
Appendix A: HiRID Dataset Details

Dataset description

The HiRID ICU data is provided by the University Hospital Bern, Bern, Switzerland. The dataset
consists of 33,905 patients whose length of stays in the ICU range from 0 to 28 days. A more detailed
summary of the HiRID cohort statistics can be found in Table 1.

For all patients, a variety of clinical measurements are collected. It represents a set of 710 variables
that can be categorized into the following types:

• Demographics (e.g.: Sex, Age, Height)
• Bedside vital signs (e.g.: Heart rate)
• Settings of medical devices (e.g.: Mechanical ventilation)
• Manual observations (e.g.: Urine output)
• Lab measurements (e.g.: Lactate)
• Treatments (e.g.: Vasopressor agents)

One notable difference between these types of measurements is the resolution at which they are
provided. Bedside vital signs are provided at regular intervals of 2 min, whereas lab measurements
are only available every couple of hours at best. The frequency of recording discrepancy existing
between different variables yields unique challenges for machine learning models. Further details
about the available clinical measurements can be found in the official documentation of HiRID1 as
well as in our software repository2

Data preprocessing

Artifact removal The HiRID data when directly exported from the data management system
contains various types of artifacts. The most common one concerns measurement values that are out
of the normal range defined by clinicians. Another artifact that we observed is that the time of the
first measurement record of cumulative variables is at noon by default, which could be much earlier
than the admission time of the patient. This, if not taken into account correctly, will affect the rate
calculation for those cumulative variables. To solve these timestamp issues, we clip the time of the
first record of the cumulative variables to the ICU admission time of the patient.

Variable merging There are often various variables in the ICU EHRs that have the same or similar
clinical meaning. As an example, there exist three variables for temperature, namely core body
temperature, auxiliary temperature, and rectal temperature. Usually, only one or few variables from
one medical concept are measured for a patient, therefore, merging variables with the same clinical
concept into one meta-variable reduces the sparsity of the feature matrices. Another advantage is
that machine learning models trained on medical concept features are more transferable to other
hospitals than those trained on the original clinical variables because hospitals usually have their own

1URL for the official HiRID documentation https://hirid.intensivecare.ai/
2Table containing all information for each variable: https://github.com/ratschlab/

HIRID-ICU-Benchmark/blob/master/preprocessing/resources/varref.tsv

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.



Table 1: Cohort statistics of the public HiRID dataset v1.1.1, as released on Physionet, which was
used for the HiRID-ICU benchmark

Sex Female 12,138 patients

Male 21,767 patients

Age group

[20,30) 1,042 patients

[30,40) 1,278 patients

[40,50) 2,649 patients

[50,60) 5,194 patients

[60,70) 8,241 patients

[70,80) 9,445 patients

[80,90) 5,534 patients

[90,100) 522 patients

Discharge status
Alive 31,604 patients

Dead 2,062 patients

Unknown 239 patients

APACHE group
(Patient phenotype)

Cardiovascular Surgical 8,125 patients

Non-surgical 4,356 patients

Neurologic Surgical 3,938 patients

Non-surgical 6,014 patients

Gastrointestinal Surgical 1,768 patients

Non-surgical 1,918 patients

Respiratory Surgical 631 patients

Non-surgical 2,399 patients

Trauma Surgical 239 patients

Non-surgical 1,522 patients

Other medical diseases 1,428 patients

Other surgical 568 patients

Metabolic/Endocrinology 630 patients

Hematologic 99 patients

Renal surgical 81 patients

Unknown 189 patients

Length of stay Median 0.95 days

Range (0,28] days

variable coding scheme. We hence incorporated variable-merging in our first pre-processing step. A
challenge that arises from merging pharmaceutical variables is the dosage normalization across drugs
with similar active ingredients. Therefore, instead of using the drug dosage as features, which likely
contain invalid information, we use “presence/absence” binary indicators of drugs as features for the
machine learning models.

Definition of pharmaceutical acting periods When a patient has been administrated a drug at a
time point, only this time point contains a measurement. However, each drug is active for a specific
duration after this administration time. For this reason, we ensure to propagate the measurement for
a duration corresponding to the drug acting period. We set the value back to zero after this period
ensuring compatibility with forward filling imputation.

Conversion of cumulative values to rates There are a few fluid output variables whose measure-
ment values are recorded as cumulative every 12 hours starting from noon on the ICU admission day.
Since the cumulative signals are periodic, we converted them to hourly fluid rates which are more
interpretable and amenable as machine learning features and for the endpoint definition.

2



Endpoint definition and statistics

Endpoint extraction algorithms

Our benchmark suite contains a range of clinically relevant tasks chosen to range over a spectrum
of different properties of tasks, e.g. task type from the machine learning point-of-view (regression,
binary classification, multi-class classification), point of the ICU stay at which the prediction is made
(fixed time-point vs. predictions made throughout the stay), as well as the degree of class imbalance
(highly imbalanced tasks vs. more balanced tasks). While in the main paper we describe the main idea
of each task, the full definition and implementation details of the extraction algorithm are described
below.

Dependencies on previous pipeline stages. Static information about the patient is extracted from
the static.parquet file, in which the mortality status and the APACHE-II/IV codes for the ad-
mission are stored. This file is derived from the general_table.parquet and observations
tables, where APACHE II/IV codes are stored, during the data preprocessing pipeline stage. Res-
piratory/kidney/circulatory failure labels are generated from the merged stage of the data, via an
intermediate imputation step, in which measurements are forward filled to statistics about the number
of real measurements in time grid intervals were pre-computed. These simplified the implementa-
tion of the endpoints, whose extraction algorithms use a combination of imputed values and real
measurement detection strategies.

Label masking on presence of vital sign monitoring. All tasks described below were additionally
masked with a condition on a current connection to vital sign monitors. This implied setting a valid
label (according to the below task definitions) to invalid (NaN) if the patient had no heart rate
measurement (vm1) in the 15 minutes surrounding the time grid point. Since the expected frequency
of heart rate measurements is 1 sample / 2 minutes, it is likely the patient is disconnected when this
condition is satisfied, and no reliable predictions on their state can be made.

Patient phenotyping. To derive the APACHE diagnostic group of the patient, the two fields
APACHE-II group and APACHE-IV group of the static HiRID data are used. To map these two
fields to a standardized encoding, the conversion Table 2 is used. If the patient had a valid APACHE-II
group entry and its code was mapped in the table, the target APACHE group code was used. Other-
wise, we tried to fall back to the APACHE-IV group entry, where again if it was present and mapped,
the corresponding target APACHE group code was used. If still no code could be extracted, the
prediction task was defined as invalid for the patient. The label of the time-point 24h after ICU
admission was set to the class category of the APACHE group, defining a multi-class classification
problem to be solved once in the stay. If the admission was shorter than 24h, no label for the patient
was assigned.

3



Table 2: Mapping between APACHE II and IV group codes to one unique APACHE group diagnostic
group encoding, which is used for the patient phenotyping task.

APACHE II
Code

APACHE IV
Code Original group name Target group Target group name

98 190 Cardiovascular 1 Cardiovascular
99 191 Respiratory 2 Respiratory
100 192 Gastrointestinal 3 Gastrointestinal
101 193 Neurologic 4 Neurologic

197 Urogenital 6 Other medical diseases
102 Sepsis 6 Other medical diseases
106 198 Other 6 Other medical diseases

206 Intoxication 6 Other medical diseases
103 194 Trauma not surgical 7 Trauma not surgical
104 195 Metabolic/Endocrinology 8 Metabolic/Endocrinology
105 196 Hematologic 9 Hematologic
107 199 (Cardio)vascular surgical 11 (Cardio)vascular surgical
108 201 Respiratory surgical 12 Respiratory surgical
109 200 Gastrointestinal surgical 13 Gastrointestinal surgical
110 202 Neurologic surgical 14 Neurologic surgical
111 203 Trauma surgical 15 Trauma surgical
112 204 Renal surgical 16 Renal surgical
113 Gynacology surgical 17 Other surgical
114 Orthopedics surgical 17 Other surgical

205 Other surgical 17 Other surgical
Unknown 18 Unknown

Mortality. First, the ICU mortality label was extracted from the general data table of the HiRID
database. The label of the time-point 24 hours after ICU admission was set to 1 (positive) if the
patient died at the end of the stay according to this field, and 0 (negative) otherwise, defining a binary
classification problem to be solved once per stay. If the admission was shorter than 24 hours, no label
was assigned to the patient.

Remaining length of stay. The continuous regression label of a time-point in the ICU stay was
defined as the number of hours that remain until the end-of-the-stay, i.e. the first label of the ICU stay
is equal to the ICU stay length (in hours) and the last label just before dispatch is defined as 0. To
determine the beginning and end of the ICU stay, the first and last observed heart rate measurements
(vm1) were used.

Kidney function. As a basis for extracting the kidney function label, the urine output rate (vm24)
variable and the weight variable (vm131) were used. The valid labels were anchored to real measure-
ments, i.e. updates, of the urine output rate. Only time-points exactly 2h before an update of the urine
output rate were assigned a prediction label. The overall urine output in the 2h after this time point
was found by computing the integral of the urine output rate variable (vm24) over this 2h period. The
overall urine output in the time interval was then normalized to the weight of the patient (unit kg)
at the time of the prediction, and then standardized to a rate/hour. Hence, the unit of the regression
output is ml/kg/h.

Circulatory failure. As a basis for computing the circulatory failure status of a patient at every
time-point of the ICU stay, the following variables were used: Mean arterial pressure (vm5), arterial
lactate (vm136) and the vasopressive agents Milrinone (pm42), Dobutamine (pm41), Levosimendan
(pm43), Theophylline (pm44), Norepinephrine (pm39), Epinephrine (pm40) and Vasopressin (pm45).
For defining the label at time t a centralized window of size 2h was anchored at t, and the lactate/MAP
conditions in this window were separately analyzed. The time-point was assigned a (tentative) positive
label if, for at least 2/3 of the time-points inside the 2h, the lactate condition was satisfied, and for at
least 2/3 of the time-points inside the 2h, the MAP condition was satisfied. The time-points at which
they have to be satisfied do not necessarily have to coincide. The conditions defining the circulatory
failure state are listed below:

4



• Lactate condition. Elevated arterial lactate (> 2 mmol/l)
• MAP/vasopressor condition. Low MAP (< 65 mmHg ) or any dose of any of the con-

sidered vasopressors (pm39, pm40, pm41, pm42, pm43, pm44, pm45) given to the pa-
tient, which could potentially mask a low MAP.

Using these endpoint annotations of “circulatory failure” and “no circulatory failure”, a label at time
point t is either (1) invalid (no prediction made), if the patient was in circulatory failure at t, (2)
positive if the patient was not circulatory failure at t, but there was a new onset of circulatory failure
in the next 12h, and (3) negative if the patient was not in circulatory failure at t, and there was no
onset of circulatory failure in the next 12h.

Respiratory failure. Estimating the respiratory failure status of a patient at a given time-point
involves estimating (1) their instantaneous FiO2 value, (2) their instantaneous PaO2 value and
computing the P/F ratio as P/F = PaO2/FiO2, and then labeling the time series according to the
threshold P/F = 300 mmHg, to define (mild) failure and stability periods.

We distinguished between the following cases to estimate the FiO2 value at a time-point t.

• FiO2 from ventilator: If there was a FiO2 measurement (vm58) in the last 30 min and the
patient was on the ventilator or the ventilation mode NIV (vm60) was active, then the last
FiO2 measurement (vm58) was directly used as the estimate.

• FiO2 from supplementary oxygen (oxygen mask): If there was a real measurement in
supplementary oxygen (vm23) in the last 12h, then it was forward filled and used to estimate
FiO2 via the conversion Table 3.

• FiO2 from ambient air: An ambient air FiO2 assumption was made, and FiO2 was estimated
as 21 %.

Table 3: Supplemental Oxygen to FiO2 conversion table used for determining the continuous FiO2

estimate.

Supp. oxygen [l] FiO2 [%]

1 26
2 34
3 39
4 45
5 49
6 54
7 57
8 58

Supp. oxygen [l] FiO2 [%]

9 63
10 66
11 67
12 69
13 70
14 73
15 75
>15 75

We distinguished between the following cases tor estimating the PaO2 value at a time-point. As
source variables peripheral oxygen saturation (vm20) and PaO2 from ABGA (vm140) were used.
Hereby the SpO2 variable was pre-smoothed with a percentile (75 % percentile) moving window
filter of size 30 min to remove spuriously low outlier measurements.

• Real PaO2 measurement: If there was a real PaO2 (vm140) from an arterial blood gas
analysis available in the last 30 minutes, then the estimate was defined directly by the
measurement.

• Ellis estimate from SpO2: Otherwise the last measurement of peripheral oxygen saturation
measured by pulse oximetry (vm20) was used to compute an estimate of PaO2 according to
Ellis et al. [1]. If there is no real SpO2 measurement in the last 24h, a default value of 98 %
was assumed for the estimation.

First, the resulting PaO2 estimate was smoothed with a Nadaraya-Watson kernel smoother with a
bandwidth of 20 min. Then, each so-derived PaO2 estimate was weighted by a squared exponential
kernel and converted to the closest plausible PaO2 measurement. The scale of the kernel function
was chosen such that a1h distance with the measurement time resulted in a weight of 1

3 .

5



The time series was labeled for respiratory failure by using forward-facing windows anchored at
time-point t. A patient is considered as being in respiratory failure at t if, for at least 2/3 time-points
of the next 2h, either of the following conditions hold:

• The estimated P/F ratio is < 300 mmHg and the patient is not on mechanical ventilation OR
• The estimated P/F ratio is < 300 mmHg and the patient is on mechanical ventilation, but

the PEEP value is not densely measured (no real measurement in 30 min) OR
• The estimated P/F ratio is < 300 mmHg and the patient is on mechanical ventilation, and

the PEEP is densely measured and the PEEP is > 4 mmHg.

After the definition of event periods, their edges were corrected according to estimates of the P/F ratio
at the given time points. If before the event P/F< 300 mmHg, the event is further extended in the
past. Likewise, if the P/F> 300 mmHg condition holds after the event, it is extended into the future.

Finally, small events shorter than 4h, preceded and succeeded by two stability periods, of which one
is longer than 4h are deleted. This is because these likely represent intermittent/spurious instances
of respiratory failure. Conversely, short stability periods shorter than 4h, preceded and followed by
periods of respiratory failure, of which one is longer than 4h, are defined as respiratory failure. Likely,
during these periods, the patient does not recover from the failure in a clinical sense.

Statistics on annotated failure events and labels

Below we display statistics on the data resulting from the endpoint stage, and from the label stage,
which was used directly as inputs for the machine learning models.

Respiratory failure

Table 4: Summary statistics about annotated respiratory failure (oxygenation failure with a P/F
ratio <300 mmHg) events in the pre-processed data-set. The label prevalence refers to the observed
probability of developing respiratory failure in the next 12h, given that the patient is currently stable.

Respiratory failure

Patients with events 83.08 % 28,157 admissions
Per-time prevalence of resp. failure 61.83 %
Median # events per patient (if ≥ 1 event) [IQR] 1 [1-2]
Median event duration [IQR] 9.5 [4.1-20.6] hours
Median time to first event (if ≥ 1 event) [IQR] 1.58 [0-11] hours
Median gap length between two events [IQR] 4.4 [2.1-11] hours

Overall label prevalence (Stable->Failure 12h) 8.6 %
Median label prevalence p/patient (if ≥ 1 event) [IQR] 0 [0-60.1] %

Circulatory failure

6



Table 5: Summary statistics about annotated circulatory failure (elevated lactate and abnormally low
MAP or vasopressive agents) events in the pre-processed data-set. The label prevalence refers to
the observed probability of developing circulatory failure in the next 12h, given that the patient is
currently stable.

Circulatory failure

Patients with events 25.58 % 8,669 admissions
Per-time prevalence of circ. failure 6.70 %
Median # events per patient (if ≥ 1 event) [IQR] 1 [1-2]
Median event duration [IQR] 2.9 [1.1-7.6] hours
Median time to first event (if ≥ 1 event) [IQR] 1.9 [0.5-7.3] hours
Median gap length between two events [IQR] 3.3 [1.3-9.6] hours

Overall label prevalence (Stable->Failure 12h) 1.4 %
Median label prevalence p/patient (if ≥ 1 event) [IQR] 3.8 [0-19.1] %

Mortality prediction / Patient phenotyping

Table 6: Summary statistics about the mortality prediction and patient phenotyping tasks defined at
24h after ICU admission. The last column shows the number of admissions assigned this label.

Percentage of ICU stays with length >24h 44.1 % 14,962 admissions

Mortality prediction

Overall label prevalence (Mortality at 24 hours) 8.38 %

Patient phenotyping

Prevalence ’Neurologic’ (4) 23.6 % 3,511 admissions
Prevalence ’(Cardio)vascular’ (1) 15.9 % 2,367 admissions
Prevalence ’(Cardio)vascular surgical (11) 12.4 % 1,848 admissions
Prevalence ’Respiratory’ (2) 11.0 % 1,635 admissions
Prevalence ’Neurologic surgical’ (14) 7.4 % 1,106 admissions
Prevalence ’Trauma not surgical’ (7) 6.7 % 990 admissions
Prevalence ’Gastrointestinal’ (3) 6.3 % 930 admissions
Prevalence ’Other medical disease’ (6) 5.2 % 778 admissions
Prevalence ’Gastrointestinal surgical’ (13) 4.8 % 713 admissions
Prevalence ’Metabolic/Endocrinology’ (8) 2.3 % 344 admissions
Prevalence ’Respiratory surgical’ (12) 1.7 % 246 admissions
Prevalence ’Other surgical’ (17) 1.2 % 181 admissions
Prevalence ’Trauma surgical’ (15) 1.0 % 148 admissions
Prevalence ’Hematologic’ (9) 0.4 % 57 admissions
Prevalence ’Renal surgical’ (16) 0.2 % 27 admissions

Kidney function / Remaining-length-of-stay regression

7



0 5 10 15 20
Urine rate in next 2h [ml/kg/h]

0

20000

40000

60000

80000

100000

Co
un

t

Figure 1: Marginal distribution of the urine regression labels. The vertical red line denotes the mean,
and the vertical green line the median of the distribution.

0 100 200 300 400 500 600 700
Remaining LOS [h]

0

1

2

3

4

5

Co
un

t

1e6

Figure 2: Marginal distribution of the remaining length-of-stay regression labels. The vertical red
line denotes the mean, and the vertical green line the median of the distribution.

References
[1] RK Ellis. Determination of po2 from saturation. Journal of applied physiology, 67(2):902–902,

1989.

8



Appendix B: HiRID-ICU Pipeline Details

In this section we provide a description of the full pipeline of the HiRID-ICU Benchmark and go
through the main steps in detail. We also address the ML Reproducibility checklist questions1.

0. Data loading. Request access and then download the data from https://physionet.org/
content/hirid/1.1.1/ (see how to request access to the data in the README section
of the Software Repository2.) The data is available under the PhysioNet Credentialed Health
Data License 1.5.0.

1. Data preprocessing. The preprocessing step is described in detail in the APPENDIX A:
DATASET DETAILS. It is composed of several stages: merge stage, resample stage, feature
extraction stage.

2. Task implementation. In this stage we construct the state annotations and machine learning
labels for our predefined set of tasks.

3. Model training and evaluation. We select and train both ML and DL models on the training
and validation sets. We evaluate model performance on the test set.

The script run.py in the icu_benchmarks folder unites three stages of the pipeline which can be
used individually: Preprocessing (Section B.1), Task implementation (Section B.2), and Evaluation
(Section B.3). Each stage has an associated help function. Below we describe each stage in detail.

Preprocessing

The method preprocess unites all necessary steps to generate the input for the Deep Learning (DL)
and Machine Learning (ML) models:

1. run_merge_step — Converts ICU data from table format to a matrix format that can be
input to the machine learning model (see details in APPENDIX A: DATASET DETAILS).

2. run_resample_step — Re-samples data to a regularly sampled 5min resolution.
3. run_feature_extraction_step — Hand-engineered feature extraction for classical

machine learning models.
4. run_build_dl — Data splitting and preprocessing specific to ML.

Running these steps requires the following arguments:

1. hirid-data-root — Path to the unpacked parquet files containing the HiRID data, down-
loaded from Physionet.

2. work-dir — Path to the working directory of the user.
3. var-ref-path — Path to the file containing meta-data about variables necessary for our

pre-processing pipeline.
4. split-path — Path to the exact split of the data for model training and evaluation.
5. nr-workers — Number of workers to use during training. It depends on the user hardware

capacity.
1ML Reproducibility checklist
2https://github.com/ratschlab/HIRID-ICU-Benchmark/

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.



To run the whole preprocessing, the command below is used:

1

2 icu -benchmarks preprocess --hirid -data -root [path to unpacked parquet
files] \

3 --work -dir [output directory] \
4 --var -ref -path ./ preprocessing/resources/

varref.tsv \
5 --split -path ./ preprocessing/resources/split

.tsv \
6 --nr-workers 8

Task Implementation

The second stage of the pipeline, consisting of extracting task labels, is constructed around the
following three steps:

1. imputation_for_endpoints — Imputes data for endpoint generation.
2. generate_endpoints — Generates the endpoints i.e. verify if conditions for events are

matched at each timestep.
3. generate_labels — Extract final labels from endpoints.

As mentioned in the paper, we construct a set of 6 tasks, relevant for healthcare workers:

1. Mortality_At24Hours — Mortality prediction at 24h after admission in the ICU (further
Mortality).

2. Phenotyping_APACHEGroup — Patient APACHE group classification 24h after admission
in the ICU (further Patient Phenotyping).

3. Dynamic_CircFailure_12Hours — Continuous prediction of occurrence of circulatory
failure in the next 12 hours (further Circulatory Failure).

4. Dynamic_RespFailure_12Hour — Continuous prediction of occurrence of respiratory
failure in the next 12 hours (further Respiratory Failure).

5. Remaining_LOS_Reg — Continuous prediction of the remaining stay duration (further
Remaining LOS).

6. Dynamic_UrineOutput_2Hours_Reg — Continuous prediction of patient urine produc-
tion in the next 2h (further Kidney Function).

Model Training and Evaluation

In the final part of the pipeline, we provide the user with a choice of model to train:

1. from the list of DL models: Transformer, LSTM, GRU and Temporal CNN. All these models
use the class DLWrapper defining methods mechanics for deep learning models’ training
and evaluation.

2. from the list of the ML Models: Gradient Boosting method and Logistic Regression. In the
same manner as DL models, these models have a MLWrapper class.

All models are trained on the training set. The validation set is used for early stopping and model
selection through a random search. After the training procedure, the model performance is evaluated
on the test set.

To run the training, the following command is used (as an example, we provide here the command
for GRU model training for the Dynamic_CircFailure_12Hours task):

1 icu -benchmarks train -c configs/hirid/Classification/GRU.gin \
2 -l [path to logdir] \
3 -t Dynamic_CircFailure_12Hours\
4 -sd 1111

2



• Argument -l specifies the path to the directory where the trained model and meta-data will
be stored.

• Argument -t specifies the selected task.

• Argument -sd specifies the random seed.

• Argument -c specifies path to gin-config configuration file. This file should include the
path to the data after preprocessing, the task, the model with all hyper-parameters.

An example of the configuration file for the GRU model is provided below3.

1 import gin.torch.external_configurables
2 import icu_benchmarks.models.wrappers
3 import icu_benchmarks.models.encoders
4 import icu_benchmarks.models.utils
5 import icu_benchmarks.data.loader
6

7

8 EMB = 231
9 LR = 3e-4

10 HIDDEN = 64
11 NUM_CLASSES = 2
12 DEPTH = 1
13 BS = 64
14 EPOCHS = 1000
15 TASK = ’Dynamic_CircFailure_12Hours ’
16 RES = 1
17 RES_LAB = 1
18 MAXLEN = 2016
19 LOSS_WEIGHT = None
20

21 # Train params
22 train_common.model = @DLWrapper ()
23 train_common.dataset_fn = @ICUVariableLengthDataset
24 train_common.data_path = [path to data] # TODO add by user
25 train_common.weight = %LOSS_WEIGHT
26 train_common.do_test = True
27

28 DLWrapper.encoder = @GRU()
29 DLWrapper.loss = @cross_entropy
30 DLWrapper.optimizer_fn = @Adam
31 DLWrapper.train.epochs = %EPOCHS
32 DLWrapper.train.batch_size = %BS
33 DLWrapper.train.patience = 10
34 DLWrapper.train.min_delta = 1e-4
35

36

37 ICUVariableLengthLoaderTables.splits = [’train’,’test’,’val’]
38 ICUVariableLengthLoaderTables.task = %TASK
39 ICUVariableLengthLoaderTables.data_resampling = %RES
40 ICUVariableLengthLoaderTables.label_resampling = %RES_LAB
41 ICUVariableLengthDataset.maxlen = %MAXLEN
42

43 # Optimizer params
44 Adam.lr = %LR
45 Adam.weight_decay = 1e-6
46

47 # Encoder params
48 GRU.input_dim = %EMB
49 GRU.hidden_dim = %HIDDEN
50 GRU.layer_dim = %DEPTH
51 GRU.num_classes = %NUM_CLASSES

3See examples of configuration files for all the tasks and models in the config folder of the software
repository

3



We define all macros at the top of the file and use them to configure some classes and functions.
Among them, we have two custom function for data loading:

• ICUVariableLengthLoaderTables — Main Loader class allowing to sample patient
from the data.

• ICUVariableLengthDataset — pytorch dataset wrapper to ship data to the GPU.

Technical Specifics for Reproducibility

Libraries A full list of libraries and the version we used is provided in the environment.yml file.
The most important ones are the following: pytorch 1.8.1, scikit-learn 0.24.1, ignite 0.4.4, CUDA
10.2.89, cudNN 7.6.5.

Infrastructure We follow all guidelines provided by pytorch documentation to ensure repro-
ducibility of our results. However, reproducibility across devices is not ensured. Thus we provide
here the characteristics of our infrastructure. We trained deep learning methods on a single NVIDIA
RTX2080Ti with a Xeon E5-2630v4 core. For other methods we trained models on either Xeon
E5-2697v4 cores or Xeon Gold 6140 cores.

Method For the main experiment, 10 different random initializations were used for each model;
For the ablation study, 5 were used. For all models, we tuned specific hyper-parameters using random
search with 100 iterations for stay-level tasks and 50 iterations for the dynamic ones. Each random
set of parameters was run with 3 different random initializations. Early stopping with 10 step patience
on the loss was used as a stopping criterion. We then chose hyper-parameters on AUPRC, balanced
accuracy, and MAE for respectively, binary, multi-class, and regression tasks.

Complexity of training Among the deep learning methods, transformer memory complexity, with
regard to the sequence length, is quadratic. This has forced us to reduce both batch size and the
number of parameters of this model for the dynamic tasks. Also, to ensure reproducibility, using
deterministic algorithms particularly slows down TCN training. With our hardware, training deep
learning methods takes less than 1h for stay-level tasks and less than 6h for dynamic ones on a single
GPU. To reduce RAM consumption we provide the possibility to load data only at inference time
with parameter on_RAM in our loader. In that case, training is slightly slower but requires only around
8GB of RAM.

On the other hand, ML methods are faster to train but more RAM-consuming. Training any model
takes less than 4h on 4 CPUs. However, peak memory can exceed 100GB when using hand-engineered
features.

Hyperparameters Search

In this section we detail the range of hyperparameters we searched over and the one we used for our
experiments.

Common Hyperparameters

For the training of DL methods, we used certain parameters across multiple tasks and architecture as
reported in Table 1. For the ML methods, we fixed certain parameters as in the original HiRID paper.
For LGBM, we set the bagging frequency to 1, the number of leaves to 2depth, and the minimum
number of children per leaf to 1000. In the rest of the section, we report the hyperparameters we
searched over in our experiments.

4



Models Optimizer Weight Decay Batch Size Online Batch Size Stay Level

LSTM Adam 1e-6 64 64
GRU Adam 1e-6 64 64
TCN Adam 1e-6 64 64
Transformer Adam 1e-6 8 16

Table 1: Fixed Hyperparameters for DL Methods

Deep Learning model Hyperparameters

In this section, we detail the range of hyperparameters considered for LSTM, GRU, TCN and
transformer models.

LSTM The range of hyperparameters considered for the LSTM Model can be found in Table 2.

Task Learning Rate Drop-out Depth Hidden Dimension Loss Weighting

Mortality (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) (None, Balanced)
Phenotyping (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) (None, Balanced)

Circ. Failure (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) (None, Balanced)
Resp. Failure (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) (None, Balanced)

Urine Output (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) N.A
Rem. LOS (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) N.A

Table 2: Hyperparameter search range for LSTM. In bold are the parameters we selected using
random search.

GRU The range of hyperparameters considered for the GRU Model can be found in Table 3.

Task Learning Rate Drop-out Depth Hidden Dimension Loss Weighting

Mortality (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) (None, Balanced)
Phenotyping (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) (None, Balanced)

Circ. Failure (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) (None, Balanced)
Resp.Failure (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) (None, Balanced)

Urine Output (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) N.A
Rem. LOS (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 3) (32, 64, 128, 256) N.A

Table 3: Hyperparameter search range for GRU. In bold are the parameters we selected using random
search.

5



TCN The range of hyperparameters considered for the TCN Model can be found in Table 4. Note
that we do not consider any depth factor as it is fully determined by the kernel size and the sequence
length.

Task Learning Rate Drop-out Kernel Hidden Dimension Loss Weighting

Mortality (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (2, 4, 8, 16, 32) (32, 64, 128, 256) (None, Balanced)
Phenotyping (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (2, 4, 8, 16, 32) (32, 64, 128, 256) (None,Balanced)

Circ. Failure (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (2, 4, 8, 16, 32) (32, 64, 128, 256) (None, Balanced)
Resp. Failure (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (2, 4, 8, 16, 32) (32, 64, 128, 256) (None, Balanced)

Urine Output (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (2, 4, 8, 16, 32) (32, 64, 128, 256) N.A
Rem. LOS (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (2, 4, 8, 16, 32) (32, 64, 128, 256) N.A

Table 4: Hyperparameter search range for TCN. In bold are the parameters we selected using random
search.

Transformer The range of hyperparameters considered for Transformer Model can be found in
Table 5 and Table 6. We considered smaller parameters for online tasks due to GPU memory
limitations.

Task Learning Rate Attention Drop-out Nb. Heads Depth

Mortality (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 4, 8) (1, 2, 3)
Phenotyping (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 4, 8) (1, 2, 3)

Circ. Failure (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 4) (1, 2, 3)
Resp. Failure (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 4) (1, 2, 3)

Urine Output (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 4, 8) 1
Rem. LOS (1e-5, 3e-5, 1e-4, 3e-4) (0.0, 0.1, 0.2, 0.3, 0.4) (1, 2, 4, 8) 1

Table 5: Hyperparameter search range for the Transformer. In bold are the parameters we selected
using random search.

Task Attention Drop-out Hidden Dimension Loss Weighting

Mortality (0.0, 0.1, 0.2, 0.3, 0.4) (32, 64, 128, 256) (None, Balanced)
Phenotyping (0.0, 0.1, 0.2, 0.3, 0.4) (32, 64, 128, 256) (None, Balanced)

Circ. Failure (0.0, 0.1, 0.2, 0.3, 0.4) (32, 64, 128) (None, Balanced)
Resp. Failure (0.0, 0.1, 0.2, 0.3, 0.4) (32, 64, 128) (None, Balanced)

Urine Output (0.0, 0.1, 0.2, 0.3, 0.4) (32, 64, 128) N.A
Rem. LOS (0.0, 0.1, 0.2, 0.3, 0.4) (32, 64, 128) N.A

Table 6: Hyperparameter search range for Transformer. In bold are the parameters we selected using
random search.

6



Machine Learning Models Hyperparameters

Gradient Boosting The range of hyperparameters considered for the gradient boosting method,
LightGBM framework4 can be found in Table 7 and 8 :

Task Depth Colsample_bytree5 Subsample6

Mortality (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)
Phenotyping (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)

Circulatory Failure (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)
Respiratory Failure (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)

Urine Output (3,4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)
Remaining Length-of-Stay (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)

Table 7: Hyperparameter search range for LGBM. In bold are the parameters we selected using
random search.

Task Depth Colsample_bytree7 Subsample8

Mortality (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)
Phenotyping (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)

Circulatory Failure (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)
Respiratory Failure (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)

Urine Output (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)
Remaining Length-of-Stay (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)

Table 8: Hyper-parameters range for LGBM w. features. In bold are the parameters we selected
using random search.

Logistic Regression The search range of hyperparameters considered for Logistic Regression9 can
be found in Table 9:

Task C Penalty

Mortality (0.001, 0.01, 0.1, 1, 10) (’l1’, ’l2’)
Phenotyping (0.001, 0.01, 0.1, 1, 10) (’l1’, ’l2’)

Circulatory Failure (0.001, 0.01, 0.1, 1, 10) (’l1’, ’l2’)
Respiratory Failure (0.001, 0.01, 0.1, 1, 10) (’l1’, ’l2’)

Table 9: Hyperparameter search range for Logistic Regression. In bold are the parameters we selected
using random search.

4https://lightgbm.readthedocs.io/en/latest/
5Subsample ratio of columns when constructing each tree.
6Subsample ratio of the training instance
7Subsample ratio of columns when constructing each tree.
8Subsample ratio of the training instance
9scikit-learn framework

7


