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A FURTHER DESCRIPTIVE ANALYSES OF EACH DATASET

In this section, we provide a detailed data analysis of GlycoNMR, focusing on both the quantity and
variety of monosaccharides within our dataset.

A.1 HISTOGRAM DISTRIBUTION OF CARBOHYDRATE LENGTHS IN BOTH DATASETS

We further analyze the data volume of GlycoNMR. We plot the distributions of the number of
monosaccharides that every carbohydrate contains in both GlycoNMR.Exp and GlycoNMR.Sim.
In Figure 5, we use ’length of glycan’ to denote the number of monosaccharides that the carbohydrate
contains. We observe: both histograms exhibit a right-skewed distribution in the length of the
glycan. This indicates that GlycoNMR.Exp contains a greater proportion of small and middle-sized
carbohydrates than large-sized carbohydrates. Therefore, existing MRL methods may be biased
towards smaller carbohydrates.

Figure 5: Distribution of glycan length in both datasets. The horizontal axis indicates the number
of monosaccharides in the carbohydrate, the vertical axis indicates the corresponding number of
carbohydrates presented in the dataset.

A.2 PERCENTAGE OF MONOSACCHARIDE TYPES IN BOTH DATASETS

We investigate the diversity of monosaccharide types in GlycoNMR. For each dataset, we count
the occurrence of all monosaccharides and present the percentage of the top eight most frequently
appearing monosaccharides in Table 5. The entry "Others" represents the category of relatively
infrequently appeared monosaccharides, including stem type: ManA, Neu, GalN, Ara, etc. We
demonstrate that GlycoNMR covers the most commonly occurring stems of monosaccharides as
introduced in (Chaplin & Kennedy, 1986) for example.

Table 5: Percentage of the most common monosaccharide unit types in the two datasets
GlycoNMR.Sim GlycoNMR.Exp

Monosaccharide Percentage Monosaccharide Percentage

Glc 18.86% Gal 19.73%
Gal 17.5% Glc 17.7%

GlcNAc 12.18% GlcNAc 12.21%
Fuc 12.1% Rha 11.06%
Xyl 8.51% Man 6.81%
Man 6.23% Fuc 4.87%
GlcA 6.19% Kdo 4.78%
GalA 5.49% GlcA 4.42%
Others 12.94% Others 18.42%
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B DETAILS ON FEATURES TABLES

In this section, we present a comprehensive description of the processed PDB file, including the
curated features mentioned in Section 2 and Section 3.2. For each feature, we provide its data type
along with a detailed explanation. Lines 1-8 in Table 6 record attributes presented in the original PDB
file. We incorporate the Atom_name and Atom_type as components of the node features. Coordinate
x, y, and z is used as spatial information to construct the MRL models. Lines 9-15 record the
processed node features as introduced Table 2. Lines 15-25 describe the feature: Modifications, that
are used in GlycoNMR.Sim. On curating the feature Modification, we first identify the modification
group using Lineage, Atom_num, Residue_name, and atom connectivity. Then, we calculate each
atom’s distance(atom path) to the identified modification group, set up several distance thresholds
to convert them into categorical values and incorporate them as node features. Notice that the
atom connectivity information is generally missing in GlycoNMR.Exp, thus it can be ambiguous to
match the atoms to their corresponding modification groups, and we omitted this feature for now
in the smaller Glycosciences.DB-sourced dataset only (in contrast, Modification was included in
the GODESS-sourced dataset). Future databases of new experimental results in carbohydrate NMR
spectra should seek to improve the clarity in this area, such as with more uniform standards in data
annotation by the original uploaders.

Last, we use the labeled in-ring atoms’ NMR shift as ground truth values.

Table 6: Detailed feature description
Value Datatype Descriptions

Atom_num Numerical Atom index number in the carbohydrate
Atom_name Categorical Atom name that also indicates its within-monosaccharide position index
Residual_name Categorical Three letters abbreviation of monosaccharide name
Residual_num Numerical Monosaccharide order number assigned
x Numerical X coordinate of the atom
y Numerical Y coordinate of the atom
z Numerical Z coordinate of the atom
Atom_type Categorical Chemical element type of the atom

Residual_accurate_name Categorical Full name of monosaccharide or modification group that atom belongs to
Lineage String Lineage (linkage) information of the current residue
Ac_component Categorical Whether atom is in an Ac modification
bound_AB Categorical Anomeric orientation of hydroxyl group
fischer_projection_DL Categorical Fischer convention
reformulated_standard_mono Categorical Monosaccharide stem name
carbon_number_PF Categorical Number of ring carbons (ring size)

Me_min_atom_distance Numerical Distance of the shortest atom path to Me modification group
Me_min_atom_path Categorical list The shortest atom path to Me modification
Ser_atom_distance Numerical Distance of the shortest atom path to Ser modification group
Ser_atom_path Categorical list The shortest atom path to Ser modification
Ac_min_atom_distance Numerical Distance of the shortest atom path to Ac modification group
Ac_min_atom_path Categorical list The shortest atom path to Ac modification
S_min_atom_distance Numerical Distance of the shortest atom path to S-related modification group
S_min_atom_path Categorical list The shortest atom path to S-related modification
Gc_min_atom_distance Numerical Distance of the shortest atom path to Gc modification group
Gc_min_atom_path Categorical list The shortest atom path to Gc modification

main_ring_shift Numerical Chemical shift values of all labeled main ring atoms
shift Numerical Chemical shift values of all labeled atoms

C POSSIBLE FUTURE RESEARCH TOPICS

In this section, we provide several unexplored glycoscience-related related research topics that
GlycoNMR can be used for. We believe these topics can potentially benefit the overall ML and
glycoscience community.

Customized models for carbohydrate data: Models specifically designed to accommodate the
unique characteristics and structure of the carbohydrate data are important to develop. As introduced
in Section 2, carbohydrates are a special type of biomolecule that is formed via the condensation
reactions of monosaccharides. We conduct heavy feature engineering to extract the monosaccharide-
related features, and our experimental results in Table 3 have already demonstrated the usefulness of
monosaccharide information (stem type) in NMR shift prediction. However, we incorporate them as
atom-level features in our baseline and the 3D-based MRL models. In this case, the existing models
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may fail to capture the spatial information between monosaccharides, and more neural network
layers corresponding to the structural hierarchies inherent to carbohydrates could improve prediction
quality in future work. On the other hand, a carbohydrate’s unique atoms-to-monosaccharides-to-
carbohydrate characteristic inherently satisfies a hierarchical graph structure so the information is
partly captured in the current implementation. We believe that developing a customized MRL model
(e.g. learning representations for both atoms and monosaccharides) can help learn a better node
representation for accurate NMR shift predictions in future work.

Predicting NMR spectra: As presented in Section 3.1, extensive data annotation is required
for preparing the atom-level carbohydrate NMR chemical shift data. Notably, for annotating each
carbohydrate, the key step is to match the monosaccharides present in the PDB (Protein Data Bank)
structure file to the monosaccharides present in the NMR (Nuclear Magnetic Resonance) chemical
shift file. This step not only demands significant effort but also necessitates domain expertise, but will
continue to do so at least until the experimental glycoscience field adopts more uniform standards in
data files.

In the field of glycosciences, the ideal scenario is to predict the full continuous spectrum (peak widths
and noise included) depicted in Figure 2 (b) and (c) directly from the carbohydrate structure. In our
case, the NMR chemical shift prediction problem of just peaks is reformulated as graph-regression
tasks with promising initial performance. The biggest improvements in this direction will necessitate
both increasingly larger and more diverse experimental datasets, as well as model innovations.

D MODEL SETUP AND COMPUTATION RESOURCES

To ensure a fair comparison, the hidden embedding size for all 3D GNN models is set to 128, and the
number of hidden layers is set to 4 in the GlycoNMR.Sim dataset. In the GlycoNMR.Exp dataset,
due to the limitations in data size and to prevent over-fitting, the number of hidden layers is set to 2.
It takes around 5-34 seconds to train a single epoch with a batch size of 4, depending on different
models. All data processing and model training is performed on a Linux workstation with an Intel
Core i7 CPU, 32GB memory, and two GeForce RTX 3090 GPUs. Our entire training time for all
models in aggregate was on the scale of several hours. Loading codes for the dataset will also be
provided in the linked anonymous GitHub after the completion of the peer review. We also provided
more detailed run-time information and epoch numbers in the anonymous Github repository.

E RMSE FORMULA FOR BENCHMARKS

The RMSE was calculated according to the usual equation in all results presented throughout the
manuscript:

RMSE =

√√√√ N∑
i=1

(yi − ŷi)2

N

Where yi is the recorded NMR chemical shift, ŷi is the prediction from our GNN model on the ith

atom from the test set, and N is the number of the test data points.

F RANDOM FOREST BASELINE

Table 7: NMR chemical shift prediction benchmark using a random forest model (in RMSE). The
code is provided on the anonymous Github repository.

GlycoNMR.Sim GlycoNMR.Exp
13C 1H 13C 1H

Random Forest 2.446 0.132 4.117 0.178

We conducted a traditional ML baseline experiment using random forest to predict atomic NMR
shifts. The features of each atom (represented as a node in its carbohydrate graph) follow the same
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initializing method as used for training the 2D GNN model. In addition, we follow the same splitting
method as we did in Section 3.4. In general, the baseline model slightly underperforms relative to the
2D GNN model. This demonstrates the effectivenss of our feature engineering step in Section 3.2.

G BENCHMARK FOR MULTI-TASK NMR SHIFT PREDICTION

We trained 3D GNN models to perform multi-task learning on both GlycoNMR.Sim and Gly-
coNMR.Exp. Each 3D-based model is trained to predict the carbon NMR shift and the hydrogen
shift jointly. The results are summarized in Table 8. We notice that there is an overall significant drop
in performance across all 3D GNN models.

Table 8: NMR chemical shift prediction benchmark using 3D MRL methods (in RMSE).

GlycoNMR.Sim GlycoNMR.Exp
13C 1H 13C 1H

ComENet (Wang et al., 2022) 1.987 0.157 3.006 0.411
DimeNet++ (Gasteiger et al., 2020a) 1.954 0.199 3.696 0.185
SchNet (Schütt et al., 2017) 1.523 0.590 3.187 0.946
SphereNet (Liu et al., 2022) 2.258 0.169 3.364 0.638

H RUNNING TIME COMPARISON

Table 9: Running time(s) comparisons for 3D GNNs
Dataset ComeNet DimeNet++ SchNet SphereNet

GlycoNMR.Sim 7.564 20.581 3.615 31.831
GlycoNMR.Exp 1.257 2.312 0.754 2.032

Running time comparison of 3D GNN models, the duration in seconds for each training epoch is
reported. For a fair comparison across the 3D-based GNN models, in GlycoNMR.Sim dataset, we
set the batch size to 4, the number of hidden channels to 128, and the number of layers to 4, in
GlycoNMR.Exp, we set the batch size to 2, the number of hidden channels to 64, and the number of
layers to 2.

I HYPERPARAMETER SELECTION ON GLYCONMR.EXP

We fine-tune the 3D-based GNN models on GlycoNMR.Exp to prevent overfitting, The hyperparame-
ter is selected from the following ranges: learning rate [0.001, 0.01], batch size: [2, 4, 8], number of
layers: [2, 3, 4], hidden channel size: [32, 64, 128, 256], and the cut-off distance for deciding the
interactions between atoms: [4.0, 5.0]. We unfortunately did not have time to do more substantial
hyperparameter tuning. We believe users of our dataset will be in better positions to provide better
results than us with the innovative design of the 3D-based MRL model and substantial hyperparameter
selection.

J DATA ANNOTATION SUPPLEMENTS

In this section, we provide two supplemental repositories to help illustrate our data preprocessing
pipeline. One of our major contributions is to extensively curate the raw files from the Glycosciences
extensively.DB and GODESS dataset and make the GlycoNMR dataset friendly to machine learning
researchers. To achieve this, we have made significant efforts in data preprocessing.

We summarize the data preprocessing pipelines on Glycoscience.DB in the following five steps.
1, We manually check the carbohydrate data scrapped from Glycosciences.DB, and we filtered
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those carbohydrates with complete or nearly complete NMR shifts. 2, We reformulate all the PDB
files(as well as the label files) into an interpretable and consistent format, as they are uploaded
from various labs. 3, We examined the carbohydrates with branched monosaccharide chains, and
manually matched the monosaccharide IDs from the PDB file and the label file. 4, We trained a
simple 2D GNN model and got the NMR chemical shifts for each annotated atom. 5, We examine
those carbohydrates with significant high errors and apply an outlier check. If the error comes from
the mismatches in monosaccharide IDs in Step 4, we then go back to the previous steps 2, 3 and
4. The data preprocessing pipeline in GODESS is relatively similar to the Glycoscience.DB. We
construct a semi-automatic pipeline to annotate the GODESS dataset since the dataset is generated
from the simulated software with consistent formatting. We introduce this pipeline in our released
repository provided below.

To further demonstrate our efforts, we released two repositories for reference on data cleaning,
processing, and annotating:

Creating GlycoNMR.Sim from the GODESS (https://anonymous.4open.science/r/
GODESS_preprocess-F9CD/README.md)

Creating GlycoNMR.Exp from the Glycosciences.DB (https://anonymous.4open.
science/r/GlycoscienceDB_preprocess-B678/README.md).

The data preprocessing steps are introduced in detail in the README.md file.

K EXAMPLE CODES AND DEMOS

We provide four Jupyter Notebook demos in the anonymous GitHub repo for detailed instructions.
They introduce step by step on how to utilize the GlycoNMR.Sim and GlycoNMR.Exp datasets to
train a 3D or 2D GNN model.

Train a 2D-based GNN model on GlycoNMR.Sim: https://anonymous.4open.science/
r/GlycoNMR-D381/2D_example_Sim_GlycoNMR.ipynb.

Train a 2D-based GNN model on GlycoNMR.Exp: https://anonymous.4open.science/
r/GlycoNMR-D381/2D_example_Exp_GlycoNMR.ipynb.

Train a 3D-based GNN model on GlycoNMR.Sim: https://anonymous.4open.science/
r/GlycoNMR-D381/3D_example_Exp_GlycoNMR.ipynb.

Train a 3D-based GNN model on GlycoNMR.Exp: https://anonymous.4open.science/
r/GlycoNMR-D381/3D_example_Sim_GlycoNMR.ipynb.
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