 2 E(Gl�1)} are the parameters of the model.472

Therefore, the log-likelihood of Gl can be decomposed as the log-likelihood of its sub-structures:473

log p�l(Gl | Gl�1) =
X

i2VGl�1

log p�l(Cl
i | Gl�1) +

X

(i,j)2EGl�1

log p�l(Bl
ij | Gl�1) (11)

474

Bipartite distribution: Let’s denote the set of weights of all candidate edges of the bipartite Bl
ij by475

a random vector w := [we]e 2 E(Bl
ij)

, its probability can be described as476

w ⇠ Mu(w | wl�1
ij ,✓l

ij) =
wl�1

ij !
Q|E(Bl

ij)|
e=1 w[e]!

|E(Bl
ij)|Y

e=1

(✓l
ij [e])

w[e]
(12)

where {✓l
ij [e] | ✓l

ij [e] � 0,
P

✓l
ij [e] = 1} are the parameter of the distribution, and the multinomial477

coefficient n!Q
w[e]! is the number of ways to distribute the total weight wl�1

ij =
P|E(Bl

ij)|
e=1 w[e] into478

all candidate edges of Bl
ij .479

Community distribution: Similarly, the probability distribution of the set of candidate edges for480

each community can be modeled jointly by a multinomial distribution but as our objective is to model481

the generative probability of communities in each level as an autoregressive process we are interested482

to decomposed this probability distribution accordingly.483

A.2 Proof of Theorem 3.3484

For a random counting vector w 2 ZE
+ with multinomial distribution Mu(w,✓), let’s split it into485

M disjoint groups w = [u1, ...,uM ] where um 2 ZEm
+ ,

PM
m=1 Em = E, and also split the486

probability vector as ✓ = [✓1, ...,✓M ]. Additionally, let’s define sum of all weights in m-th group by487

a random variable vm :=
PEm

e=1 um,e.488

Lemma A.3. Sum of the weights in the groups, um 2 ZEm
+ ,

PM
m=1 Em = E has multinomial489

distribution:490

p({v1, ..., vM}) = Mu(w, [↵1, ...,↵M ])

where: ↵m =
X

✓m[i]. (13)

In the other words, the multinomial distribution is preserved when its counting variables are combined491

Siegrist (2017).492

Theorem A.4. Given the aforementioned grouping of counts variables, the multinomial distribution493

can be modeled as a chain of binomials and multinomials:494

Mu(w,✓ = [✓1, ...,✓M ]) =
MY

m=1

Bi(w �
X

i<m

vi, ⌘vm) Mu(vm, �m), (14)

where: ⌘vm =
1T ✓m

1�
P

i<m 1T ✓i
, �m =

✓m
1T ✓m

4It is analogous to the random trial of putting n balls into k boxes, where the joint probability of the number
of balls in all the boxes follows the multinomial distribution.
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Proof. Since sum of the weights of the groups, vm, are functions of the weights in the group:495

p(w) = p(w, {v1, ..., vM}) = p(w|{v1, ..., vM})p({v1, ..., vM})
According to lemma A.3, sum of the weights of the groups is a multinomial and by lemma 3.2, it can496

be decomposed to a sequence of binomials:497

p({v1, ..., vM}) = Mu(w, [↵1, ...,↵M ]) =
MY

m=1

Bi(w �
X

i<m
vi, ⌘̂m),

where: ↵m = 1T ✓m, ⌘̂e =
↵e

1�
P

i<e ↵m

Also based on lemma A.2, given the sum of the wights of all groups, the groups are independent and498

has multinomial distribution:499

p(w|{v1, ..., vM}) =
MY

m=1

Mu(vm, �m)

where: �m =
✓m

1T ✓m
500

B Graph Neural Network (GNN) architectures501

To overcome limitations in the sparse message passing mechanism, Graph Transformers (GTs)502

(Dwivedi & Bresson, 2020) have emerged as a recent solution. One key advantage of GTs is the503

ability for nodes to attend to all other nodes in a graph, known as global attention, which addresses504

issues such as over-smoothing, over-squashing, and expressiveness bounds Rampášek et al. (2022).505

GraphGPS provide a recipe for creating a more expressive and scalable graph transformer by making506

a hybrid message-passing graph neural networks (MPNN)+Transformer architecture. Additionally,507

recent GNN models propose to address the limitation of standard MPNNs in detecting simple508

substructures by adding features that they cannot capture on their own, such as the number of cycles.509

A framework for selecting and categorizing different types of positional and structural encodings,510

including local, global, and relative is provided in Rampášek et al. (2022). Positional encodings, such511

as eigenvectors of the adjacency or Laplacian matrices, aim to indicate the spatial position of a node512

within a graph, so nodes that are close to each other within a graph or subgraph should have similar513

positional encodings. On the other hand, structural encodings, such as degree of a node, number of514

k-cycles a node belong to or the diagonal of the m-steps random-walk matrix, aim to represent the515

structure of graphs or subgraphs, so nodes that share similar subgraphs or similar graphs should have516

similar structural encodings.517

In order to encode the node features of the augmented graphs in our model, we customized GraphGPS518

in various ways. We incorporated distinct initial edge features to distinguish augmented (candidate)519

edges from real edges. Furthermore, for bipartite generation, we apply a mask on the attention scores520

of the transformers of the augmented graph Ĝl to restrict attention only to connected communities.521

Specifically, the i-th row of the attention mask matrix is equal to 1 only for the index of the nodes522

that belong to the same community or the nodes of the neighboring communities that are linked by a523

bipartite, and 0 (i.e., no attention to those positions) otherwise.524

The time and memory complexity of GraphGPS can be reduced to O(n + m) per layer by using525

linear Transformers such as Performer (Choromanski et al., 2020) for global graph attention, while526

they can be as high quadratic in the number of nodes if the original Transformer architecture is527

employed. Since our datasets are composed of graphs smaller than 1000 nodes, we leverage the528

original Transformer architecture.529

C Experimental details530

Datasets: For the benchmark datasetst, graph sizes, denoted as Ddataset =531

(|V|max, |V|avg, |E|max, |E|avg), are: Dprotein = (500, 258, 1575, 646), DEgo =532

(399, 144, 1062, 332), DPoint�Cloud = (5.03k, 1.4k, 10.9k, 3k),533
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Before training the models, we applied Louvain algorithm to obtain hierarchical graph structures for534

all of datasets and then trimmed out the intermediate levels to achieve uniform depth of L = 2. In535

case of HG s with varying heights, empty graphs can be added at the root levels of those HGs with536

lower heights to avoid sampling them during training. An 80%-20% split was randomly created for537

training and testing and 20% of the training data was used for validation purposes.538

Model Architecture: In our experiments, the GraphGPS models consisted of 8 layers, while each539

level of hierarchical model has its own GNN parameters. The input node features were augmented540

with positional and structural encodings, which included the first 8 eigenvectors corresponding to541

the smallest non-zero eigenvalues of the Laplacian matrices and the diagonal of the random-walk542

matrix up to 8 steps. We leverage the original Transformer architecture for all detests except Point543

Cloud dataset which use Performer. The hidden dimensions were set to 64 for the Protein, Ego, and544

Point Cloud datasets, and 128 for the Stochastic Block Model and Enzyme datasets. The number of545

mixtures was set to K=20.546

In comparison, the GRAN models utilized 7 layers of GNNs with hidden dimensions of 128 for the547

Stochastic Block Model, Ego, and Enzyme datasets, 256 for the Point Cloud dataset, and 512 for the548

Protein dataset. Despite having smaller model sizes, HiGen achieved better performance than GRAN.549

For training, the HiGen models used the Adam optimizer Kingma & Ba (2014) with a learning rate550

of 5e-4 and default settings for �1 (0.9), �2 (0.999), and ✏ (1e-8).551

The experiments for the Enzyme and Stochastic Block Model datasets were conducted on a MacBook552

Air with an M2 processor and 16GB RAM, while the rest of the datasets were trained using an553

NVIDIA L4 Tensor Core GPU with 24GB RAM as an accelerator.554

D Additional Results555

Table 2 presents the results of various metrics for HiGen models on all benchmark datasets. The556

structural statistics are evaluated using the Total Variation kernel as the Maximum Mean Discrepancy557

(MMD) metric.558

In addition, the table includes the average of random-GNN-based metrics (Thompson et al., 2022)559

over 10 random Graph Isomorphism Network (GIN) initializations. The reported metrics are MMD560

with RBF kernel (GNN MMD), the harmonic mean of improved precision+recall (GNN F1 PR) and561

harmonic mean of density+coverage (GNN F1 PR).562

Table 2: Various graph generative perfoprmance metrics for HiGen models on all benchmark datasets.
Model Deg. # Clus. # Orbit# Spec. # GNN MMD # GNN F1 PR " GNN F1 DC "

Enzyme

HiGen-m 6.61e-03 2.65e-02 2.15e-03 8.75e-03 2.15e-02 9.70e-01 8.97e-01
HiGen 2.31e-03 2.08e-02 1.51e-03 9.56e-03 1.80e-02 9.78e-01 9.83e-01

Protein

HiGen-m 0.0041 0.109 0.0472 0.0061 6.71e-02 9.79e-01 9.85e-01
HiGen 0.0012 0.0435 0.0234 0.0025 6.71e-02 9.79e-01 9.85e-01

Stochastic block model

HiGen-m 0.0017 0.0503 0.0604 0.0068 1.54e-01 9.12e-01 0.83
HiGen 0.0019 0.0498 0.0352 0.0046 4.32e-02 9.86e-01 1.07

Ego

HiGen-m 0.011 0.063 0.021 0.013 4.20e-02 0.87 0.68
HiGen 1.9e-3 0.049 0.029 0.004 5.20e-02 0.88 0.69

D.1 Point Cloud563

We also evaluated HiGen on the Point Cloud dataset, which consists of 41 simulated 3D point clouds564

of household objects.This dataset consists of large graphs of approximately 1.4k nodes on average565

with maximum of over 5k nodes. In this dataset, each point is mapped to a node in a graph, and edges566

are connecting the k-nearest neighbors based on Euclidean distance in 3D space (Neumann et al.,567

2013).568
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However, due to the quadratic growth of the number of candidate edges in the augmented graph Ĝl –569

the graph composed of all the communities and the candidate edges of all bipartites used in section570

3.2 for bipartite generation – memory limitations can arise when dealing with large graphs in the571

point cloud dataset. To address this issue, we can sample sub-graphs and generate one (or a subset of)572

bipartites at a time to fit the available memory. In our experimental study, we generated bipartites573

sequentially, sorting them based on the index of their parent edges in the parent level. In this case,574

the augmented graph Ĝl used for obtaining the node features of Bl
ij consists of all the communities575

{Cl
k 8k  max(i, j)} and all the bipartites {Bl

mn 8(m,n)  (i, j)}, augmented with the candidate576

edges of Bl
ij . This model is denoted by HiGen-s in table 3.577

The GraphGPS models that was used for this experiment have employed Performer (Choromanski578

et al., 2020) which offers linear time and memory complexity. The results in Table 3 highlights the579

performance improvement of HiGen-s in both local and global properties of the generated graphs.580

Table 3: Comparison of generation metrics on benchmark 3D point cloud. The baseline results are obtained
from (Liao et al., 2019).

3D Point Cloud

Model Deg. # Clus. # Orbit# Spec. #

Erdos-Renyi 3.1e-01 1.22 1.27 4.26e-02
GRAN 1.75e-02 5.1e-01 2.1e-01 7.45e-03
HiGen-s 3.48e-02 2.82e-01 3.45e-02 5.46e-03

An alternative approach is to sub-sample a large graph such that each augmented sub-graph consists581

of a bipartite Bl
ij and its corresponding pair of communities Cl

i, Cl
j . This approach allows for582

parallel generation of bipartite sub-graphs but does not consider the connectivity between neighboring583

bipartites.584

D.2 Ablation studies585

In this section, two ablation studies were conducted to evaluate the sensitivity of HiGen with different586

node orderings and graph partitioning functions.587

Node Ordering In our experimental study, the nodes in the communities of all levels are ordered588

using breadth first search (BFS) node ordering while the BFS queue are sorted by the total weight589

of edges between a node in the queue and predecessor nodes plus its self-edge. To compare the590

sensitivity of the proposed generative model against GRAN, we trained the models with default node591

ordering and random node ordering. The performance results, presented in Table 4, confirm that592

the proposed model is significantly less sensitive to the node ordering whereas the performance of593

GRAN drops considerably with non-optimal orderings.594

Table 4: Ablation study on node ordering. Baseline HiGen used the BFS ordering and baseline GRAN used
DFS ordering. ⇡1, ⇡2 and ⇡3 are default, random and ⇡3 node ordering, respectively. Total variation kernel is
used as MMD metrics of structural statistics. Also, the average of random-GNN-based metrics aver 10 random
GIN initialization are reported for MMD with RBF kernel (GNN MMD), the harmonic mean of improved
precision+recall (GNN F1 PR) and harmonic mean of density+coverage (GNN F1 PR).

Enzyme

Model Deg. # Clus. # Orbit# Spec. # GNN MMD # GNN F1 PR " GNN F1 DC "

GRAN 8.45e-03 2.62e-02 3.46e-02 2.11e-02 6.63e-02 9.50e-01 8.32e-01
GRAN (⇡1) 1.75e-02 2.89e-02 3.78e-02 2.03e-02 6.51e-02 8.24e-01 6.69e-01
GRAN (⇡2) 3.90e-02 3.24e-02 3.81e-02 2.38e-02 1.26e-01 8.31e-01 6.72e-01

HiGen 2.31e-03 2.08e-02 1.51e-03 9.56e-03 1.80e-02 9.78e-01 9.83e-01
HiGen (⇡1) 1.83e-03 2.21e-02 6.75e-04 7.08e-03 1.78e-02 9.84-01 9.77e-01
HiGen (⇡2) 3.31e-03 2.34e-02 2.06e-03 9.10e-03 2.04e-02 9.47-01 8.81e-01
HiGen (⇡3) 1.34e-03 2.13e-02 6.94e-04 6.56e-03 1.90e-02 9.61e-01 9.74e-01

Different Graph Partitioning In this experimental study, we evaluated the performance of HiGen595

using different graph partitioning functions. Firstly, to assess the sensitivity of the hierarchical gener-596
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ative model to random initialization in the Louvain algorithm, we conducted the HiGen experiment597

three times with different random seeds on the Enzyme dataset. The average and standard deviation598

of performance metrics are reported in Table 5 which demonstrate that HiGen consistently achieves599

almost similar performance across different random initializations.600

Additionally, we explored spectral clustering (SC), which is a relaxed formulation of k-min-cut601

partitioning (Shi & Malik, 2000), as an alternative partitioning method. To determine the number602

of clusters, we applied SC to partition the graphs over a range of 0.7
p
n  k  1.3

p
n, where n603

represents the number of nodes in the graph. We computed the modularity score of each partition and604

selected the value of k that yielded the maximum score.605

The results presented in Table 5 demonstrate the robustness of HiGen against different graph parti-606

tioning functions.607

Table 5: Multiple initialization of Louvain partitioning algorithm and also min-cut partitioning
Enzyme

Model Deg. # Clus. # Orbit# Spec. # GNN MMD # GNN F1 PR " GNN F1 DC "

HiGen 2.64e-03±4.7e-4 2.09e-02±4.0e-4 7.46e-04±4.4e-4 1.74e-02±1.5e-3 2.00e-02±3.1e-3 .98±4.6e-3 .96±1.0e-2

HiGen (SC) 2.24e-03 2.10e-02 5.59e-04 8.30e-03 2.00e-02 .98 .94 ,

D.3 Graph Samples608

Generated hierarchical graphs sampled from HiGen models are presented in this section.609
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Figure 3: Samples from HiGen trained on Protein and SBM. Communities are distinguished with different colors
and both levels are depicted. The samples for GRAN and SPECRE are obtained from (Martinkus et al., 2022).
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Ego Enzyme
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Figure 4: Samples from HiGen trained on Protein and SBM. Communities are distinguished with different colors
and both levels are depicted.
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Figure 5: Samples from HiGen trained on 3D Point Cloud. Communities are distinguished with different colors
and both levels are depicted. The samples for GRAN are obtained from (Liao et al., 2019).
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