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A Datasheet for MUniverse

1. Motivation

For what purpose was the dataset collection created? The MUniverse project was developed
to address the lack of standardized benchmarks for evaluating MU decomposition algorithms
from high-density electromyography (HD-EMG) recordings. By providing a curated, diverse, and
extensible suite of datasets with known ground truth (where available), MUniverse enables repro-
ducible comparisons, robust performance assessments, and the development of next-generation
decomposition and inference algorithms. (Data curators and funding information will be available
upon review.)

Who created the collection (team / institution)? Developed by an interdisciplinary team of
biomedical engineers, neuroscientists and machine-learning researchers at Imperial College Lon-
don, University of Stuttgart, Université Cote d’ Azur and UmeaUniversity. Full author list as follows:
Pranav Mamidanna, Thomas Klotz, Dimitrios Halatsis, Agnese Grison, Irene Mendez-Guerra,
Shihan Ma, Arnault H. Caillet, Simon Avrillon, Robin Rohlén, and Dario Farina.
Who funded the creation of the collection? Supported by the following grants.

* Eric and Wendy Schmidt Postdoctoral Fellowship in Al for Science. (P.M.)

* Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the priority
program SPP 2311 (Grant ID: 548605919) (T.K.)

* European Research Council (ERC) through the ERC-AdG ‘gMOTION’ (Grant ID:
101055186) (T.K.)

* Imperial- META Wearable Neural Interfaces Research Centre and the Onassis Foundation
under Scholarship ID: F ZT 012-1/2023-2024. (D.H.)

* UK Research and Innovation (UKRI) under the UK government’s Horizon Europe Guarantee
(Grant ID: EP/Z002184/1) (R.R.)

¢ Swedish Brain Foundation (Grant ID: PS2022-0021). (R.R.)

2. Composition

What do the datasets represent? Datasets represent a large variety of surface EMG recordings
spanning multiple muscles, movements, and hardware configurations across three complementary
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modalities: (i) Synthetic (NeuroMotion) — full biophysical simulations with exact MU spike ground
truth; (ii) Hybrid (Tibialis Anterior) — experimentally observed MUAP waveforms convolved with
simulated spikes, blending realism with perfect labels; (iii) Experimental — HD-EMG recordings
(Caillet 2023 [13,4]], Avrillon 2024 [1} 2], and Grison 2025 [7]) for robustness tests on real-world
data.

How many datasets are included? Six datasets, 11 230 recordings in total: NeuroMotion-Train
(10 000), NeuroMotion-Test (985), Hybrid-Tibialis (100), Caillet 2023 (11), Avrillon 2024 (124),
Grison 2025 (10).

What data does each dataset contain? HD-EMG signals (in binary EDF format), Brain Imaging
Data Structure (BIDS) specified sidecars (JSON / TSV) and, when available, ground-truth spike
trains (flat TSV format). Synthetic and hybrid sets also store full simulator configurations and
provenance logs.

Are labels or ground truths available? Yes, for all synthetic recordings and hybrid recordings
(exact MU spikes). No labels for experimental sets, except Grison 2025 [7] that includes an
intramuscular decomposition result for two-source validation.

Are any data fields missing? All required BIDS fields are present; no known omissions.

Relationships between datasets? Hybrid MUAPs originate from Avrillon 2024; NeuroMotion-Test
mirrors the train distribution but is held out; the experimental MUAP library underpins the hybrid
set.

Recommended data splits? Training — NeuroMotion-Train. Held-out test — NeuroMotion-Test.
Experimental and Hybrid-Tibialis datasets are evaluation-only.

Known noise, errors or redundancies? Experimental recordings include measurement noise;
synthetic sets vary additive Gaussian noise from 10-30 dB; no duplicate files detected.

Self-contained or external resources? All raw data are packaged with the release. Simulations
rely on the NeuroMotion container (included).

Sensitive or confidential information? Volunteers are de-identified; no personal health informa-
tion stored.

. Collection Process

How were the datasets generated or acquired? Synthetic / Hybrid: generated with a container-
ized version of the NeuroMotion package. Experimental: collected with multiple 64-channel
HD-EMG grids in approved studies (Caillet et. al. (2023), Avrillon et. al. (2024), Grison et. al.
(2025)).

Who was involved in data creation? A.H.C. and S.A. were involved in collecting the original
experimental data for Caillet et. al. (2023) and Avrillon et. al. (2024). A.G. was involved in
collecting the original experimental data for Grison et. al. (2025). D.H., PM., and IL.M.G. were
involved in the data creation for NeuroMotion train, NeuroMotion test and Hybrid Tibialis datasets.

Timeframe of creation? 2023 — 2025.

Ethical review processes? The respective Research Ethics Committees approved each study:
Caillet et al. (Imperial College London, reference number 181C4685), Avrillon et al. (Imperial
College London, reference number 181C4685; Comité de Protection des Personnes Ouest, refer-
ence number 23.00453.000166), and Grison et al. (Imperial College London, reference number
19IC5640). The studies followed the Declaration of Helsinki, and the subjects gave informed
written consent.

. Pre-processing, Cleaning, Labelling

Was preprocessing / labelling done? Experimental: hardware band-pass (depending on whether
only surface recordings were performed vs hybrid) + 50 Hz notch. Synthetic / Hybrid: software
10-500 Hz band-pass filter was applied to all algorithms.

Is raw data available? Yes — raw signals are provided for every recording.



Is the preprocessing / labelling code available? Yes — MIT-licensed on GitHub https:/github,
com/dfarinagroup/muniverse

Any other comments? A JSON provenance record is written automatically for every benchmark
run.

. Uses

Has the dataset been used already? Yes — for the baseline benchmark in the accompanying
MUniverse paper; experimental subsets appear in Caillet et. al. (2023) [3]], Avrillon et. al. (2024)
[1]] and Grison et. al. (2025) [[7].

Repository of related papers / results? Links to publications and future submissions will be
maintained in the project README, while provenance of original source material (code, data) is
already available through the metadata files accompanying each dataset.

Suitable tasks? MU decomposition, simulation-to-real transfer (from kinematic and physiological
variables directly into EMG), EMG-to-force modelling, robustness testing under varied noise /
artefact profiles.

Limitations or risks? Simulations may omit rare artefacts; experimental subject diversity is
limited. Experimental datasets retain their own limitations, with lower number of subjects in total.

Tasks for which the dataset should not be used? Not validated for direct clinical diagnosis or
stimulation-safety decisions.

. Distribution

Will the dataset be shared publicly? Yes — via Harvard Dataverse DOIs all available under https
//dataverse.harvard.edu/dataverse/muniverse, and accompanying Croissant files.

How will it be distributed? Data will be distributed through the Harvard Dataverse’s persistent
URL and DOIs.

Under what license? Data under CC BY 4.0; code under MIT.
Third-party IP or use restrictions? None identified.

Export-control or regulatory limits? No dual-use concerns; recordings are non-invasive physio-
logical signals.

. Maintenance

‘Who maintains the collection? P.M. and T.K. will continue to maintain the data collection on
Dataverse as well as the code on GitHub.

Contact information? Any correspondence may be addressed to p.mamidanna@imperial.ac.uk
(P.M.), thomas.klotz@imsb.uni-stuttgart.de (T.K.) and d.farina@imperial.ac.uk (D.F.).

Will updates / errata be provided? Yes —logged in CHANGELOG . md and announced via GitHub
releases.

Will older versions be kept? Yes — prior DOI-tagged snapshots remain on Dataverse for repro-
ducibility.

Contribution / extension mechanism? Pull-requests on GitHub; new datasets accepted after
BIDS validation and CI checks; contributors acknowledged in release notes.

Any other comments? Community issues and feature requests are tracked through GitHub
Discussions.


https:/github.com/dfarinagroup/muniverse
https:/github.com/dfarinagroup/muniverse
https://dataverse.harvard.edu/dataverse/muniverse
https://dataverse.harvard.edu/dataverse/muniverse

A) motion dynamic MUAPs EMG signals

T $ = % e A CASATAR y
\ g’/ ' i HH“‘ | i H‘\‘l‘\ \HIII\I‘\ II

t- % [ \‘H‘H‘\‘\‘H‘\I}‘\‘\‘H‘\‘\‘\‘\‘ H‘\HHIIH‘IIIHIIIHIIII
ext+grasp = i T !
> &= R RRRT R T

grasp

~—— flex+grasp ... Splke trains
B) other params
muscle fibre length MUAPs
BioMime
motion
— > OpenSim — —> EMG signals

———— > Motor Unit Pool ——MM—
muscle activation I spike trains
neural input
Supplementary Figure 1: Overview of the NeuroMotion pipeline combining BioMime, neural-drive,

and musculoskeletal modules for real-time EMG synthesis. Figure reused from [12]] with permission
from the publisher.

B Data generation

B.1 NeuroMotion EMG simulator

Context and rationale. All synthetic surface EMG and ground-truth MU labels in MUniverse
were generated with NeuroMotion. The simulator belongs to a broader class of myoelectric digital
twins [[13] that recreate, in silico, the full chain from the neural drive to the voltages measured at
the skin. An anatomically realistic (potentially subject-specific) model begins with 3D imaging
(e.g., MRI or ultrasound) from which bone, muscle, fat, and skin surfaces are segmented. Next, the
MU pool activity is simulated, which determines the muscle fiber action potentials. In this work,
the muscle fiber action potentials are simulated using analytical functions. The electric muscle
fiber activities determine the right-hand side of a Poisson problem describing the electric behavior
of the body as a volume conductor, and which is approximated numerically, e.g., using the finite
element method.

BioMime: bridging discrete FEM-based simulations to real-time MUAPs To avoid having
to re-run the finite-element solver at every time frame, NeuroMotion employs BioMime [11]],
a conditional encoder—decoder model that learns to mimic FEM-derived MUAP templates as
a smooth function of six physiological parameters (depth, mediolateral position, fibre length,
conduction velocity, innervation-zone location, fibre density). Once trained, BioMime can morph
an existing template or sample de-novo from its latent space, allowing NeuroMotion to stream
MUAPs in real-time while continuously updating their properties during dynamic contractions.

NeuroMotion fuses the BioMime MUAP generator, a state-of-the-art neural-drive model, and
an OpenSim-based musculoskeletal (MSK) model into a modular pipeline that synthesises high-
fidelity, HD-EMG signals in real time, even during complex dynamic movements (overview in the
Supplementary Figure[T)). The individual building blocks are summarized below.

NeuroMotion modules at a glance
1. MSK model (OpenSim ARMS) — converts joint kinematics (pose sequences or motion-
capture trajectories) into time-varying fibre lengths and muscle activations.

2. Parameter translator — maps fibre-length changes to conduction-velocity and MU-depth
estimates when direct measurements are unavailable.



3. BioMime generator — produces time-varying MUAP templates conditioned on the seven
physiological parameters.

4. MU pool (Fuglevand or leaky-integrate-and-fire) — generates MU spike trains from nor-
malised neural drive, honouring the size principle and onion-skin firing behaviour.

5. Signal synthesiser — convolves MUAPs with the spike trains and sums across
units/electrodes to yield HD-EMG signals.

6. Utility toolbox — helpers for movement definition, parameter conversion, spike-train visuali-
sation and automatic data export.

Technical details of EMG generation For benchmark generation, we restricted the MSK model
to two degrees of freedom: wrist flexion—extension and radial-ulnar deviation. Each simulated
gesture—whether static or dynamic—was confined to a single degree of freedom. MUAP templates
corresponding to the target joint positions were generated using the ab initio mode of BioMime.
Each synthetic recording contains EMG signals from a single superficial forearm muscle during
the execution of a gesture.

We simulated 10 synthetic subjects, each defined by a static MU pool configuration across all mus-
cles. For every subject, a fixed number of MUs was randomly sampled, along with individualised
BioMime parameters [11] and a subject-specific fibre density. These parameters remained constant
across all recordings for a given subject. Each subject is uniquely identified by its corresponding
random seed.

To generate the complete benchmark set, we systematically varied the following parameters:

* Movement DoF: Flexion—extension or radial-ulnar deviation.
* Muscle: One of the 8 superficial forearm muscles listed below.

* Effort profile: One of four time-varying effort profiles: trapezoidal, sinusoidal, triangular,
or ballistic.

* Noise level: Signal-to-noise ratio (SNR) sampled between 10 and 30 dB.

* Electrode selection (NCols): Number of electrode columns selected from the array. 32
columns cover the full ring; 5 or 10 columns provide a localized array around the target
muscle.

B.2 Latin Hypercube Sampling Parameter Configuration

The NeuroMotion configuration generation employs a two-level Latin Hypercube Sampling ap-
proach with common parameters applied across all movement profiles and profile-specific parame-
ters varying by movement type.

B.2.1 Parameter Definitions

Common Parameters Six parameters are sampled uniformly across all movement profiles (see
Supplementary Table|[T).

Supplementary Table 1: Common LHS Parameters

Parameter Range Units Description

SubjectSeed (0, 10) - Subject identification index
TargetMuscle ©,7) - Muscle selection index
MovementDOF (0, 2) - Movement degrees of freedom
NCols 0, 3) - Electrode column configuration
NoiseSeed (1, 1000) - Noise generation seed

NoiseLeveldb (10, 30) SNR  Recording noise level




Movement-Specific Parameters Each movement profile requires distinct parameter sets, de-
tailed in Supplementary Table 2]

Supplementary Table 2: Movement Profile-Specific Parameters

Profile Parameter Range Units Notes

o EffortLevel (5, 80) % MVC Muscle activation level

f RestDuration (1,3) S Pre/post rest period

[ RampDuration (5, 10) S Rise/fall time

= HoldDuration (15, 30) S Sustained contraction

° EffortLevel (15, 80) % MVC Base activation level

= RestDuration (1,3) S Pre/post rest period

%’ HoldDuration (15, 30) S Total modulation time

g RampDuration (5, 10) S Transition duration

;5) SinFrequency (0.025,0.5) Hz Modulation frequency
SinAmplitude 5, 15) % MVC  Oscillation amplitude

2 EffortLevel (5, 80) % MVC Peak activation level

E RestDuration (1,3) S Pre/post rest period

= RampDuration (1, 20) S Total triangle duration

2 EffortLevel (40, 100) % MVC Peak activation level

; RestDuration (1, 3) S Inter-burst interval

M NRepetitions (1, 30) - Number of bursts

o EffortLevel (5, 80) % MVC Constant effort level

5‘ TargetAnglePercentage (0.5, 1) % max  Movement amplitude

=) TargetAngleDirection ©, 1) - Direction index

% SinFrequency (0.025,0.5) Hz Angular oscillation rate

g SinAmplitude (0.1,0.5) % max  Angle modulation depth

«n HoldDuration (10, 30) S Total movement time
EffortLevel (5, 80) % MVC Constant effort level

g TargetAnglePercentage (0.3, 1) % max Movement amplitude

e TargetAngleDirection 0, 1) - Direction index

= RampDuration (1, 6) S Movement duration
NRepetitions (1,5) - Cycle repetitions

B.2.2 Sampling Strategy

Profile Weighting Movement profiles are sampled with predetermined probabilities reflecting
biomechanical prevalence:

P(profile) = P(type) x P(pattern | type) (S.1)
where P(Isometric) = 0.65 and P(Dynamic) = 0.35, yielding:

P(Trapezoid_Iso) = 0.325 P(Triangular_Dyn) = 0.175 (8.2)
P(Sinusoid_Iso) = 0.1625 P(Sinusoid_Dyn) = 0.175 (5.3
P(Triangular_Iso) = 0.08125 (S.4)
P(Ballistic_Iso) = 0.08125 (S.5)

System Constants The sampling framework incorporates fixed anatomical and technical con-
straints:

* Muscles: ECRB, ECRL, ECU, EDI, PL, FCU, FDSI
* DOF ranges (degrees): Flexion-extension (—65, 65), radial-ulnar (—10, 25)



* Electrode arrays: 5, 10, or 32 columns (32 chosen 60% of cases)

* MU counts: Normal distributions per muscle (1 € [158,422], o = 0.15u)

B.3 Hybrid Tibialis Anterior

Alongside the fully—synthetic data produced with NeuroMotion—where both the MUAPs and their
driving spike trains are generated in silico—we curated a hybrid portion of the benchmark that
grafts experimentally derived MUAP waveforms onto simulated neural drive. Using the output of
HD-EMG decomposition together with spike-triggered averaging of 25 ms window, 1070 unique
MUs were extracted from ten able-bodied participants; the resulting MUAP templates were further
processed so that they have compact support (using a Tukey window) and are zero mean. Thus, the
MUAP templates are approximations of the true waveforms [1]. These templates were pooled, and
we sampled between 70 and 150 units, for each synthetic subject, according to the exponential
recruitment-threshold rule that mirrors Henneman’s size principle [8]]. For this dataset, we only
generated isometric contractions. The NeuroMotion motor neuron pool recruitment model was
used to simulate the neural activity.

We refer to this dataset as Hybrid TA. It comprises five synthetic subjects, each performing 20
contraction trials identical to those in the fully synthetic set.

B.4 Motor Neuron Recruitment Model:

The default NeuroMotion settings were used to simulate the spike trains through the motor neuron
recruitment model. The parameters are listed in the Supplementary Table [3}

Supplementary Table 3: Default Parameters for Motor Neuron Pool Class

Parameter Value Description Units

rr 50 Recruitment range: ratio of largest to small- —
est MU recruitment threshold

rm 0.75 Recruitment maximum: excitation level -
when all MUs are active

p 100 Force fold: ratio of largest to smallest MU —
force capacity
pfrl 40 Peak firing rate of the first (smallest) MU Hz
pfrd 10 Peak firing rate difference between firstand Hz
last MU
mfril 10 Minimum firing rate of the first (smallest) Hz
MU
mfrd 5 Minimum firing rate difference between Hz
first and last MU
gain 30 Excitatory drive-firing rate relationship Hz/drive
(equivalent to 0.3 Hz per % MVC)
c_ipi 0.1 Coefficient of variation for inter-pulse inter- —
val standard deviation
frsi 50 Slope of drive-firing rate relationship for Hz/drive
the first MU
frsd 20 Difference in drive-firing rate slope be- Hz/drive

tween first and last MU




C Experimental datasets

C.1 Subjects

The three curated experimental datasets in MUniverse are Caillet et al. [4]], Avrillon et al. [2], and
Grison et al. [[7], which include healthy subjects with no history of lower limb injury or pain during
the months preceding the experiments. These datasets include ankle dorsiflexion experiments,
where the Avrillon et al. dataset also includes a knee extension experiment. Caillet et al. dataset
includes six healthy male subjects (26 + 4 years; 174 + 7 cm; 66 + 15 kg), whereas the Avrillon et
al. dataset includes eight healthy subjects for the ankle dorsiflexion experiment (27 + 3 years) and
eight for the knee extension experiment (27 + 10 years). Grison et al. dataset includes one healthy
male subject (39 years).

The respective Research Ethics Committees approved each study: Caillet et al. (Imperial College
London, reference number 181C4685), Avrillon et al. (Imperial College London, reference number
181C4685; Comité de Protection des Personnes Ouest, reference number 23.00453.000166), and
Grison et al. (Imperial College London, reference number 191C5640). The studies followed the
Declaration of Helsinki, and the subjects gave informed written consent.

C.2 Experimental setups

A series of isometric ankle dorsiflexions (or knee extensions) was performed at given percentages
of the MVC while recording EMG signals from the tibialis anterior (or vastus lateralis) muscle.

For the ankle dorsiflexions, participants sat with the hips flexed at 30 [4] or 45 [2] degrees, with O
degrees the neutral hip position and knees fully extended. The right foot was fixed onto an ankle
dynamometer (NEG1, OT Bioelettronica, Turin, Italy) positioned at 30 degrees in the plantarflexion
direction, with 0 degrees being the foot perpendicular to the shank. The thigh and the foot were
fixed with Velcro straps.

For the knee extensions, participants sat with the hips and knees flexed at 85 degrees [2], with O
degrees being the neutral hip position and knees fully extended. The torso and thighs were fixed
with Velcro straps, and the tibia was positioned against a rigid resistance connected to force sensors
(Metitur, Jyviskyld, Finland). The force signals were recorded using the same acquisition system
as the EMG recordings (see below).

A warm-up of sub-maximal isometric contractions was performed before each subject performed
at least two MVCs. The maximal torque was used throughout the rest of the experimental session
with a series of sub-maximal isometric contractions following a pattern of trapezoidal target paths,
with 5% MVC/s ramps, displayed on a computer screen in real time, with the force level and target
path visualised. In Caillet et al., trapezoidal paths of 30 and 50% MVC were used (with 20 and 15
s plateaus). In Avrillon et al., 10 to 80% MVC with 10% MVC increments were used (with 20,
15, and 10 s plateaus at 10-40%, 50-60%, and 70-80% MVC, respectively). Finally, in Grison et
al., 10, 15, 20, 25, 30, 35, 40, 50, 60, and 70% MVC were used (with 20, 15, and 10 s plateaus
at 10-30%, 35-40%, and 50-70% MVC, respectively). The order of force levels was randomly
assigned, and there was a rest period between the tasks.

C.3 EMBG recordings

In the Caillet et al. and Avrillon et al. datasets, surface EMG signals were recorded from the TA
(or the VL) muscle using four 64-channel grids (GR04MM1305 / GROSMM 1305 for the TA /
VL muscle, 13x5 gold-coated electrode configuration with a 4 / 8 mm inter-electrode distance;
OT Bioelettronica, Italy). The Grison et al. dataset used two 64-channel grids with a 4 mm inter-
electrode distance. The grids were placed over the muscle bellies identified by manual palpation.
Before placing the electrodes, the skin was shaved and cleaned with 70% ethyl alcohol (Caillet et
al.) or an abrasive pad and water (Avrillon et al.). A double-adhesive foam was attached to the
electrode and the skin with conductive cream filling the adhesive layers’ cavities, along with tape
and elastic bands to secure the electro-to-skin contact. Bands damped with water were placed
around the ankle as a patient reference.

Grison et al. dataset also includes implanted three 40-channel high-density intramuscular EMG
arrays [15], oriented longitudinally and placed approximately 3 cm apart. The platinum electrodes
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Supplementary Figure 2: Overview of tested algorithms. Each box provides a summary of the most
important hyperparameters corresponding to the algorithm steps shown on the left. Abbreviations:
G-S: Gram-Schmidt, P-D: Projection-deflation

are arranged on two sides of a filament (2x20 electrodes spaced 1 mm apart with 0.5 mm offset
between sides). The concurrent surface and intramuscular EMG signal recording enabled two-
source validation [5], where the intramuscular EMG signals were decomposed using SCD [6].

The EMG signals were recorded in monopolar derivation with a sampling frequency of 2048 Hz
(surface EMG) or 10240 Hz (intramuscular EMG), amplified (150x), band-pass filtered (10-500
Hz for surface, 104400 Hz for intramuscular), and digitised using a 400-channel acquisition
system with a 16-bit resolution (EMG-Quattrocento; OT Bioelettronica, Italy).

D Algorithm implementation

The MUniverse decomposition module currently provides three natively implemented algorithms
(UB, CBSS and AE), together with a library of decomposition-specific general-purpose functional-
ities that facilitate the implementation of new algorithms. The native MUniverse decomposition
functionalities are built on top of essential Python packages for scientific computing (NumPy,
SciPy, scikit-learn, torch) and enable reasonably efficient computations while remaining accessible
for a wide audience of users and interoperability across various computational environments. Fur-
ther, external algorithms implemented in arbitrary programming languages/environments can be
integrated, and here, e.g., a containerized version of the SCD algorithm is provided. An overview
of the algorithms tested in the proposed manuscript is provided in Supplementary Figure 2]

D.1 Upper-bound decomposition

The upper-bound algorithm estimates MU spike trains, making use of known MU impulse re-
sponses (see Section[2.2)), and thus is only available for simulated datasets. Hence, the relevant
hyperparameters only include the selected extension factor R, the whitening method (options:
ZCA-whitening, PCA-whitening, or Cholesky-whitening), together with the regularization method
of the whitening method (options: smallest-half of the eigenvalues, machine precision, arbitrary
user-defined non-negative value). The projection vector is calculated by maximizing the expected
spike amplitude given the extended and whitened MUAPs. Thus, for the upper-bound algorithm,
the number of estimated sources is always equal to the number of MUAPs that are input to the
algorithm. Although a source estimate always exists, the reconstruction of the activity of a full
MU pool is typically not possible, as particularly small sources are covered by noise [[10].



D.2 CBSS

The implemented CBSS algorithm closely follows a standard ICA pipeline, which was first applied
to MU decomposition in [[16]. For experimental signals, one typically tries to reject parts of the
noise through filtering. Thus, a bandpass (specifiable bandwidth and order) and a notch filter
(adjustable power line frequency, number of harmonics, and order) are directly integrated into
the decomposition pipeline. The following steps, i.e., extension and whitening, are shared with
the upper-bound algorithm. For blindly optimizing the separation vector wj, given an objective
function with user-tunable non-linearity (see Equation (@), the fastICA fixed-point algorithm is
used [9]. Besides the parameter a controlling the degree of non-linearity (note a = 3 is equivalent
to using kurtosis as an optimization goal), the fixed-point algorithm has several hyper parameters:
the number of sources to be extracted, the initialization strategy (random weights or activity index),
convergence tolerance, and maximum number of iterations of the fixed-point algorithm as well as
sub-space projection to avoid repeated convergence to already identified sources (Gram-Schmidt
orthogonalization, projection deflation or none). Further, the estimated sources can be refined by
recalculating the separation vector as the mean whitened signal at the estimated spike times, and
high-quality sources (specifiable through a silhouette score threshold) can be peeled off to facilitate
the identification of new sources. Lastly, the algorithm automatically classifies the identified
sources into physiological or bad sources, whereby only sources with a user-specified minimum
number of spikes and a minimum silhouette score are accepted.

D.3 SCD

MUniverse provides a simple and clean API to the Swarm-Contrastive Decomposition algorithm
[6, [7] (SCD), which extends classic ICA-based approaches in two key ways: (1) it adaptively
selects the contrast function through an outer particle-swarm-optimisation loop that maximises
source independence given the statistics of the current residual signal, and (2) it employs a
peel-off strategy that removes each accepted MU source before the next optimisation round,
preventing repeated convergence on the same dominant unit and exposing weaker ones. These
extensions introduce additional hyperparameters, notably those governing the swarm (size, inertia
schedule, cognitive/social coefficients, early-stopping patience) and the peel-off acceptance criteria
(minimum-spike count and silhouette threshold). In this work, we keep all the particle-swarm
optimization-related hyperparameters fixed, based on expert knowledge.

D4 AE

The implemented AE algorithm follows the fully unsupervised deep-learning approach proposed
by [14], which formulates ICA as an autoencoder problem. The encoder is constrained to an
orthogonal rotation that maps extended and whitened EMG observations into latent activations,
each corresponding to an individual motor unit spike train. The decoder consists of a linear layer
followed by a tanh-shrink nonlinearity, reconstructing the whitened observations from the latent
representation. The preprocessing stage applies a bandpass filter (20-500 Hz, 2nd order) and
notch filtering at 50 Hz and its harmonics, matching the preprocessing used in CBSS. Training
minimizes a combination of reconstruction loss and a sparsity penalty on the latents, parameterized
by (p =0.9,q = 1.8, A = 1.0). The network is trained for 150 epochs with a batch size of 5000
and a learning rate of 0.008 on GPU, using shuffled extended windows for stable convergence, all
other hyperparameters are seeded from the original paper. Post-processing of the identified sources
also follows the methods applied in CBSS.
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E Notation and Acronyms

Acronym  Full Form Context/Description
BIDS Brain Imaging Data Structure Community standard for organizing neu-
roimaging data and metadata
BIt Iso Ballistic Isometric Brief, high-intensity muscle contractions
BSS Blind Source Separation Signal processing technique for separating
mixed signals
CBSS Convolutive Blind Source Separa- Algorithm for EMG decomposition based
tion on FastICA
CC-BY Creative Commons Attribution 4.0  Open license type
4.0
dB Decibel Signal amplitude unit
DoF Degrees of Freedom Movement parameters (e.g., wrist flexion-
extension)
ECRB Extensor Carpi Radialis Brevis Forearm muscle
ECRL Extensor Carpi Radialis Longus Forearm muscle
ECU Extensor Carpi Ulnaris Forearm muscle
EDF European Data Format Standardized file format for biological sig-
nals
EDI Extensor Digitorum Indicis Forearm muscle
EEG Electroencephalography Brain electrical activity recording
EMG Electromyography Muscle electrical activity recording
FAIR Findable, Accessible, Interoperable, Data management principles
Reusable
FastICA Fast Independent Component Anal- Algorithm for blind source separation
ysis
FCU Flexor Carpi Ulnaris Forearm muscle
FDSI Flexor Digitorum Superficialis Indi- Forearm muscle
cis
FEM Finite Element Method Numerical method for solving differential
equations
FN False Negative Evaluation metric for spike detection
FP False Positive Evaluation metric for spike detection
FVE Fraction of Variance Explained Performance metric for decomposition qual-
ity
gCKC Gradient Convolution Kernel Com- EMG decomposition algorithm
pensation
G-S Gram-Schmidt Orthogonalization method
HD-EMG High-Density Electromyography Multi-channel EMG recording technique
Hz Hertz Frequency unit
ICA Independent Component Analysis Statistical method for signal separation
IRB Institutional Review Board Ethics committee for human subjects re-
search
JSON JavaScript Object Notation Data interchange format
JSON- JSON Linked Data Structured data format
LD
LHS Latin Hypercube Sampling Statistical sampling technique
LLM Large Language Model Al language processing system
MEG Magnetoencephalography Brain magnetic field recording
MNE MNE-Python Software package for neurophysiological
data analysis
MRI Magnetic Resonance Imaging Medical imaging technique
ms Millisecond Time unit
MSK Musculoskeletal Related to muscles and skeleton
MU Motor Unit Smallest voluntarily contractible unit (mo-

tor neuron + muscle fibers)
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Table 4 continued from previous page

Acronym  Full Form Context/Description

MUAP Motor Unit Action Potential Electrical signal from motor unit activation

MVC Maximum Voluntary Contraction Peak muscle force capability

NA Not Applicable Response option in paper checklist

PCA Principal Component Analysis Dimensionality reduction technique

P-D Projection-Deflation Source separation technique

PD IIT Precision Decomposition III Template matching algorithm

PD-IGAT PD with Integrated Grouping and Extended template matching algorithm

Template matching
PD-IPUS  PD with Integrated Pulse and Tem- Template matching algorithm variant
plate matching

PL Palmaris Longus Forearm muscle

PNR Pulse-to-Noise Ratio Signal quality metric

REPL Read-Eval-Print Loop Interactive programming environment

RoA Rate of Agreement Performance metric for spike matching

SCD Swarm-Contrastive Decomposition ~EMG decomposition algorithm using parti-
cle swarm optimization

sEMG Surface Electromyography Non-invasive EMG recording from skin sur-
face

SIL Silhouette Score Clustering quality metric

Sinusoid  Sinusoidal Dynamic Sinusoidal effort modulation, dynamic

Dyn movement

Sinusoid  Sinusoidal Isometric Sinusoidal effort modulation, isometric

Iso

SNR Signal-to-Noise Ratio Measure of signal quality

TA Tibialis Anterior Lower leg muscle

TCL Time-Contrastive Learning Deep learning approach for source separa-
tion

TP True Positive Evaluation metric for spike detection

Tri Dyn Triangular Dynamic Triangular-shaped effort profile, dynamic
movement

Tri Iso Triangular Isometric Triangular-shaped effort profile, isometric

TRP Trapezoidal Type of contraction profile

TSV Tab-Separated Values File format for tabular data

ZCA Zero-phase Component Analysis Whitening transformation method

o Mean Statistical parameter

o Standard Deviation Statistical parameter
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