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1 Training Method and Evaluation Metrics

When the FRCNN is unfolded through time with any scheme, it becomes a feedforward model and we
use the standard BP algorithm to train it. The object is to maximize the scale-invariant signal-to-noise
ratio (SI-SNR) [5]. SI-SNR for each speaker is defined as

SI-SNR = 10× log10

(
‖Atarget‖22
‖enoise‖22

)
, (1)

where

Atarget =
〈ŝ, s〉 s
‖s‖22

, enoise = ŝ−Atarget. (2)

In above equations, s ∈ R1×T denotes the original single-source speech, ŝ ∈ R1×T denotes the
estimated speech, 〈·, ·〉 denotes inner product, and ‖·‖22 denotes l2-norm.

It is worth noting that the estimated speech signal and the real clean speech signal do not necessarily
have the same speaker arrangement order. This is called the label permutation problem and we use
the utterance-level label permutation invariant training (uPIT) [3] to solve this problem.

We used the scale-invariant signal-to-noise ratio improvement (SI-SNRi) [5] and signal-to-distortion
ratio improvement (SDRi) [10] as the evaluation metrics to measure the speech separation accuracies
of models. They are calculated as follows:

SI-SNRi = SI-SNR(̂s, s)− SI-SNR(s,x), (3)

SDRi = SDR(̂s, s)− SDR(s,x), (4)
where x donates the mixture of different speaker audio.

2 Sample Results on Libri2Mix

To give readers an impression of the separation results of different models, we randomly selected
some sample audio files from the Libri2Mix [1] datasets and put in the sample results folder. The
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models presented include DPCL [2], uPIT [3], Conv-TasNet [7], SuDoRMRF 1.0x [9], DualPathRNN
[6] and A-FRCNN-16. All separated voices were saved in a folder named by the model name. Since
all mixtures of speeches were from two speakers, each folder has two subfolders, s1 and s2. We have
created an offline web page for these samples index.html. Please open it with your explorer. In most
examples we found that separated speeches by A-FRCNN-16 sounded clearer than those by other
methods.

3 Transfer to DualPathRNN and Sandglasset

We were interested in whether the MSF method in A-FRCNN is transferable to other architectures.
We chose DualPathRNN [6] and Sandglasset [4] as the baseline models. Both of them use intra-chunk
and inter-chunk operations repeatedly to fuse information.

The DualPathRNN has multiple blocks with untied weights. In each block, there is an RNN (called
intra-chunk RNN) for processing multiple audio segments independently, and another RNN (called
inter-chunk RNN) for aggregating the outputs of the intra-chunk RNN with all audio segments as
inputs. The architecture is shown in Figure S1a.

Figure S1: Structures of a DualPathRNN block (a), an A-DualPathRNN block (b) and an S-
DualPathRNN block (c).

We make S copies of the intra-chunk RNN which share weights and let them process the input in
different scales sequentially, and then use the MSF method in A-FRCNN to fuse the outputs of
these intra-chunk RNNs. See Figure S1b. The inter-chunk RNN is not altered. These constitute a
new block. To save the number of parameters, we use tied weights in different blocks. We call this
model Asynchronous DualPathRNN or A-DualPathRNN. For comparison, we design a new model
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called Synchronous DualPathRNN or S-DualPathRNN in the same way but adopt the MSF method in
S-FRCNN to fuse the outputs of the intra-chunk RNNs. See Figure S1c.

In this experiment, we set the number of stages S = 5 again. As mentioned in the main text, training
the DualPathRNN is time-consuming. The training time depends on the kernel size and stride in the
encoder and decoder. The best result was achieved by setting the kernel size and stride to 2 and 1,
respectively, a configuration used to report the results in Table 3 in the main paper. It took about nine
days on our 8-GPU server to train the model on the WSJ0-2Mix dataset. To save the computational
cost, we used kernel size 18 and stride 8 in the encoder and decoder to explore the combination of
the DualPathRNN and A-FRCNN. The results of the DualPathRNN on WSJ0-2Mix with this setting
were also reported in the original paper of the DualPathRNN [6].

Table S1 shows the results. The S-DualPathRNN obtained a little bit higher SI-SNRi values than
the DualPathRNN on the WSJ0-2Mix and Libri2Mix datasets, while the A-DualPathRNN obtained
much higher SI-SNRi values than the DualPathRNN. It indicates that the MSF method in A-FRCNN
can improve the performance of the DualPathRNN.

Sandglasset has a similar structure to DualPathRNN, and it also adopts the intra- and inter-chunk
block design. The major difference is that in Sandglasset, the bidirectional LSTM (or BiLSTM) in
the inter-chunk is changed to a transformer. This modification improved SI-SNRi on WSJ0-2Mix
dataset by 1.5 dB. We can transfer our method to Sandglasset in the same way as A-DualPathRNN.
The resulting model is called A-Sandglasset and its structure is the same as A-DualPathRNN as
illustrated in Figure S1b, and the only difference is that in the inter-chunk the BiLSTM is changed to
a transformer. The original Sandglasset is too large to fit in our computing facility. We thus used a
smaller version and applied our connection scheme. The Sandglasset hyperparameters are basically
the same as those of DualPathRNN. Exceptionally, for the encoder/decoder module we set their
kernel size to 16 and the number of channels to 256. The initial segment size was 64. The Sandglasset
block input dimension was set to 128. The hidden layer dimension of BiLSTM and transformer were
set to 128. The global Self-Attentive Network was set to be 8-head with a 0.1 dropout rate. The
A-Sandglasset obtained 0.6 dB higher SI-SNRi value than the plain Sandglasset on the WSJ0-2Mix
dataset. See Table S1.

Table S1: The performance of DualPathRNN/Sandglasset and their variants on the WSJ0-2Mix and
Libri2mix test sets. The 2nd and 3rd columns are SI-SNRi values. ‘*’ indicates that the SI-SNRi
value was obtained by using the asteroid toolkit [8].

Model WSJ0-2Mix Libri2Mix Parameters

DualPathRNN 15.9 13.9∗ 3.7M
S-DualPathRNN 16.1 14.0 3.5M
A-DualPathRNN 17.5 14.5 2.9M

Sandglasset 17.3 14.4 2.3M
A-Sandglasset 17.9 14.9 1.3M

4 Training Time of Different Models

We presented the training time of several typical speech separation models on Libri2Mix in Table S2.
It is seen that DualPathRNN required significantly more training time than other models.
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Table S2: The training time of typical models on the Libri2mix dataset.

Model Training Time (h)
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