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ABSTRACT
Current LiDAR point cloud-based 3D single object tracking (SOT)
methods typically rely on point-based representation network. De-
spite demonstrated success, such networks suffer from some fun-
damental problems: 1) It contains pooling operation to cope with
inherently disordered point clouds, hindering the capture of 3D
spatial information that is useful for tracking, a regression task.
2) The adopted set abstraction operation hardly handles density-
inconsistent point clouds, also preventing 3D spatial information
from being modeled. To solve these problems, we introduce a novel
tracking framework, termed VoxelTrack. By voxelizing inherently
disordered point clouds into 3D voxels and extracting their features
via sparse convolution blocks, VoxelTrack effectively models pre-
cise and robust 3D spatial information, thereby guiding accurate
position prediction for tracked objects. Moreover, VoxelTrack incor-
porates a dual-stream encoder with cross-iterative feature fusion
module to further explore fine-grained 3D spatial information for
tracking. Benefiting from accurate 3D spatial information being
modeled, our VoxelTrack simplifies tracking pipeline with a sin-
gle regression loss. Extensive experiments are conducted on three
widely-adopted datasets including KITTI, NuScenes and Waymo
Open Dataset. The experimental results confirm that VoxelTrack
achieves state-of-the-art performance (88.3%, 71.4% and 63.6% mean
precision on the three datasets, respectively), and outperforms the
existing trackers with a real-time speed of 36 Fps on a single TITAN
RTX GPU. The source code and model will be released.

CCS CONCEPTS
• Computing methodologies→ Tracking; Vision for robotics;
Hierarchical representations;

KEYWORDS
LiDAR point clouds, Single object tracking, Voxel representation,
3D spatial information
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Figure 1: Comparison between existing point-based tracking
methods (a) and our proposed voxel-based tracking method
(b). The point-basedmethods include P2B series andM2Track
series. P2B series employs appearance matching techniques
to generate proposals and verifies one as tracking result,
while M2Track series models motion relation for tracking in
a two-stage manner. In contrast, our VoxelTrack explores 3D
spatial information through voxel-based representation for
tracking, thereby simplifying the tracking pipeline with a
single regression loss function.

1 INTRODUCTION
Single object tracking (SOT) plays a pivotal role in various com-
puter vision applications, such as autonomous driving [4, 59] and
visual surveillance systems [46]. Early research works in SOT have
predominantly focused on the 2D image domain [12, 60]. However,
images are often disturbed by light and noise, making it difficult to
track targets in the images. In recent years, with the rapid devel-
opment of LiDAR sensors and considering that point cloud data is
robust to light interference and environmental factors, many tech-
niques [15, 19, 36, 41, 55, 56, 64] for 3D SOT have been proposed.
Despite demonstrated success, these methods are built upon 2D
SOT techniques, which may not be directly applicable to 3D SOT
based on LiDAR point clouds, as point cloud data differs funda-
mentally from RGB image data. Therefore, it is crucial to develop
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tracking techniques tailored to disordered and density-inconsistent
point cloud data.

Currently, most of 3D SOT methods are based on point-based
representation networks [34, 52, 55, 63], such as PointNet [39] and
PointNet++ [40], which extract point features for subsequent task-
oriented modules. As illustrated in the left of Fig. 1 (a), P2B [41]
is an end-to-end tracking framework. It first encodes the semantic
features of the point cloud in the template and search region by
point representation based Siamese backbone [9], and then per-
forms appearance matching of the template and the search region
at the feature level. The proposals [16] are generated from the re-
sulting search region enriched by template information, where a
proposal is verified as the tracking result. Based on this strong
framework, a series of trackers are presented, such as BAT [63],
PTTR [65], GLT-T [36] that consists of point representation based
Siamese backbone, appearance matching, proposals generation and
verification. In contrast to P2B series, M2Track [64] introduces a
motion-centric paradigm, which explores motion cues instead of
appearance matching for tracking. It predicts target motion from
the concatenated point clouds of previous and current frames in a
two-stage manner by using point features, as shown in the right of
Fig. 1 (a).

In summary, previous research works have either used point
features for appearance matching to guide tracking, or used point
features to mine motion information. Although great success has
been achieved in 3D SOT, point-based representation may be the
sub-optimal for point cloud object tracking due to the following
reasons: 1) Point representation-based networks rely on pooling
operations to maintain the permutation invariance of disordered
point clouds, thus encoding geometric structure information. How-
ever, the pooling operations tend to impair 3D spatial information
of point clouds, which is essential for accurately regressing bound-
ing boxes of point cloud objects. 2) The set abstraction operation
employed in point presentation networks learns key point fea-
tures through down-sampling, grouping and feed-forward blocks.
Nonetheless, such set abstraction operation struggles to effectively
handle the inherently density-inconsistent point clouds, thereby
preventing 3D spatial information from being modeling.

To solve the above problems, we propose to leverage voxelized
point clouds as input and employ voxel-based representation net-
work for 3D SOT. We therefore introduce a novel tracking frame-
work, termed VoxelTrack, which fully explores 3D spatial informa-
tion of point clouds to guide target box regression for tracking, as
shown in Fig. 1 (b). We first voxelize point clouds cropped from
two consecutive frames and align them spatially, and then extract
voxel features by a series of sparse convolution blocks. Leveraging
the derived features incorporated by rich 3D spatial information
of point clouds, we could perform box regression to predict target
bounding box without any task-oriented module, such as proposal
generation and verification, motion prediction and refinement. To
further enhance 3D spatial information for accurate tracking, we
incorporate dual-stream voxel representation learning network to
explore fine-grained 3D spatial information. In addition, we per-
form layer-by-layer feature interaction for the two streams through
a cross-iterative feature fusion module, enhancing the synchro-
nization between dual-stream voxel features and thereby guiding a
more accurate box regression.

We evaluate our proposed VoxelTrack on three widely-adopted
datasets, including KITTI, NuScenes and Waymo Open Dataset.
Experimental results demonstrate that VoxelTrack outperforms
P2B/M2Track by a significant margin of 28.0%/7.5%, 22.5%/9.8%
mean success on the KITTI and NuScenes, respectively. Our method
could also accurately track objects in complex point clouds scenes,
such as those with sparse point clouds and distractors. Moreover,
thanks to the removal of task-oriented modules, the proposed Vox-
elTrack runs at a real-time speed of 36 Fps on a single TITAN RTX
GPU.

The main contributions of this work are summarized as follows:
• We propose VoxelTrack, a novel LiDAR point cloud track-

ing framework based on voxel representation. It simplifies
tracking pipeline with a single regression loss function.

• We design a dual-stream encoder to extract multi-level
voxel features in a cross-iterative fusion manner, capturing
fine-grained 3D spatial information of point clouds to guide
more accurate box regression.

• We conduct comprehensive experiments on KITTI, NuScenes
and Waymo Open Dataset (WOD), demonstrating the su-
perior performance of our proposed VoxelTrack.

2 RELATEDWORK
2.1 2D Single Object Tracking
In recent years, research in the study of 2D object tracking [9,
12, 22, 50, 57, 60, 67] has become very mature. Most of the track-
ers [23, 24, 50, 57, 67] follow a Siamese-based network. SiamFC [1]
as a pioneering work in the field, introduces a fully-convolution
framework to achieve feature fusion and matching of template and
search areas for object tracking. SiamRPN [25] first introduces a
single-stage region proposal network (RPN) [16] to achieve object
tracking by comparing the similarity between the current frame
features and template features. By using a spatial-aware sampling
strategy, SiamRPN++ [23] further improves the siamese-based net-
work to remove the disturbance factors such as padding. Due to the
extraordinary correlation modeling ability of Transformer [47] and
the proposal of VIT [11], SimViT-Track [5] uses a similar method
to feed templates and search areas into the ViT backbone to pre-
dict the location of targets. After that, many other notable vari-
ants [6, 13, 35, 49, 54] in 2D SOT also achieve the considerable
success. However, it is non-trivial to apply these techniques to 3D
SOT on LiDAR point clouds.

2.2 3D Single Object Tracking
Early 3D single object tracking (SOT) methods [2, 21, 29, 37] pri-
marily operate within the RGB-D domain. While these approaches
offer a promising research direction, RGB-D trackers may falter in
tracking targets when the RGB-D information is compromised by
factors such as lighting conditions or noise. With the advancements
in LiDAR sensor technology, the point cloud domain has emerged as
a pivotal domain for the evolution of 3D SOT, overcoming the afore-
mentioned limitations. Pioneering this shift, SC3D [15] introduces
the first Siamese tracker based solely on point clouds, matching
feature distances between template and search regions while regu-
larizing training through shape completion. Subsequently, P2B [41]
introduces a 3D Region Proposal Network (RPN). Diverging from
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SC3D, P2B adopts an end-to-end framework, employing a VoteNet [38]
to generate a batch of high-quality candidate target boxes. In-
spired by the success of P2B, numerous networks [18, 19, 32, 34,
36, 42, 48, 52, 63, 65] utilizing it as a baseline have been proposed.
OSP2B [34] enhances P2B into a one-stage Siamese tracker by si-
multaneously generating 3D proposals and predicting center-ness
scores. BAT [63] encodes distance information from point-to-box
to augment correlation learning between template and search ar-
eas. PTTR [65], CMT [18], and STNet [20] explore different atten-
tion mechanisms to improve feature propagation. CXTrack [55]
underscores the significance of contextual information on track-
ing performance, designing a target-centric transformer network
to explore such information. MBPTrack [56] employs a memory
mechanism for enhancing aggregation of previous spatial and tem-
poral information. Despite the impressive performance achieved
by these methods, they adhere to the Siamese paradigm, focusing
either on designing intricate modules or incorporating additional
point cloud features. However, owing to the sparse nature of point
clouds, they may lack sufficient texture information for appearance
matching. Fortunately, information pertaining to object motion is
well retained. M2Track introduces a motion-centric paradigm that
explicitly models target motion between successive frames by di-
rectly fusing point clouds from two consecutive frames as input and
utilizing PointNet [39] to predict relative target motion from the
cropped target area. While these point representation-based track-
ing methods have demonstrated superior performance, they may
still face challenges to deal with inherently disordered and sparsity-
inconsistent point clouds. In this paper, we propose VoxelTrack, a
novel voxel representation-based tracking framework.

2.3 Feature Representation on 3D Point Clouds
Presently, 3D perception approaches employing point cloud rep-
resentation are primarily categorized into point-based methods
and voxel-based methods. PointNet [39] and PointNet++[40] have
paved the way for a multitude of vision tasks, including classifi-
cation, segmentation, and detection, to be conducted directly on
raw point cloud data. Building upon the success of these frame-
works, a plethora of point-based representation methods have
emerged[27, 31, 43, 45, 51, 53, 61, 62]. However, such point-based
representation networks encounter inherent challenges. Given the
sparsity and inconsistent density of point clouds, these methods
heavily rely on point sampling and regional point aggregation oper-
ations, which are susceptible to time-consuming and computation-
intensive point-wise feature duplication. On the other hand, voxel-
based representation methods in 3D perception entail partitioning
the input point cloud into a grid of uniformly sized voxels based
on a predefined coordinate system, addressing the irregular data
format issue. VoxelNet [66] lays the groundwork for target de-
tection frameworks and serves as the backbone for numerous 3D
detection methods. Sparse convolution techniques are employed
in SECOND [58] to proficiently learn sparse voxel features from
point clouds. Compared to point-based methods, voxel-based meth-
ods [8, 10, 30, 33] demand fewer memory and computing resources,
rendering them potentially superior choices for point cloud object
tracking task. To the best of our knowledge, VoxelTrack is the first
attempt to utilize a pure voxel representation network for 3D SOT.

3 METHODOLOGY
In this section, we present our proposed VoxelTrack to implement
the 3D SOT task. We first explicitly define the 3D SOT task in
Sec. 3.1, followed by a review of two popular model series using
point-based representation in Sec. 3.2. In Sec. 3.3, we describe our
proposed framework VoxelTrack, consisting of three key compo-
nents: Voxel Division, Multi-level Voxel Representation Learning
and Box Regression. Finally, the implementation of the three com-
ponents are detailed in Sec. 3.4, 3.5 and 3.6, respectively.

3.1 Problem Definition
The task of 3D SOT is defined: In a𝑇 -frame sequence of point clouds
{P ∈ R𝑁×3}𝑇

𝑡=1, an initial 3D bounding box 𝐵1=(𝑥1, 𝑦1, 𝑧1,𝑤1, ℎ1,
𝑙1, 𝜃1) of a specific target is given in the first frame, tracking needs
to accurately localize the target in subsequent frame and predict
bounding boxes {𝐵𝑡=(𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝑤𝑡 , ℎ𝑡 , 𝑙𝑡 , 𝜃𝑡 )}𝑇𝑡=2 for the tracked
target. The point cloud P ∈ R𝑁×3 is composed of 𝑁 points. (𝑥 , 𝑦,
𝑧), (𝑤 , ℎ, 𝑙 ) and 𝜃 in bounding box represent the center coordinates,
box size and angle. In the community, it is assumed that the target
size remains constant across all frame. Therefore, only (𝑥 , 𝑦, 𝑧) and
𝜃 are needed to predict for 3D bounding box.

3.2 Revisit Point Representation-based Trackers
P2B series. Existing P2B series trackers crop the point clouds in
the first frame by using the given target box to get template re-
gion 𝑃

𝑐𝑟𝑜𝑝

1 , and form search region 𝑃
𝑐𝑟𝑜𝑝
𝑡 in current 𝑡-th frame by

expanding target box predicted in previous (𝑡 − 1)-th frame. The
template and search region are then delivered into a point repre-
sentation based Siamese network. Following, operations such as
similarity calculations are typically employed to assess the appear-
ance matching degree between 𝑃

𝑐𝑟𝑜𝑝

1 and 𝑃
𝑐𝑟𝑜𝑝
𝑡 . The proposals

are generated from search region by offset learning. Finally, the
proposal with the highest confidence is selected to generate track-
ing result. The whole process can be represented by the following
equation:

𝐹𝑝𝑟𝑜 (𝐹𝑚𝑎𝑡𝑐ℎ (𝐹𝑝 (𝑃1), 𝐹𝑝 (𝑃𝑡 ))) → (Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑧𝑡 ,Δ𝜃𝑡 ) (1)

where 𝐹𝑝 , 𝐹𝑚𝑎𝑡𝑐ℎ and 𝐹𝑝𝑟𝑜 denote the point representation based
backbone, appearance matching network and proposal network.
The output (Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑧𝑡 ,Δ𝜃𝑡 ) is added to (𝑥𝑡−1, 𝑦𝑡−1, 𝑧𝑡−1, 𝜃𝑡−1)
to yield tracking box (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝜃𝑡 ) in current frame.
M2Track series. Current M2Track do not crop the template region,
it concatenates 𝑃𝑐𝑟𝑜𝑝

𝑡−1 and 𝑃𝑐𝑟𝑜𝑝𝑡 into one input 𝑃𝑡−1,𝑡 . This approach
distinguishes between previous frame target, current frame target
and background points via joint spatial-temporal learning. After-
wards, they leverage a two-stage network to explore motion cue
instead of appearance matching for tracking. A coarse box offset
(Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑧𝑡 ,Δ𝜃𝑡 )𝑐𝑜𝑎𝑟𝑠𝑒 and a fine box offset (Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑧𝑡 ,Δ𝜃𝑡 )𝑓 𝑖𝑛𝑒
are predicted from the two stages, respectively. The whole process
can be represented by the following equation:

𝐹𝑚𝑜𝑡𝑖𝑜𝑛 (𝐹𝑠𝑒𝑔 (𝐹𝑝 (𝑃𝑡−1,𝑡 ))) → (Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑧𝑡 ,Δ𝜃𝑡 ) (2)

where 𝐹𝑠𝑒𝑔 and 𝐹𝑚𝑜𝑡𝑖𝑜𝑛 denote the segmentation network and mo-
tion inference network.

3
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Figure 2: Overall of our proposed voxel representation based tracking framework VoxelTrack. It consists of voxel division,
multi-level voxel feature learning and box regression components. "CIF” denotes cross-iterative feature fusion module, where
the last one performs single-direction fusion from small voxel (high resolution) branch to large voxel (low resolution) branch.

3.3 Proposed VoxelTrack
Different from the above two series of trackers, our proposed Vox-
elTrack leverages voxel representation for point clouds to perform
tracking and simplify the tracking framework into:

𝐹𝑟𝑒𝑔 (𝐹𝑣 (𝑃𝑡−1,𝑡 )) → (Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑧𝑡 ,Δ𝜃𝑡 ) (3)

where 𝐹𝑣 and 𝐹𝑟𝑒𝑔 denote the voxel representation backbone and
box regression network. The overall architecture of our proposed
framework is illustrated in Fig. 2. It consists of three key compo-
nents: voxel division, multi-level voxel representation learning and
box regression. More concretely, we first divide point clouds in
frame 𝑡 − 1 and 𝑡 into multi-level voxels and concatenate voxels
in each level. Then, we propose a multi-level voxel representation
learning module to capture 3D spatial information dependencies
for tracked objects. Finally, we directly regress the target box, i.e,,
predict (Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑧𝑡 ,Δ𝜃𝑡 ) by using a single regression loss.

3.4 Voxel Division.
The previous frame point cloud 𝑃𝑡−1 and current frame point clouds
𝑃𝑡 are first divided into voxels {V𝑡−1,V𝑡 } with spatial resolution of
𝑊 × 𝐿 × 𝐻 :

(𝑖, 𝑗, 𝑘) = (⌊ 𝑥

Δ𝑊
⌋, ⌊ 𝑦

Δ𝐿
⌋, ⌊ 𝑧

Δ𝐻
⌋) (4)

Where ⌊·⌋ denotes the floor function, (i, j, k) is the voxelized coor-
dinate, (x,y,z) is the original coordinate of the point, Δ is the voxel
size. Then we concatenate the previous frame V𝑡−1 ∈ R𝑊 ×𝐿×𝐻×3

and the current frame V𝑡 ∈ R𝑊 ×𝐿×𝐻×3 along the channel dimen-
sion as input V𝑡−1,𝑡 ∈ R𝑊 ×𝐿×𝐻×6 . Considering that the point
clouds in each frame may be relatively sparse, especially in distant
scenes, we find that the previous pooling and set abstraction op-
erations (involving farthest point sampling and feature forward)
in point-based methods should be improved, preventing 3D spatial
information from being modeled. We therefore introduce a simple
dynamic voxel feature encoder to tackle non-empty voxels after
voxelization. In each voxel, it averages the values of all points and

then reassigns the average value to each point. As a result, the
number of points in each voxel is dynamic and will not be reduced:

𝐶ℎ𝑎𝑛𝑛𝑒𝑙
𝑗∈𝑅6

(p𝑖 ) =
1
𝑁

𝑁∑︁
𝑘=1

𝐶ℎ𝑎𝑛𝑛𝑒𝑙
𝑗∈𝑅6

(p𝑘 ) (5)

By leveraging the dynamic voxel feature encoder, all points and
spatial information are well retained without introducing informa-
tion loss, so that VoxelTrack can learn rich features with 3D spatial
information and guide accurate box regression for tracking.

3.5 Dual-Stream Voxel Representation Learning
Dual-stream Encoder. To extract rich spatial information from
voxelized point clouds by making full use of their ordered spatial
structure, we design a dual-stream encoder specifically for the mod-
eling of fine-grained 3D spatial information. As shown in Fig. 3,
we first divide the point clouds into two scales V𝑙𝑎𝑟𝑔𝑒 and V𝑠𝑚𝑎𝑙𝑙 .
After that, we generate two inputs V𝑙𝑎𝑟𝑔𝑒

𝑡−1,𝑡 ∈ R𝑊𝑙×𝐿𝑙×𝐻𝑙×6 and
V𝑠𝑚𝑎𝑙𝑙
𝑡−1,𝑡 ∈ R𝑊𝑠×𝐿𝑠×𝐻𝑠×6 for the dual-stream encoder. Due to the

sparsity of the point cloud, a lot voxels are empty. We then employ
slightly-modified VoxelNext [7] as feature extraction backbone,
which uses 3D sparse convolution layers [17] instead of 3D con-
volution layers to encode voxel features. According to our design,
two different scales of voxel inputs are extracted features by two
similar backbones, respectively to focus on learning multi-scale
features {F𝑙𝑎𝑟𝑔𝑒𝑠 , F𝑠𝑚𝑎𝑙𝑙

𝑠 }𝑁
𝑠=1. Specifically, our backbone is consisted

of 𝑁 stages, where the spatial information F𝐿𝑡 is down-sampled to
half after each stage. Meanwhile, the number of channels is dou-
bled to enhance the voxel feature representation ability. The scale
transformation for F𝑙𝑎𝑟𝑔𝑒𝑠 can be formulated as:

F𝑙𝑎𝑟𝑔𝑒
𝑠+1 ∈ R

𝑊
2 × 𝐿

2 ×
𝐻
2 ×2𝐶 = SpConv(F𝑙𝑎𝑟𝑔𝑒𝑠 ∈ R𝑊 ×𝐿×𝐻×𝐶 ) (6)

where 𝑠 ∈ {0, 1, 2}, and the scale transformation for F𝑠𝑚𝑎𝑙𝑙
𝑠 is similar

to Eq. 6.
4
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Figure 3: Illustration of large voxel and small voxel based
inputs for dual-stream encoder. The inputs are denoted by
V𝑙𝑎𝑟𝑔𝑒

𝑡−1,𝑡 ∈ R𝑊𝑙×𝐿𝑙×𝐻𝑙×6 and V𝑠𝑚𝑎𝑙𝑙
𝑡−1,𝑡 ∈ R𝑊𝑠×𝐿𝑠×𝐻𝑠×6, respectively.

Cross-iterative Feature Fusion. Although the utilization of two
independent branches enables more comprehensive extraction of
various features, the lack of interdependence between these branches
impedes the effective aggregation of features. As one of the most
successful feature aggregation module, the feature pyramid net-
work (FPN) [28] extracts multi-scale semantic information from
different layers of feature through both top-down and bottom-up
feature propagation mechanisms. In contrast, our VoxelTrack aims
at interacting features of the dual streams to enhance the repre-
sentation of 3D spatial information for the tracking task, rather
than fusing features of different stages. Therefore, we develop a
cross-iterative feature fusion (CIF) module, which can iteratively
fuse the features of each stage to enhance the synchronization of
dual-stream features.

As show in Fig. 4, after being encoded by sparse convolution
block of 𝑠-th stage, the voxel features F𝑙𝑎𝑟𝑔𝑒𝑠 and F𝑠𝑚𝑎𝑙𝑙

𝑠 are formed
in the two branches, respectively. To fuse F𝑙𝑎𝑟𝑔𝑒𝑠 and F𝑠𝑚𝑎𝑙𝑙

𝑠 , we first
align the scale of two feature map groups. For the F𝑠𝑚𝑎𝑙𝑙

𝑠 with high-
resolution, it is down-sampled to the size of F𝑙𝑎𝑟𝑔𝑒𝑠 by 3D Average
Pooling. Similarly, we up-sample the F𝑙𝑎𝑟𝑔𝑒𝑠 with low-resolution by
linear interpolation operation. Compared to using the convolution
layers for sampling, our method is able to better preserve features
of different scale and reduce the consumption of computational
resources. Detailed experiments and analysis can refer to Tab. 6).

Linear Inter.

Max-Pooling

C

 2 

C

 1/2 

2W L H C

W L H C 2W L H C

W L H C

Concat.

Concat.

Large Voxel Branch

Small Voxel Branch

Figure 4: Illustration of cross-iterative feature fusion. It uti-
lizes a pooling operation to down-sample the large-scale 3D
feature maps within the small voxel branch, which are then
concatenated with the small-scale 3D feature maps of the
large voxel branch. Correspondingly, a linear interpolation
operation is employed to fuse feature from the large voxel
branch to the small voxel branch.

It is important to note that we use only the down-sampling in the
last stage to obtain the output features of the backbone. To make a
better fusion, we then employ convolution layer to further process
features.

3.6 Box Regression
With the obtained encoded features, we convert 3D voxel features
to 2D BEV features F𝐵𝐸𝑉 . Thanks to 3D spatial information being
modeled, we directly predict the target position (Δ𝑥,Δ𝑦,Δ𝑧,Δ𝜃 )
in a one-stage manner. Specifically, we first aggregate the spatial
information by global max pooling. Then we apply a MLP to derive
the target position. Finally, we leverage a residual log-likelihood
estimation [26] function F to calculate training loss L:

L = F𝑟𝑙𝑒 ((Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑧𝑡 ,Δ𝜃𝑡 ), ( ˆΔ𝑥𝑡 , ˆΔ𝑦𝑡 , ˆΔ𝑧𝑡 , ˆΔ𝜃𝑡 )) (7)

where (Δ𝑥𝑡 ,Δ𝑦𝑡 ,Δ𝑧𝑡 ,Δ𝜃𝑡 ) and ( ˆΔ𝑥𝑡 , ˆΔ𝑦𝑡 , ˆΔ𝑧𝑡 , ˆΔ𝜃𝑡 ) denote the pre-
diction parameters and label, respectively.

4 EXPERIMENT
4.1 Experimental setting
Implementation Details. For model inputs, we first crop the point
cloud P𝑡−1 and P𝑡 with a range of [(4.8,-4.8),(4.8,-4.8),(1.5,-1.5)] for
Car category and [(1.92,-1.92),(1.92,-1.92),(1.5,-1.5)] for Pedestrian
category. We then set𝑊𝑙 , 𝐿𝑙 and 𝐻𝑙 to 64, 64 and 10 for large voxel
branch, and set𝑊𝑠 , 𝐿𝑠 and 𝐻𝑠 to 128, 128 and 20 for small voxel
branch. The dual-stream encoder is implemented by a series of
sparse convolution blocks [66]. We train our VoxelTrack using a
AdamW optimizer on eight TITAN RTX GPUs, with a batch size
of 128. The initial learning rate is set to 1𝑒-4, which is reduced by
a factor of 5 every 40 epochs. More implementation details can be
found in appendix.
Datasets. To evaluate the performance of our tracking network, we
conducted comprehensive and detailed experiments and analyses
on three large-scale and widely used datasets, including KITTI [14]
, NuScenes [3] and Waymo Open Dataset (WOD) [44]. KITTI con-
sists of 21 training scene sequences and 29 test scenes sequences.
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Table 1: Comparisons with state-of-the-art methods on KITTI dataset [14]. Red and blue denote the best performance and the
second-best performance, respectively. Success / Precision are used for evaluation.

Car Pedestrian Van Cyclist MeanTracker Source [6,424] [6,088] [1,248] [308] [14,068] Hardware Fps

SC3D [15] CVPR’19 41.3 / 57.9 18.2 / 37.8 40.4 / 47.0 41.5 / 70.4 31.2 / 48.5 GTX 1080Ti 2
P2B [41] CVPR’20 56.2 / 72.8 28.7 / 49.6 40.8 / 48.4 32.1 / 44.7 42.4 / 60.0 GTX 1080Ti 40

MLVSNet [52] ICCV’21 56.0 / 74.0 34.1 / 61.1 52.0 / 61.4 34.4 / 44.5 45.7 / 66.6 GTX 1080Ti 70
BAT [63] ICCV’21 60.5 / 77.7 42.1 / 70.1 52.4 / 67.0 33.7 / 45.4 51.2 / 72.8 RTX 2080 57
PTTR [65] CVPR’22 65.2 / 77.4 50.9 / 81.6 52.5 / 61.8 65.1 / 90.5 57.9 / 78.2 Tesla V100 50
V2B [19] NeurIPS’21 70.5 / 81.3 48.3 / 73.5 50.1 / 58.0 40.8 / 49.7 58.4 / 75.2 TITAN RTX 37
CMT [18] ECCV’22 70.5 / 81.9 49.1 / 75.5 54.1 / 64.1 55.1 / 82.4 59.4 / 77.6 GTX 1080Ti 32
GLT-T [36] AAAI’23 68.2 / 82.1 52.4 / 78.8 52.6 / 62.9 68.9 / 92.1 60.1 / 79.3 GTX 1080Ti 30
OSP2B [34] IJCAI’23 67.5 / 82.3 53.6 / 85.1 56.3 / 66.2 65.6 / 90.5 60.5 / 82.3 GTX 1080Ti 34
STNet [20] ECCV’22 72.1 / 84.0 49.9 / 77.2 58.0 / 70.6 73.5 / 93.7 61.3 / 80.1 TITAN RTX 35

M2Track [64] CVPR’22 65.5 / 80.8 61.5 / 88.2 53.8 / 70.7 73.2 / 93.5 62.9 / 83.4 Tesla V100 57
SyncTrack [32] ICCV’23 73.3 / 85.0 54.7 / 80.5 60.3 / 70.0 73.1 / 93.8 64.1 / 81.9 TITAN RTX 45
CorpNet [48] CVPRw’23 73.6 / 84.1 55.6 / 82.4 58.7 / 66.5 74.3 / 94.2 64.5 / 82.0 TITAN RTX 36
CXTrack [55] CVPR’23 69.1 / 81.6 67.0 / 91.5 60.0 / 71.8 74.2 / 94.3 67.5 / 85.3 RTX 3090 29

VoxelTrack Ours 72.5 / 84.7 67.8 / 92.6 69.8 / 83.6 75.1 / 94.7 70.4 / 88.3 TITAN RTX 36Improvement ↓0.8 / ↓0.3 ↑0.8 / ↑1.1 ↑9.5 / ↑11.8 ↑0.8 / ↑0.4 ↑2.9 / ↑3.0

Table 2: Comparisons with state-of-the-art methods on Waymo Open Dataset [44].

Vehicle Pedestrian
Easy Medium Hard Mean Easy Medium Hard MeanTracker

[67,832] [61,252] [56,647] [185,731] [85,280] [82,253] [74,219] [241,752]
Mean [427,483]

P2B [41] 57.1 / 65.4 52.0 / 60.7 47.9 / 58.5 52.6 / 61.7 18.1 / 30.8 17.8 / 30.0 17.7 / 29.3 17.9 / 30.1 33.0 / 43.8
BAT [63] 61.0 / 68.3 53.3 / 60.9 48.9 / 57.8 54.7 / 62.7 19.3 / 32.6 17.8 / 29.8 17.2 / 28.3 18.2 / 30.3 34.1 / 44.4
V2B [19] 64.5 / 71.5 55.1 / 63.2 52.0 / 62.0 57.6 / 65.9 27.9 / 43.9 22.5 / 36.2 20.1 / 33.1 23.7 / 37.9 38.4 / 50.1
STNet [20] 65.9 / 72.7 57.5 / 66.0 54.6 / 64.7 59.7 / 68.0 29.2 / 45.3 24.7 / 38.2 22.2 / 35.8 25.5 / 39.9 40.4 / 52.1

CXTrack [55] 63.9 / 71.1 54.2 / 62.7 52.1 / 63.7 57.1 / 66.1 35.4 / 55.3 29.7 / 47.9 26.3 / 44.4 30.7 / 49.4 42.2 / 56.7

VoxelTrack 65.4 / 72.9 57.6 / 66.2 56.2 / 66.9 60.0 / 69.1 44.2 / 66.5 36.2 / 57.0 32.5 / 53.4 37.9 / 59.3 47.5 / 63.6
Improvement ↓ 0.5 / ↑0.2 ↑0.1 / ↑0.2 ↑1.6 / ↑2.2 ↑0.3 / ↑0.9 ↑8.8 / ↑11.2 ↑6.5 / ↑9.1 ↑6.2 / ↑9.0 ↑7.2 / ↑9.9 ↑5.3 / ↑6.9

Following the previous works, we divide the training sequence into
three subsets, sequences 0-16 for training, 17-18 for validation, and
19-20 for testing. Compared to KITTI, the other two datasets are
larger and contain more challenging scenes. For the NuScenes, it
contains 700/150 scenes for training / testing. For the WOD, it in-
cludes 1121 tracklets that are classified into easy, medium, and hard
subsets based on the sparsity of point clouds. These configurations
adhere to established methods to maintain a fair comparison.
Metrics. We use one pass evaluation (OPE) as an approach to eval-
uate the performance of our model, simultaneously use of both
Success and Precision metrics. Success is calculated by the intersec-
tion over union (IOU) between the ground truth bonding box and
the predicted bounding box. Precision is calculated as the distance
between the centers of the two bounding boxes.

4.2 Comparison with State-of-the-arts
Results on KITTI. We compare the proposed VoxelTrack with
existing point representation-based state-of-the-art methods, and

present a comprehensive analysis towards the performance of these
methods on all categories, including Car, Pedestrian, Van and Cy-
clist. As show in Tab. 1, our VoxelTrack demonstrates predominant
performance across various categories, achieving a mean Success
rate of 70.4% and amean Precision rate of 88.3% in the KITTI dataset,
respectively. This is due to that voxel-based representation captures
accurate 3D spatial information, which is more suited for disordered
and density-inconsistent point clouds. Compared to point-based
representation based methods P2B [41] and M2Track [64], Voxel-
Track achieves 28.0% and 7.5% performance gains in terms of mean
Success, while running at a real-time speed. In addition, our method
exhibits significant performance advantage compared to recent P2B
series work CXTrack [55]. Note that, VoxelTrack obviously out-
performs the previous best method by in the Van category, which
implies that our method can achieve good performance without
the large dataset training.
Results on WOD. To demonstrate the applicability of our pro-
posed VoxelTrack method, we evaluate the KITTI trained Car and
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Table 3: Comparisons with state-of-the-art methods on NuScenes dataset [3].

Tracker Car [64,159] Pedestrian [33,227] Truck [13,587] Trailer [3,352] Bus [2,953] Mean [117,278]

SC3D [15] 22.3 / 21.9 11.3 / 12.6 30.6 / 27.7 35.3 / 28.1 29.3 / 24.1 20.7 / 20.2
P2B [41] 38.8 / 43.2 28.4 / 52.2 43.0 / 41.6 49.0 / 40.0 32.9 / 27.4 36.5 / 45.1
PTT [42] 41.2 / 45.2 19.3 / 32.0 50.2 / 48.6 51.7 / 46.5 39.4 / 36.7 36.3 / 41.7
BAT [63] 40.7 / 43.3 28.8 / 53.3 45.3 / 42.6 52.6 / 44.9 35.4 / 28.0 38.1 / 45.7
GLT-T [36] 48.5 / 54.3 31.7 / 56.5 52.7 / 51.4 57.6 / 52.0 44.5 / 40.1 44.4 / 54.3
PTTR [65] 51.9 / 58.6 29.9 / 45.1 45.3 / 44.7 45.9 / 38.3 43.1 / 37.7 44.5 / 52.1

M2Track [64] 55.8 / 65.1 32.1 / 60.9 57.4 / 59.5 57.6 / 58.2 51.4 / 51.4 49.2 / 62.7

VoxelTrack 63.9 / 71.6 46.8 / 75.9 64.8 / 65.9 69.5 / 64.3 60.1 / 57.7 59.0 / 71.4
Improvement ↑8.1 / ↑6.5 ↑14.7 / ↑15.0 ↑7.4 / ↑6.4 ↑11.9 / ↑6.1 ↑8.7 / ↑6.3 ↑9.8 / ↑8.7

Table 4: Ablation of dual-stream voxel representation. “Sin-
gle” means that only a small voxel branch is used, while
“Dual” denotes the use of dual-stream encode under different
ratios for large and small voxel branches.

Branch Ratio Car Pedestrian Van Cyclist

Single - 69.1 / 80.2 63.5 / 88.2 65.4 / 76.7 72.5 / 90.1

Dual
1.5 71.8 / 83.5 67.3 / 91.7 68.1 / 80.2 73.1 / 91.4
2.0 72.5 / 84.7 67.8 / 92.6 69.8 / 83.6 75.1 / 94.7
2.5 70.9 / 82.6 65.4 / 90.1 68.7 / 81.9 74.2 / 93.6

Table 5: Ablation of CIF module. “𝑆𝑛” denotes 𝑛-th stage.

𝑆1 𝑆2 𝑆3 Car Pedestrian Van Cyclist

✓ 70.5 / 81.8 57.6 / 84.9 66.2 / 79.4 72.1 / 91.2
✓ ✓ 70.1 / 81.6 65.0 / 88.7 68.1 / 81.6 74.5 / 93.6

✓ ✓ ✓ 72.5 / 84.7 67.8 / 92.6 69.8 / 83.6 75.1 / 94.7

Pedestrian model on WOD, following common practice in the com-
munity [19, 55]. We select some representative methods for com-
parison, including CXTrack [55], STNet [20], V2B [19], BAT [63]
and P2B [41]. The experiment results are shown in the Tab. 2. Our
VoxelTrack achieves best performance with a mean Success and
Precision of 47.5% and 63.6%. Compared to existing point representa-
tion base methods, VoxelTrack presents performance improvements
across vehicle and pedestrian categories with varying degrees of
complexity. This is attributed to the higher generalization of voxel
representation compared to point representation to unseen scenes,
proving the potential of the proposed voxel representation-based
tracking framework.
Results on NuScenes. We further explore the various capabilities
of VoxelTrack on the NuScenes dataset. Because NuScenes con-
tains a large number of complex and diverse scenes, it becomes
a more challenging dataset for 3D SOT. We choose the state-of-
the-art trackers that have reported performance on this dataset as
comparisons: SC3D [15], P2B [41], PTT [42], BAT [63], GLT-T [36],
PTTR [65] and M2Track [64]. As show in Tab. 3, our VoxelTrack
demonstrates great performance with the mean Success and Preci-
sion rates of 59.06% and 71.39%. Notably, VoxelTrack exhibits the

Table 6: Ablation of variant design for CIF module.
“Left+Right” represents that “Left” operation is used for up-
sampling and “Right” operation is used for down-sampling,
respectively. “UpConv” and “Lerp” denote transpose convo-
lution and linear interpolation.

Variant Car Pedestrian Van Cyclist

UpConv + Conv 71.1 / 82.8 65.6 / 90.2 68.5 / 81.4 74.8 / 94.0
UpConv + Pool 69.4 / 81.7 66.1 / 91.2 67.1 / 80.2 74.6 / 93.2
Lerp + Conv 68.8 / 80.3 66.7 / 92.0 68.1 / 81.0 74.3 / 93.7
Lerp + Pool 72.5 / 84.7 67.8 / 92.6 69.8 / 83.6 75.1 / 94.7

leading performance in all categories. The results of this experi-
ment demonstrate that our method can accurately and robustly
track objects even in complex scenes.

4.3 Exploration Studies
Effectiveness of Dual-Stream Voxel Representation. The pro-
posed VoxelTrack leverages voxel-based representation to model
spatial information and achieves direct regression of target box. As
reported in Tab. 4, even with single-branch voxel encoding, Voxel-
Track still presents favorable performance, such as 69.1% and 80.2%
values in terms of Success and Precision. When using dual-stream
encoder, performance is further improved. Here, we ablate the ratio
between large and small voxel branches. In fact, both too large
and too small ratios cause some degree of interference in the syn-
chronization between the two-stream features. According to Tab. 4,
when ratio is set 2, VoxelTrack achieves the best performance on
four categories. Therefore, we set ratio to 2 for all experiments if
not specified.
Analysis of CIF Module. To further analyze the influence of
the cross-iterative feature fusion (CIF) module on our proposed
VoxelTrack, we conduct an ablation study on the KITTI dataset.
As reported in Tab. 5, VoxelTrack achieves best performance with
iterative interaction fusion in each stage. This implies that CIF can
effectively enhance the synchronization between the dual-stream
features, thereby exploring fine-grained 3D spatial information
for tracking. When only interacting with the dual-stream features
in the last stage, the performance across different categories is
reduced, notably on the Pedestrian category, by 10.2% and 7.7%
in terms of Success and Precision, respectively. We consider that
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Figure 5: Performance comparison on three types of complex scenes factors. (a) can reflect the robustness to sparse scenes on
the Car category. (b) and (c) can reflect the robustness to various distractors on the Pedestrian category. [m, n] denotes the
number of point cloud sequences and total frames.
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Figure 6: Tracking visualization comparison across four cate-
gories on the KITTI dataset. The bounding box of VoxelTrack
fits the ground truth box better than comparative methods.

when the dual-stream features in previous stages are not fused, the
high-resolution spatial information is distracted, which can lead
to less accurate predictions of yaw angle, thus affecting Success
metric more compared to Precision metric. The reason for the small
impact on Success metric for the Car category is that the yaw angle
of the cars does not change significantly in a point cloud sequence
and is relatively easy to predict.
Variant Design of CIF Module. In our CIF module, the sam-
pling method will affect the synchronization of feature interaction.
As show in Tab. 6, we ablate two commonly used up-sampling
methods and down-sampling methods, respectively. We choose 3D
transposed convolution and 3D linear interpolation as alternatives
for up-sampling methods, 3D convolution and 3D maxpooling for
down-sampling methods. We generate four candidate variants by
permuting and combining them. These variants will be applied to
the CIF module fuse the feature maps extracted by the dual-stream

branches. It can be seen that the combination of 3D linear interpola-
tion and 3D maxpooling achieves the best performance. In contrast
to the convolutional approach, these two methods maintain feature
semantic space, which facilitates the collaborative modeling of 3D
spatial information required for tracking between the dual-stream
features.
Robustness to Sparsity and Distractors. Considering that most
point clouds in real scenes are sparse and contained with distrac-
tors, generally testing the performance on the test dataset may lack
reliability in practical applications. Therefore, it is necessary to
analyze the robustness of model to sparse point clouds and distrac-
tors. Following [41], we divide the Car category dataset into six
sparsity levels, while divide the Pedestrian category dataset into
three inter-class and extra-class distractors levels. As show in Fig. 6,
we compare our VoxelTrack with M2Track [64] and P2B [41]. Voxel-
Track performs better in complex scenes (a), specially for extremely
sparse scenes with fewer than 20 points. For (b) and (c), our method
exhibits consistent performance advantage regardless of how many
interfering objects the scene contains. These all results demonstrate
the potential of the proposed method for practical applications.
Visualization Analysis. In Fig. 5, we show visualization results
on the KITTI dataset. We obtain LiDAR point cloud sequences from
each category, and then compare the ground truth box with three
prediction bounding boxes of P2B, M2Track and VoxelTrack. Our
VoxelTrack can more accurately and robustly track objects across
all categories than comparative methods, intuitively demonstrating
the effectiveness of our proposed framework.

5 CONCLUSION
This paper presents a novel voxel representation based tracking
framework, termed VoxelTrack. The novel framework leverages
voxel representation to explore 3D spatial information to guide
direct box regression for tracking. Moreover, It incorporates a dual-
stream encoder with a cross-iterative feature fusion module to
further model fine-grained 3D spatial information. Through ex-
tensive experiments and analyses, we prove that our proposed
VoxelTrack effectively handles disordered and density-inconsistent
point clouds, thereby exhibiting the state-of-the-art performance
on three published datasets and significantly outperforming the
previous point representation based methods.
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