
Supplementary Materials for
“Tree in Tree: from Decision Trees to Decision

Graphs”

A Pseudocode to fine-tune TnT decision graph

We propoed the TnT algorithm to construct a decision graph from scratch. The TnT decision graph
can be further fine-tuned using alternating optimization [1]. As opposed to TnT, TnT fine-tuning
requires a predefined graph structure as input. A comparison between TnT and TnT(fine-tuned) is
presented in Fig. 4, where TnT(fine-tuned) slightly improves both train and test accuracy. Algorithm
A.1 shows the pseudocode to fine-tune TnT. Similar to Algorithm 2 in the main text, the TnT fine-tune
algorithm also computes the subset Xsubset,Ysubset at each node. The hyperparameter N is the
number of rounds for TnT fine-tune and we fix N = 5 for all experiments in Fig. 4.

Algorithm A.1: Tree in Tree fine-tune
Data: Training set X ,Y
Input: TnT decision graph G
Result: TnT decision graph G′ fine-tuned on X ,Y

1 {infer(n,X ) denotes the forward inference of data X starting from node n};
2 {Nodes are visited in the breadth-first order};
3 for i← 1 to N do
4 for each node (ni) ∈ G do
5 Samples that visit ni: Xi,Yi ⊂ X ,Y;
6 if ni is an internal node then
7 Yi,left ← infer(ni.left_child,Xi);
8 Yi,right ← infer(ni.right_child,Xi);
9 index_left← (Yi = Yi,left and Yi 6= Yi,right) ;

10 index_right← (Yi = Yi,right and Yi 6= Yi,left) ;
11 Xsubset,Ysubset ← copy samples from Xi,Yi at index_left or index_right;
12 Ysubset[index_left]← 0, Ysubset[index_right]← 1;
13 Update the split function of ni based on Xsubset,Ysubset ;
14 else if ni is a leaf node then
15 Xsubset ← Xi, Ysubset ← Yi;
16 Label the leaf ni as the dominant class of Ysubset;

B Hyperparameters of TnT

The TnT algorithm has three hyperparameters. N1 is the number of merging phases where we merge
micro trees into the graph. N2 is the number of rounds to grow and optimize micro trees. The
choice of N1 and N2 reflects the trade-off between training time and classification performance. We
empirically set N1 = 2, N2 = 5 for all experiments in this work. C is the cost complexity pruning
coefficient to tune the complexity of TnT decision graphs [2, 3]. With greater C, TnT tends to have
fewer splits. For example, Fig. 5 in the main text visualizes various model complexities with 20, 129
and 1046 splits, which is achieved with C = 1e− 2, C = 1e− 3 and C = 1e− 4, respectively.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Figure 4 in the main text plots the classification performance as a function of model complexity. We
tuned C to change the number of splits. For each dataset, we sampled 30 values of C which are
equally spaced on a log scale. The maximum and minimum values of C are summarized in Table B.1.

Table B.1: The maximum and minimum values of C on different datasets.

Dataset MNIST Connect-4 Letter Optical recognition Pendigits Protein SenseIT USPS

Cmin 1e-4 6e-5 5e-5 3e-4 5e-4 8e-4 3e-4 8e-4
Cmax 5e-2 1e-2 2e-2 6e-2 1e-1 1e-2 1e-2 3e-2

In addition to using TnTs as stand-alone classifiers, we combine TnT decision graphs with ensemble
methods and present TnT-bagging and TnT-AdaBoost. Additional hyperparameters are introduced to
TnT-bagging and TnT-AdaBoost by the ensemble methods. In this work, we tuned the number of
base estimators and the total number of splits to change the ensemble complexity. For the bagging
ensemble, we randomly draw samples from the training set with replacement to train each base
estimator. We set max_samples to 1.0 and bootstrap_features=False for both Random Forest and
TnT-bagging. For the AdaBoost ensemble, we used the “SAMME” algorithm with a learning rate of
1.0 to build both AdaBoost and TnT-AdaBoost. Both ensemble methods were implemented using the
scikit-learn library in Python [4].

C Comparison of TnT and DT ensembles

Table C.1 is similar to Table 2 in the main text but includes additional datasets. A summary on
model comparison is given in the last two rows. The results show that both bagging and AdaBoost
ensembles benefit from using the TnT as a base estimator.

References
[1] Miguel A Carreira-Perpinán and Pooya Tavallali. Alternating optimization of decision trees, with

application to learning sparse oblique trees. Advances in Neural Information Processing Systems,
31:1211–1221, 2018.

[2] Jeffrey P Bradford, Clayton Kunz, Ron Kohavi, Cliff Brunk, and Carla E Brodley. Pruning
decision trees with misclassification costs. In European Conference on Machine Learning, pages
131–136. Springer, 1998.

[3] B Ravi Kiran and Jean Serra. Cost-complexity pruning of random forests. In International
Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing,
pages 222–232. Springer, 2017.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 1, Introduction.

(b) Did you describe the limitations of your work? [Yes] See Section 6, Limitations.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This paper

introduces a new classifier. We do not see any potential negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

2



Table C.1: Comparison of TnT ensembles with random forest and AdaBoost. Mean train and test
accuracy (± standard deviation) is calculated across 5 independent trials. We tune the ensemble size
(#E, the number of base estimators) and split count (#S) to change the complexity of the ensembles.
Dataset statistics are given in the format: Dataset name (# Train/Test samples * # Features, #
Classes).

model #E #S train test #E #S train test

TnT-bagging

M
N

IS
T

(6
0k

/1
0k

*7
84

,1
0)

5 4.8k 97.46±0.16 93.65±0.24

C
on

ne
ct

-4
(4

5.
3k

/2
2.

3k
*1

26
,3

)

5 4.6k 84.42±0.19 80.61±0.18
Random Forest 5 4.8k 96.55±0.36 92.31±0.57 5 4.6k 83.60±0.12 79.21±0.19

TnT-AdaBoost 5 640 90.26 88.38 5 450 77.75±0.16 77.39±0.19
AdaBoost 5 640 89.75 88.61 5 450 77.28 76.74

TnT-bagging 10 9.6k 98.28±0.06 94.92±0.20 10 9.2k 85.11±0.05 81.44±0.14
Random Forest 10 9.6k 97.44±0.18 93.64±0.38 10 9.2k 84.21±0.12 79.85±0.20

TnT-AdaBoost 10 1.4k 95.09±0.09 92.36±0.13 10 940 80.10±0.23 78.94±0.29
AdaBoost 10 1.4k 94.28 91.49 10 940 79.69 78.37

TnT-bagging 20 19.2k 98.64±0.06 95.57±0.14 20 18.3k 85.66±0.12 81.93±0.13
Random Forest 20 19.2k 97.90±0.12 94.36±0.19 20 18.3k 84.57±0.08 80.39±0.09

TnT-AdaBoost 20 2.9k 98.03±0.11 94.49±0.21 20 1.8k 82.46±0.41 80.53±0.50
AdaBoost 20 2.9k 97.70 94.04 20 1.8k 82.77 81.14
TnT-bagging 100 111k 99.09±0.03 96.11±0.09 100 143k 88.44±0.07 82.84±0.02
Random Forest 100 292k 100 95.72±0.17 100 718k 100 82.33±0.10

TnT-bagging

L
et

te
r(

13
.4

k/
6.

6k
*1

6,
26

)

5 5.3k 98.08±0.12 89.97±0.37

O
pt

ic
al

re
co

gn
iti

on
(3

.8
k/

1.
8k

*6
4,

10
) 5 890 99.48 90.45±1.24

Random Forest 5 5.3k 98.16±0.11 89.93±0.25 5 890 99.38±0.11 90.46±0.91
TnT-AdaBoost 5 440 74.51±0.83 73.58±0.63 5 200 96.74±0.29 88.31±0.61
AdaBoost 5 440 73.40 71.38 5 200 96.73 87.87

TnT-bagging 10 10.6k 99.16±0.10 92.35±0.15 10 1.8k 99.83 92.41±0.51
Random Forest 10 10.6k 99.10±0.08 91.92±0.33 10 1.8k 99.79±0.10 92.23±0.37

TnT-AdaBoost 10 900 82.90±0.38 80.02±0.33 10 420 99.81±0.06 92.87±0.65
AdaBoost 10 900 81.10 78.09 10 420 99.58 92.92±0.02
TnT-bagging 20 21.3k 99.57±0.04 93.35±0.19 20 3.6k 99.91 92.93±0.41
Random Forest 20 21.3k 99.33±0.03 92.85±0.21 20 3.6k 99.84±0.06 92.78±0.23

TnT-AdaBoost 20 1.8k 90.89±0.67 85.33±0.56 20 820 99.99±0.01 94.52±0.55
AdaBoost 20 1.8k 89.84 84.75 20 820 99.97 94.50±0.02

TnT-bagging 100 108k 99.78±0.02 94.37±0.03 100 18k 99.93±0.03 93.62±0.17
Random Forest 100 136k 100 94.29±0.07 100 19k 100 93.37±0.24

TnT-bagging

Pe
nd

ig
its

(7
.5

k/
3.

5k
*1

6,
10

)

5 570 99.32±0.11 94.12±0.27

Pr
ot

ei
n

(1
1.

9k
/5

.9
k*

35
7,

3)

5 1.4k 77.05±0.58 59.59±0.62
Random Forest 5 570 98.86±0.12 92.77±0.41 5 1.4k 77.30±0.53 59.67±0.33

TnT-AdaBoost 5 200 98.53±0.14 93.24±0.62 5 140 63.99 59.29
AdaBoost 5 200 97.66 92.31 5 140 62.43 58.45

TnT-bagging 10 1.1k 99.54±0.10 94.81±0.19 10 2.7k 80.87±0.40 62.75±0.25
Random Forest 10 1.1k 99.01±0.13 93.47±0.33 10 2.7k 80.88±0.28 62.60±0.33

TnT-AdaBoost 10 410 99.52±0.22 94.83±0.21 10 270 67.47 61.16
AdaBoost 10 410 99.65 94.75±0.02 10 270 66.76 60.92

TnT-bagging 20 2.3k 99.61±0.05 95.48±0.16 20 5.4k 83.20±0.47 64.44±0.44
Random Forest 20 2.3k 99.16±0.10 93.71±0.24 20 5.4k 82.82±0.24 64.06±0.20

TnT-AdaBoost 20 820 100 96.35±0.30 20 580 73.15 62.92
AdaBoost 20 820 100 96.63 20 580 72.03 64.03
TnT-bagging 100 11k 99.69±0.04 95.69±0.16 100 0.3k 86.71±0.21 66.63±0.30
Random Forest 100 20k 100 95.31±0.22 100 1.5k 100 66.34±0.09

TnT-bagging

Se
ns

eI
T

(7
8.

8k
/1

9.
7k

*1
00

,3
)

5 910 83.92±0.12 82.27±0.12

U
SP

S
(7

.3
k/

2k
*2

56
,2

)

5 540 98.44±0.13 91.29±0.34
Random Forest 5 910 83.06±0.18 80.95±0.31 5 540 97.27±0.16 90.06±0.39

TnT-AdaBoost 5 110 77.98 77.47 5 160 99.07 91.73
AdaBoost 5 110 77.83 77.03 5 160 97.63 90.53

TnT-bagging 10 1.8k 84.52±0.08 82.87±0.20 10 1.1k 98.75±0.06 91.90±0.16
Random Forest 10 1.8k 83.48±0.18 81.41±0.22 10 1.1k 97.85±0.19 90.53±0.26

TnT-AdaBoost 10 170 79.06 78.46 10 350 100 92.83
AdaBoost 10 170 78.82 78.21 10 350 99.95 92.50±0.40

TnT-bagging 20 3.6k 84.88±0.03 83.19±0.13 20 2.2k 99.20±0.09 92.72±0.39
Random Forest 20 3.6k 83.77±0.15 81.64±0.19 20 2.2k 98.16±0.04 91.29±0.42

TnT-AdaBoost 20 280 80.00 79.18 20 740 100 94.37
AdaBoost 20 280 79.96 79.19 20 740 100 94.03±0.25

TnT-bagging 100 116k 90.92±0.02 84.09±0.09 100 11k 99.29±0.05 93.18±0.28
Random Forest 100 590k 99.98 83.83±0.11 100 24k 100 92.67±0.28

Summary TnT-bagging wins test accuracy: 31 Random Forest wins test accuracy: 1

TnT-AdaBoost wins test accuracy: 18 AdaBoost wins test accuracy: 6

3



(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We include a
code in the supplementary material. Datasets are publicly available on UCI repository
and LIBSVM Data.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Data splits are discussed in Section 4. Choice of hyperparameters
is discussed in the supplementary materials Section B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Figure 4 and Table 1 report standard deviations across
different trials.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Platform and training time are
reported in Section 3, Time complexity.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See reference [28],

[29]
(b) Did you mention the license of the assets? [Yes] The scikit-learn library is under the

3-Clause BSD license. Some datasets (e.g., MNIST) are under Creative Commons
Attribution-Share Alike 3.0 license.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [N/A] All datasets are publicly available on UCI repository and
LIBSVM Data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

4


	Pseudocode to fine-tune TnT decision graph
	Hyperparameters of TnT
	Comparison of TnT and DT ensembles

