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1 MORE IMPLEMENTATION DETAILS
1.1 Model Input
We crop two consecutive frames of the point cloud (p𝑡 and p𝑡−1)
on the timestamp by centering on the previous ground truth box.
Due to the subsequent voxelization operations, we do not need to
down-sample the point cloud to the same number of points per
frame. Following, we then set𝑊𝑙 , 𝐿𝑙 and 𝐻𝑙 to 64, 64 and 10 for
large voxel branch, and set𝑊𝑠 , 𝐿𝑠 and 𝐻𝑠 to 128, 128 and 20 for
small voxel branch. Finally, we concatenate the previous frame and
the current frame along the channel dimension as input.

1.2 Data Augmentation
we first crop the point cloud P𝑡−1 and P𝑡 with a range of [(4.8,-
4.8),(4.8,-4.8),(1.5,-1.5)] for Car category and [(1.92,-1.92),(1.92,-1.92),
(1.5,-1.5)] for Pedestrian category. To demonstrate the feasibility
of our VoxelTrack in real scenarios, we augmented the original
dataset to simulate the uncertainties that may exist in the real
world. Specifically, we randomly shifted the cropping range to
some extent. For each epoch, we first duplicate the dataset in four
copies, after which one copy keeps the original cropping range, and
the cropping ranges of each of the remaining three copies will be
added with random offsets.

1.3 Network Architecture
The specific network components can be found in Tab. 2.We employ
the VoxelNext as backbone of our VoxelTrack to extract point spatial
information. The backbone contains three stages, which encode dif-
ferent scale of features. Specifically, each stage is consisted of three
3D sparse convolution layers, which aggregate spatial information
and enhance feature representation. Moreover, we employ ReLU
and SyncBatchNorm as the activation function and batch normal-
ization function throughout our network. The eps and momentum
parameters of the SyncBatchNorm layer are set respectively to 1e-3
and 0.01.

2 MORE ANALYSIS EXPERIMENTS
2.1 Computational Cost Comparison
The FLOPs of a model is a important metric for evaluating the
computational coast and complexity of a model. We analyze the
computational coast for VoxelTrack by FLOPs and compare it with
other trackers. The results are showed in Tab. 1. Our VoxelTrack
mainly employed the 3D sparse convolution layer to reduce FLOPs
and achieved the best mean Success on both KITTI and NuScenes
dataset.
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