Under review as a conference paper at ICLR 2021

SUPPLEMENTAL MATERIALS - LEVERAGING CLASS HIERARCHIES WITH
METRIC-GUIDED PROTOTYPE LEARNING

6 NOTEBOOK AND ILLUSTRATION

In Figure 3| we represent the embeddings and prototypes generated by variations of our networks as
well as their respective performance. We note that the fixed prototypes approach performs significantly
worse than our metric-guided method. We observe that the resulting prototypes are more compact
when they are learned independently, which can lead to an increase in misclassification. We also
remark that when the hierarchy contains no useful information, such as the arbitrary order of digits, the
metric-based approach has a worse performance than the free (unguided) method. This is particularly
drastic for the fixed prototype approach.

An illustrated notebook to reproduce this figure can be accessed at the following URL: |https://
colab.research.google.com/drive/1RgvG7bjaxNKAX6TQcKJz7L3BuAyQsu9J#
offline=true&sandboxMode=true

To run this notebook locally, you can also download it from our repository:
https://github.com/mgp—-anon/metric—-guided-prototypes

7 ADDITIONAL METHODOLOGICAL DETAILS

7.1 SCALE-INDEPENDENT DISTORTION

Computing the scale-free distortion defined in Equation [5 amounts to finding a minimizer of the
following function f : R — R:

f(s):Z|sozi—1\, )
iel

with ax; = d(m, )/ D[k, 1], and I an ordering of {k, 1} ;cxc2 such that the sequence [cy];cr is
non-decreasing.

Proposition 1. A global minimizer of f defined in (@) is given by s* = 1/«; with i defined as:

i = min jEI|ZakZZozk. (10)

k<j k>j

Proof. First, such 7 exists as it is the smallest member of a discrete, non-empty set (containing at
least j = |I]). We now verify that s* = 1/q; is a critical point of f. By definition of 7 we have that
Dok<i @k > D g apand Yo, g < 30,5, . By combining these two inequality, we have that

=Y o+ Y k€ [—aiai. (11)
k<i k>1

The subgradient of f at s* is the following:

0uf(s*) =D Osls*ar — 1|+ > 0sls*an — 1| + 05 s*a; — 1] (12)
k<i k>1
==Y o+ ap+ [~ ail. (13)
k<i k>i

By using the inequality defined in Equation E, we have that 0 € 9, f(s*) and hence s* is a critical
point of f. Since f is convex, such s* is also a global minimizer of f, i.e. an optimal scaling. ]

This proposition gives us a fast algorithm to obtain an optimal scaling and hence a scale-free distortion:
compute the cumulative sum of the oy, ; sorted in ascending order until the equality in @) is first
verified at index 7. The resulting optimal scaling is then given by 1/cv;.
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7.2 SMOOTH DISTORTION

The minimization problem with respect to s defined in Equation E]can be solved in closed form:
d(mg, ™ d(mg, ™)
= . 14
Z DIk, / Z DIk,1)? (14

7.3 EVOLUTION OF OPTIMAL SCALING

In Figurem we represent the evolution of the scaling factor s* in Ly, during training of our guided
prototype method on the four datasets. Across all four models, s* presents a decreasing trend overall,
which signifies that the average distance between prototypes increases. This is consistent with our
analysis of prototypical networks: as the feature learning network and the prototypes are jointly
learned, the samples’ representations get closer to their true class’ prototype. In doing so, they repel
the other prototypes, which translate into an inflation of the global scale of the problem. Our optimal
scaling allows the prototypes’ scale to expand accordingly. Without adaptive scaling, the data loss
and regularizer (6)) would conflict.

In all our experiments, this scale remained bounded and did not diverge. This can be explained by the
fact that for each misclassification k — [ of a sample z,,, the representation f(z,,) is by definition
closer to the erroneous prototype m; than of the true prototype 7. The first term of L, pushes
the true prototype 7y, towards f(z,,), and by transitivity—towards the erroneous prototype ;. This
phenomenon prevents prototypes from being pushed away from one another indefinitely. However, if
the prediction is too precise, i.e. most samples are correctly classified, the prototypes may diverge.
This setting, which we haven’t yet encountered, may necessitate a regularization such as weight decay
on the prototypes parameters.

Lastly, we remark that the asymptotic optimal scalings are different from one dataset to another.
This can be explained foremost by differences in the depth of the class hierarchy of each dataset, as
presented in Table[I] As explained above, the inherent difficulty of the classification tasks also have
an influence on the problem’s scale. However, our parameter-free method is able to automatically
find an optimal scaling.

7.4 INFERENCE

As with other prototypical networks, we associate to a sample n the class k£ whose prototype 7y, is the
closest to the representation f(z,,) with respect to d, corresponding to the class of highest probability.
This process can be made efficient for a large number of classes K and a high embedding dimension
m with a KD-tree data structure, which offers a query complexity of O(log(K)) instead of O(K - m)
for an exhaustive comparison. Hence, our method does not induce longer inference time than the
cross-entropy for example, as the embedding function typically takes up the most time.

7.5 RANK-BASED GUIDING

Following the ideas of Mettes et al.|(2019), we also experiment with a RankNet-inspired loss (Burges
et al.,[2005) which encourages the distances between prototypes to follow the same order as the costs
between their respective classes, without imposing a specific scaling:

1
Erank(ﬂ) = -

72 et log(Ripm) + (1 Rin) log(l—Rerm) (19

k,l,meT

with T = {(k,l,m) € K? | k # 1,1 # m,k # m} the set of ordered triplet of I, Ry, ; ., the
hard ranking of the costs between Dk ; and Dk .m»equal to 1if Dy ; > Dy, ,, and O otherwise, and
Ry 1 = sigmoid(d(my, m) — d(m, 7rm)) the soft ranking between d(my, m) and d(7g, 7rm) For
efficiency reasons, we sample at each iteration only a S-sized subset of 7. We use .S = 10 in our
experiments.
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(e) Guided prototypes, ER= 16.9%  (f) Fixed prototypes, ER= 48.8% !
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Figure 3: Mean class representation O , prototypes O, and 2-dimensional embeddings L learnt
on perturbed MNIST by a 3-layer convolutional net with six different classification modules: |(a)
cross-entropy, learnt prototypes, [(c) learnt prototypes guided by a visual taxonomy, [(d)] fixed
prototypes (see Section[8.T) from a visual taxonomy , [(€) learnt prototypes guided by the numbers’
values, and [(f) fixed prototypes from the numbers’ values. AC,;s corresponds to the cost defined by
our proposed visual hierarchy, while AC,s is defined after the chain-like structure obtained when
organizing the digits along their numerical values. While embedding the metric with prototypes
prior to learning the representations leads to lower (scale-free) distortion, this translates into worst
performance in terms of AC and ER. Joint learning achieves better performance on both evaluation
metrics. We also remark that when the hierarchy is arbitrary (e-f), metric guiding is detrimental to
precision.
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8 ADDITIONAL EXPERIMENTAL DETAILS

We give additional details on our experiments and some supplementary results in the following
subsections.

8.1 NUMERICAL RESULTS

The numerical values of the results shown in Figure [2]are given in Table[3]

1.2]
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*
[72]
0.61 — CIFAR100
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0.4{ — iNat-19
— S2-Agri
0 20 40 60 80 100

Training progresss (%)

Figure 4: Evolution of the scaling factor s* in Ly, along the training iterations of the four networks.
We observe that s* consistently decreases to values smaller than 1, which allow the prototypes to
spread apart while respecting the fix distances defined by D.
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<> Shrew < Lizard < Clock < Bus <> Seal <> Man
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Figure 5: Best (a-c) and worse (d-f) improvements in terms of class confusion provided by Guided-
proto compared to the cross-entropy baseline for CIFAR100, given in %, along with their error cost.
The metric guided regularization particularly helps decreasing the confusions between classes that
are visually similar (e.g. Plate and Clock) but are not direct siblings in the class hierarchy (D = 4).
Conversely, the regularization hinders performance for visually similar siblings classes (e.g. Otter
and Seal, D = 2).

8.2 ABLATION STUDIES

Robustness: As observed in Table 4, our presented method has low sensitivity with respect to
regularization strength: models trained with A ranging from 0.5 to 3 yield sensibly equivalent
performances. Choosing A = 1 seems to be the best configuration in terms of AC.

Hidden prototypes: In cases where the cost matrix D is derived from a tree-shaped class hierarchy,

it is possible to also learn prototypes for the internal nodes of this tree, corresponding to super-
classes of leaf-level labels. These prototypes do not appear in Lg,,, but can be used in the prototype
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Table 3: Error Rate (ER) in % and Average Cost (AC) on three datasets for our proposed methods
(top) and the competing approaches (bottom). The values are computed with the median over 5 runs
for CIFAR100, the average over 5 cross-validation folds for S2-Agri, and a single run for NYUDv2
and iNat-19. (HSP: Hyperspherical Prototypes, GP: Guided Prototypes).

CIFAR100 NYUDv2 S2-Agri iNat-19

ER AC ER AC ER AC ER AC
Cross-Entropy 24.2 1.160 327 1.486 194  0.699 409 1.993
HXE 24.1 1.168 324  1.456 19.5 0.731 41.8 2.013
Soft-label 23.5 1.046 324  1.424 19.2 0.703 52.8  2.029
XE+EMD 245 1.196 33.3  1.498 19.0 0.687 40.1 1.893
YOLO 26.2 1.214 32.0 1.425 19.1 0.685 42.0 1942
HSP 294 1472 49.7 2.329 - - 424  2.027
Deep-NCM 25.6  1.249 335  1.498 194 0.702 40.8 1.929
Free-proto 23.8 1.091 325 1462 19.1  0.691 38.8 1.728
Fixed-proto 24.7 1.083 33.1 1.462 194 0.710 439 2.148
GP-rank 23.3 1.056 327 1.445 19.1 0.691 39.3 1.718
GP-disto 23.6  1.052 32,5 1.440 189 0.685 389 1.721

Table 4: Robustness assessment of guided prototypes on CIFAR100 (left) and S2-Agri (right). The
top line is our chosen hyper-parameter configuration.

CIFAR100 S2-Agri
ER AC ER AC

Guided-proto

A = 1, hidden profo, 23.6  1.052 18.9  0.685
A=0.5 -0.2  +0.015 +0.5 +0.019
A=2 +0.3 +0.013 +0.2  +0.010
A=3 +0.1  +0.004 +0.1 +0.010
leaf proto only +0.2  +0.015 +0.3  +0.011

penalization to instill more structure into the embedding space. In Table[d, line leaf-proto, we note
a small but consistent improvement in terms of AC resulting in associating prototypes for classes
corresponding to the internal-nodes of the tree hierarchy as well.

8.3 ILLUSTRATION OF RESULTS

In Figure[5] we illustrate that our model particularly improves the classification rates of classes with
high visual similarity and comparatively large error costs.

8.4 QUALITATIVE ANALYSIS

In Figure[5] we illustrate that our model particularly improves the classification rates of classes with
high visual similarity and comparatively large error costs.

9 ADDITIONAL IMPLEMENTATION DETAILS

CIFAR100 ResNet-18 is trained on CIFAR100 using SGD with initial learning rate [, = 1071,
momentum set to 0.9 and weight decay wy = 5 - 10~%. The network is trained for 200 epochs in
batches of size 128, and the learning rate is divided by 5 at epochs 60, 120, and 160. The model is
evaluated using its weights of the last epoch of training, and the results reported in the paper are
median values over 5 runs.
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NYUDv2 We train FuseNet on NYUDv2 using SGD with momentum set to 0.9. The learning rate
is set initially to 10~ and multiplied at each epoch by a factor that exponentially decreases from 1
to 0.9. The network is trained for 300 epochs in batches of 4 with weight decay set to 5 - 1073, We
report the performance of the best-of-five last testing epochs.

S2-Agri We train PSE+TAE on S2-Agri using Adam with [, = 1073, 8 = (0.9;0.999) and no
weight decay. The dataset is randomly separated in five splits. For each of the five folds, 3 splits
are used as training data on which the network is trained in batches of 128 samples for 100 epochs.
The best epoch is selected based on its performance on the validation set, and we use the last split to
measure the final performance of the model. We report the average performance over the five folds.

iNaturalist-19 Given the complexity of the dataset, we follow [Bertinetto et al. (2020) and use a
ResNet-18 pre-trained on ImageNet. The network is trained for 65 epochs in batches of 64 epochs
using Adam with [, = 1074, 8 = (0.9;0.999) and no weight decay. The best epoch is selected based
on the performance on the validation set, and we report the performance on the held-out test set.

10 HIERARCHIES USED IN EXPERIMENTS

We present here the hierarchy used in the numerical experiments to derive the cost matrix. We define
the cost between two classes as the length of the shortest path in the proposed tree-shape hierarchy.
The hierarchy of CIFAR100 is presented in Figure[6} NYUDV2 in Figure[7} S2-Agri in Figure([§] and
iNat-19 in Figure[9]

For S2-Agri, we built the hierarchy by combining the two levels available in the dataset S2 of Garnot
et al. with the fine-grained description of the agricutltural parcel classes on the French Payment
Agency’s website (in French):

https://wwwl.telepac.agriculture.gouv.fr/telepac/pdf/tas/2017/
Dossier—-PAC-2017_notice_cultures—-precisions.pdf

Note that for S2-Agri, following |Sainte Fare Garnot et al. (2020) we have removed all classes that
had less than 100 samples among the almost 200 000 parcels to limit the imbalance of the dataset.
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Figure 6: Class hierarchy for CIFAR100. The arcs at different radii represent the different classes of
each level of the hierarchy. Unlabelled arcs share the same name as their parent class.
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Figure 7: Class hierarchy for NYUv2
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Figure 8: Class hierarchy for S2-Agri
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Figure 9: Class hierarchy for iNat-19, only the first 6 levels of the hierarchy are represented. At the
time of writing, only the classes’ obfuscated names were publicly available
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