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Abstract
Large monolithic generative models trained on
massive amounts of data have become an increas-
ingly dominant approach in AI research. We argue
that we should instead construct large generative
systems by composing smaller generative models
together. We show how such a compositional gen-
erative approach enables us to learn distributions
in a more data-efficient manner, enabling gener-
alization to parts of the data distribution unseen
at training time. We further show how this en-
ables us to program and construct new generative
models for tasks completely unseen at training.
Finally, we show that in many cases, we can dis-
cover compositional components from data.

1. Introduction
In the past two years, increasingly large generative models
have become a dominant force in AI research, with com-
pelling results in natural language (Brown et al., 2020),
computer vision (Rombach et al., 2022) and decision-
making (Reed et al., 2022). Much of the AI research field
has now focused on scaling and constructing increasingly
large generative models (Hoffmann et al., 2022), developing
tools to build even larger models (Dao et al., 2022; Kwon
et al., 2023), and studying how properties emerge as these
models scale in size (Lu et al., 2023; Schaeffer et al., 2023).

Despite significant scaling in generative models, existing
models remain far from intelligent, exhibiting poor rea-
soning ability (Tamkin et al., 2021), extensive hallucina-
tions (Zhang et al., 2023b), and poor understanding of com-
monsense relationships in images (Figure 2) (Majumdar
et al., 2023). Despite this, large models have already been
trained on most of the existing data on the Internet and
have reached the limits of modern computational hardware,
costing hundreds of millions of dollars to train (Figure 1).

1MIT. Correspondence to: Yilun Du <yilundu@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2021 2022 2023 2024

GPT-3
Gopher

PALM 540B

GPT-3.5

GPT-4

PALM 2

Gemini Ultra

Tr
ai

ni
ng

 F
LO

Ps

1024

1025

1026

Figure 1. Rising Size and Cost of Models. While much of AI
research has focused on constructing increasingly larger monolithic
models, training costs are exponentially rising by a factor of 3 every
year with current models already costing several hundred million
dollars per training run. Data from (Epoch, 2023).

Inference costs of such gigantic models are also prohibitive,
requiring large computational clusters and a cost of several
dollars for longer queries and answers (OpenAI).

In addition, adapting such large models to new task dis-
tributions is difficult. Directly fine-tuning larger models
is often prohibitively expensive, requiring a large compu-
tation cluster and an often difficult-to-acquire fine-tuning
dataset. Other works have explored leveraging language and
a set of in-context examples to teach models new distribu-
tions, but such adaptation is limited to settings that are well
expressed using a set of language instructions that are fur-
ther roughly similar to the distributions already seen during
training (Yadlowsky et al., 2023).

In this paper, we argue that as an alternative to studying
how to scale and construct increasingly large monolithic
generative models, we should instead construct complex
generative models compositionally from simpler models.
Each constituent model captures the probability distribu-
tion of a subset of variables of the distribution of interest,
which are combined to model the more complex full distribu-
tion. Individual distributions are therefore much simpler and
computationally modeled with both fewer parameters and
learnable from less data. Furthermore, the combined model
can generalize to unseen portions of the data distribution as
long as each constituent dimension is locally in distribution.

Such compositional generative modeling enables us to effec-
tively represent the sparsity and symmetry naturally found
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DALL-E 3 Prompt: Create a picture of a Spot robot 
feeding a person.

GPT-4V: No, the blue cup is not below 
the red bowl. The blue cup is to the right 
side of the picture, and the red bowl is 
not visible in the image

User: Is the blue cup below the red bowl?

Figure 2. Limited Compositionality in Multimodal Models. Ex-
isting large multimodal models such as GPT-4V and DALL-E 3
still struggle with simple textual queries, often falling back to bi-
ases in data.

in nature. Sparsity of interactions, for instance between an
agent and external environment dynamics can be encoded by
representing each with separate generative models. Sources
of symmetry can be captured using multiple instances of
the same independent generative component to represent
each occurrence of the symmetry, for instance by tiling
patch-level generative model over the patches in an image.
Compositional structure is widely used in existing work, to
tractably represent high dimensional distributions in Probab-
listic Graphical Models (PGMs) (Koller & Friedman, 2009),
and even in existing generative models, i.e. autoregressive
models which factorize distributions into a set of conditional
probability distributions (represented by a single model).

Compositional generative modeling further enables us to ef-
fectively program and construct new generative systems for
unseen task distributions. Individual generative models can
be composed in new ways, with each model specifying a set
of constraints, and probabilistic composition seen as a com-
munication language among models, ensuring a distribution
is a constructed so that all constraints are satisfied to form
the task distribution of interest. Such programming further
requires no explicit training or data, enabling generalization
in inference even on distributions with no previously seen
data. We illustrate how such recombination enables general-
ization to new task distributions in decision making, image
and video synthesis.

The underlying compositional components in generative
modeling can in many cases be directly inferred and dis-
covered in an unsupervised manner from data, representing
compositional structure such as objects and relations. Such
discovered components can then be similarly recombined
to form new distributions – for instance, objects compo-
nents discovered by one generative model on one dataset
can be combined with components discovered by a separate
generative model on another dataset to form hybrid scenes
with objects in both datasets. We illustrate the efficacy of
such discovered compositional structure across domains in
images and trajectory dynamics.

Overall, in this paper, we advocate for the idea that we
should construct complex generative systems by represent-
ing them as a compositional system of simpler components
and illustrate its benefits across various domains.

2. Data Efficient Generative Modeling
The predominant paradigm for training generative models
has been to construct increasingly larger monolithic mod-
els trained with greater amounts of data and computational
power. While language models have demonstrated signif-
icant improvements with increased scale (albeit still with
difficulty in compositionality (Dziri et al., 2023)), current
multimodal models such as DALL-E 3 and GPT-4V remain
unable to take advantage of even simple forms of com-
positionality (Figure 2). Such models may be unable to
accurately generate images given combinations of relations
rarely seen in training data, or fail to understand simple
spatial relations in images, despite being trained on a very
significant portion of the existing Internet.

One difficulty is that the underlying sample complexity of
learning generative models over joint distributions of vari-
ables increases dramatically with the number of variables.
As an example, consider learning probability distributions
by maximizing log-likelihood over a set of random vari-
ables A, B, C, D, each of which can take a set of K values.
Directly learning a distribution over a single variable A by
requires O(K) values (Canonne, 2020). The data required
to learn distributions over a joint set of variables generally
increases exponentially – so that learning a joint distribution
p(A,B,C,D) requires O(K4) samples (Canonne, 2020).

Constructing large multimodal generative models such as
GPT-4V or DALL-E 3 falls into the same difficulty – as
the number of modalities jointly modeled increases, the
combination of samples required to see and learn the entire
data distribution exponentially increases. This is particularly
challenging in the multimodal setting as the existing data
on the Internet used to train these models is often highly
non-uniform, with many combinations of natural language
and images unseen.

One approach to significantly reduce the data necessary to
learn generative models over complex joint distributions is
factorization – if we know that a distribution exhibits an
independence structure between variables such as

p(A,B,C,D) ∝ p(A)p(B)p(C,D),

we can substantially reduce the data requirements by only
needing to learn these factors, composing them together to
form a more complex distribution. This also enables our
learned joint distribution to generalize to unseen combina-
tions of variables so long as each local variable combination
is in distribution (illustrated in Figure 3). Even in settings
where distributions are not accurately modeled as a product
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Figure 3. Generalizing Outside Training Data. Given a narrow
slice of training data, we can learn generative models that gen-
eralize outside the data through composition. We learn separate
generative models to model each axis of the data – the composition
of models can then cover the entire data space.
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Figure 4. Distribution Composition – When modeling simple
product (top) or mixture (bottom) compositions, learning two com-
positional models on the factors is more data efficient than learning
a single monolithic model on the product distribution. The mono-
lithic model is trained on twice as much data as individual factors.

of independent factors, such a factorization can still lead to a
better models given limited data by reducing the hypothesis
space (Murphy, 2022). This idea of factorizing probabil-
ity distributions has led to substantial work in probabilistic
graphical models (PGMs) (Koller & Friedman, 2009).

Below, we illustrate across four settings how representing
a target distribution p(x) in a factorized manner can sub-
stantially improve generative modeling performance from a
limited amount of data:

Simple Distribution Composition. In Figure 4, we
consider modeling a distribution p(x) that is a product
p(x) ∝ p1(x)p2(x) or mixture p(x) ∝ p1(x) + p2(x) of
two factors p1(x) and p2(x). We compare training either a
single model on p(x) or learning two generative models on
the factors p1(x) and p2(x). We find that training composi-
tional models leads to a more accurate distribution modeling
if the same amount of data is used to learn p(x) as is used
to learn both p1(x) and p2(x). Even when modeling simple
distributions, the data complexity of modeling each factor
is simpler than representing the joint distribution.

Trajectory Modeling. Next, we consider modeling
a probability distribution p(τ) over trajectories τ =
(s0, a0, s1, a1, . . . , sT , aT ), which many recent works
have typically modeled using a single joint distribution

b)a)

Figure 5. Compositional Trajectory Generation – By factorizing
a trajectory generative model into a set of components, models are
able to more accurately simulate dynamics from limited trajectories
(a) and train in fewer training iterations (b).

“A couch right next to the 
windows” AND “A table in 
front of the couch” AND “A 
vase of flowers on top of the 

table”

“A green tree swaying in the 
wind” AND “A red brick 

house located behind a tree” 
AND “A lawn in front of the 

house”

“A pink sky” AND 
“A blue mountain in the 
horizon” AND “Cherry 
Blossoms in front of the 

mountain”

Single 
Model

Compositional 
Model

“A blue bird on a tree” 
AND “A red car behind 
the tree” AND “A green 

forest in the 
background”

Figure 6. Compositional Visual Synthesis. By composing a set of
generative models modeling conditional image distributions given
a sentence description, we can more accurately synthesize images
given paragraph-level text descriptions. Figure adapted from (Liu
et al., 2022)

p(s0, a0, . . . , sT , aT ) (Janner et al., 2022; Ajay et al., 2022).
In contrast to a monolithic generative distribution, given
structural knowledge of the environment – i.e., that it is
a Markov Decision Process, a more factorized generative
model to represent the distribution is as a product

p(τ) ∝
∏
i

p(si | si−1, a).

In Figure 5 , we explore the efficacy of compositional and
monolithic models in characterizing trajectories in Maze2D,
which consists of a 4D state space (2D position and veloc-
ity) and 2D action space (2D forces), using the model in
(Janner et al., 2022) (with the compositional model repre-
senting trajectory chunksize 8 to ensure compatibility with
the architecture). We plot the accuracy of generated trajec-
tories at unseen start states as the function of the number
of agent episodes used to train models, where each episode
has length of approximately 10000 timesteps. As seen in
the Figure 5(a), given only a very limited number of agent
episodes in an environment, a factorized model can more
accurately simulate trajectory dynamics. In addition, we
found that training a single joint generative model also took
a substantially larger number of iterations to train than the
factorized model as illustrated in Figure 5(b).

Compositional Visual Generation. We further consider
modeling a probability distribution p(x | T ) in text-to-
image synthesis, where x is an image and T is a complex
text description. While this distribution is usually char-
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acterized by a single generative model, we can factor the
generation as a product of distributions (Liu et al., 2022)
given sentences t1, t2, and t3 in the description T

p(x | T ) ∝ p(x | t1)p(x | t2)p(x | t3).
This representation of the distribution is more data efficient:
we only need to see the full distribution of images given
single sentences. In addition, it enables us to generalize to
unseen regions of p(x | T ) such as unseen combinations
of sentences and longer text descriptions. In Figure 6, we
illustrate the efficacy of such an approach.

Composing Language Models. Finally, we consider
modeling a probability distribution p(x) over a language
sequence x. Similar to the previous examples, we can rep-
resent the likelihood as a composition p(x) ∝

∏
i pi(x),

where each distribution pi(x) is parameterized by a separate
language model. However, directly sampling from such a
composition of language models is difficult as it requires in-
termediate access to the output logits of each model, which
are often unavailable for proprietary models. One approach
to avoid this issue is to combine outputs of individual lan-
guage models pi(x) in the language space and use the result
as context for representing the final distribution p(x) over
language sequences (Du et al., 2023b).

In Du et al. (2023b), this compositional approach is found
to effectively improve the performance of base language
models. For instance, on the MATH dataset (Hendrycks
et al., 2021), by composing 5 instances of a GPT-3.5 model,
we can obtain a final accuracy of 58.0± 2.8%, even outper-
forming a much larger and expensive GPT-4 model, which
obtains a performance of 55.0± 2.9%.

3. Generalization to New Distributions
In the previous section, we’ve illustrated how composition
can enable us to effectively model a distribution p(x), in-
cluding areas we have not seen any data in. In this section,
we further illustrate how composition enables generaliza-
tion, allowing us to re-purpose a generative model p(x) to
solve a new task by constructing a new generative model
q(x).

Consider the task of planning, where we wish to construct a
generative model q(τ) which samples plans that reach a goal
state g starting from a start state s. Given a generative model
p(τ), which sample legal, but otherwise unconstrained, state
sequences in an environment, we can construct an additional
generative model r(τ, s, g) which has high likelihood when
τ has start state s and goal state g and low likelihood every-
where else. By composing the two distributions

q(τ) ∝ p(τ)r(τ, s, g), (1)

we can construct our desired planning distribution q(τ),
exploiting the fact that probability can be treated as a “cur-
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Figure 7. Planning through Probability Composition. By com-
posing a probability density trained on modeling dynamics in an
environment ptraj(τ) with a probability density pgoal(τ, g) which
specifies a specific goal state, we can sample plans from specified
start to a goal condition. Figure from (Janner et al., 2022),
where the horizontal axis illustrates progression of sampling.
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graspA
trajA

poseA0

cfree(A, B)

valid-traj

cfree(A, C) ......

(a) Visualization of the environment 
while placing object A.

(b) Visualization of the constraint graphs associated with the 
object placement. There are three decision variables.

in(A, Box)

The arm trajectory trajA
connects A’s initial pose 
poseA0 and the target pose 
poseA given graspA.

Box

Figure 8. Manipulation through Constraint Composition. New
object manipulation problems can be converted into a graph of
constraints between variables. Each constraint can be represented
as a low-dimensional factor of the joint distribution, with sampling
from the composition of distributions corresponding to solving the
arrangement problem. Figure adapted from (Yang et al., 2023b).

rency” to combine models, enabling us to selectively choose
trajectories that satisfy the constraints in both distributions.

Below, we illustrate a set of applications where we can
construct new compositional generative models q(x) to
solve tasks in planning, constraint satisfaction, hierarchical
decision-making, and image and video generation.

Planning with Trajectory Composition. We first con-
sider constructing q(τ) representing planning as described
in Equation 1. In Figure 7 we illustrate how sampling from
this composed distribution enables successful planning from
start to goal states. Quantatively, this approach performs
well also as illustrated in (Janner et al., 2022).

Manipulation through Constraint Satisfaction. We
next illustrate how we can construct a generative model q(V )
to solve a variety of robotic object arrangement tasks. As
illustrated in Figure 8, many object arrangement tasks can be
formulated as continuous constraint satisfaction problems
consisting of a graph G = ⟨V,U , C⟩, where v ∈ V is a
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Figure 9. Hierarchical Planning through Composition. By com-
posing a set of foundation models trained on Internet data (lan-
guage, videos, action), we can zero-shot construct a hierarchical
planning system. Figure adapted from (Ajay et al., 2023).

Starship Enterprise firing phasers

Movie still of epic space battle

Giant mocha robot holding a glowing sword

Glowing phaser beam

Sun with lens flare

Portion of Mars. Debris from atmosphere

Figure 10. Image Tapestries through Composition. By compos-
ing a set of probability distributions defined over different spatial
regions in an image, we can construct detailed image tapestries.
Figure adapted from (Du et al., 2023a).

decision variable (such as the pose of an object), while each
u ∈ U is a conditioning variable (such as the geometry of
an object) and c ∈ C is a constraint such as collision-free.
Given such a specification, we can solve the robotics tasks
by sampling from the composed distribution

q(V ) ∝
∏
c∈C

pc(Vc | Uc),

corresponding to solving the constraint satisfaction prob-
lem. Such an approach enables effective generalization to
new problems (Yang et al., 2023b), to temporally extended
plans (Mishra et al., 2023), and the combination of heteroge-
nous policies (Wang et al., 2024).

Hierarchical Planning with Foundation Models. We
further illustrate how we can construct a generative model
that functions as a hierarchical planner for long-horizon
tasks. We construct q(τtext, τimage, τaction), which jointly
models the distribution over a text plan τtext, image plan
τimage, and action plan τaction given a natural language goal
g and image observation o, by combining pre-existing foun-
dation models trained on Internet knowledge. We formulate
q(τtext, τimage, τaction) through the composition

pLLM(τtext, g)pVideo(τimage, τtext, o)pAction(τaction, τimage).

This distribution assigns a high likelihood to sequences of
natural-language instructions τtext that are plausible ways
to reach a final goal g (leveraging textual knowledge em-
bedded in an LLM) which are consistent with visual plans
τimage starting from image o (leveraging visual dynamics
information embedded in a video model), which are fur-
ther consistent with execution with actions τaction (leverag-

Original 
Generation

Adapted 
Generation 

(Digital Art)

Adapted 
Generation 

(Outdoor Video)

Adapted 
Generation
(Storybook 
Illustration)

Figure 11. Video Stylization through Composition. By compos-
ing one video model with a model specifying style, we can stylize
video generations. Figure adapted from (Yang et al., 2023a).

ing action information in a large action model). Sampling
from this distribution then corresponds to finding sequences
τtext, τimage, τaction that are mutually consistent with all con-
straints, and thus constitute successful hierarchical plans to
accomplish the task. We provide an illustration of this com-
position in Figure 9 with efficacy of this approach demon-
strated in (Ajay et al., 2023).

Controllable Image Synthesis. Composition can also
allows us to construct a generative model q(x | D) to gener-
ate images x from a detailed scene description D consisting
of text and bounding-box descriptions {texti, bboxi}i=1:N .
This compositional distribution is

q(x|D) ∝
∏

i∈{1,...,N}

p(xbboxi | texti),

where each distribution is defined over bounding boxes in
an image. In Figure 10, we illustrate the efficacy of this
approach for constructing complex images. This approach
enables the synthesis of image tapestries (Du et al., 2023a)
and collages (Zhang et al., 2023a).

Style Adaptation of Video Models. Finally, composi-
tion can be used to construct a generative model q(τ) that
synthesizes video in new styles. Given a pretrained video
model ppretrained(τ | text) and a small video model of a par-
ticular style padapt(τ | text), we can sample videos τ from
the compositional distribution

ppretrained(τ | text)padapt(τ | text)

to generate new videos in different specified styles. The
efficacy of using composition to adapt the style of a video
model is illustrated in (Yang et al., 2023a).

4. Generative Modeling with Learned
Compositional Structure

A limitation of compositional generative modeling dis-
cussed in the earlier sections is that it requires a priori knowl-
edge about the independence structure of the distribution we
wish to model. However, these compositional components
can also be discovered jointly while learning a probability
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Dataset 1 Dataset 2 Composed Components

Figure 12. Composition of Discovered Objects. Probabilistic
components corresponding to individual objects in a scene are
discovered unsupervised in two datasets using two separate models.
Discovered components (illustrated with yellow boxes) can be
multiplied together to form new scenes with a hybrid composition
of objects. Figure adapted from (Su et al., 2024).

distribution by formulating maximum likelihood estimation
as maximizing the likelihood of the factorized distribution

pθ(x) ∝
∏
i

piθ(x).

Similar to the previous two sections, the discovery of the
learned components piθ(x) enables more data-efficient learn-
ing of the generative model as well as the ability to generate
samples from new task distributions. Here, we illustrate
three examples of how different factors can be discovered
in an unsupervised manner.

Discovering Factors from an Input Image. Given an
input image x of a scene, we can parameterize a probability
distribution over the pixel values of the image as a product
of the compositional generative models

pθ(x) ∝
∏
i

pθ(x | Enci(x)),

where Enc(·) is a learned neural encoder with low-
dimensional latent output to encourage each component
to capture distinct regions of an image. By training models
to autoencode images with this likelihood expression, each
component distribution pθ(x | Enci(x)) finds interpretable
decomposition of images corresponding to individual ob-
jects in a scene as well global factors of variation in the
scene such as lighting (Du et al., 2021; Su et al., 2024). In
Figure 12, we illustrate how these discovered components,
pθ(x | z1) and pθ(x | z2) from a model trained on cubes and
spheres, pϕ(x | z3) and pϕ(x | z4) from a separate model
trained on trucks and boots can be composed together to
form the distribution

pθ(x | z1)pθ(x | z2)pϕ(x | z3)pϕ(x | z4),
to construct hybrid scenes with objects from both datasets.

GT Charged RecombinedGT Springs

+

+

+

=

=

=

Figure 13. Composition of Discovered Relation Potentials In
a particle dataset, particles exhibit potentials corresponding to
invisible springs between particles (Col. 1) or charges between
particles (Col. 2). By swapping discovered probabilistic compo-
nents between each pair of objects between particle systems, we
can recombine trajectories framed in green but with a pair of edge
potentials from trajectories formed in red in Col. 3. Figure adapted
from (Comas et al., 2023)

Image Distribution

p4(x)p5(x)

Discovered 
Components

Recombined 
Components

p3(x)p5(x)

Figure 14. Discovering Image Classes. Given a distribution of
images drawn from 5 image classes in ImageNet, discovered com-
ponents correspond to each image class. Components can further
be composed together to form new images. Figure adapted from
(Liu et al., 2023).

Discovering Relational Potentials. Given a trajectory τ
of N particles, we can similarly parameterize a probability
distribution over the reconstruction of the particle system
as a product of components defined over each pairwise
interaction between particles

pθ(τ) ∝
∏

i,j∀j ̸=i

pθ(τ | Encij(τ)),

where Encij(τ) corresponds to latent encoding interactions
between particle i and j. In Figure 13, we illustrate how
these discovered relational potentials on one particle system
can be composed with relational potentials discovered on a
separate set of forces to simulate those forces on the particle
system.

Discovering Object Classes From Image Distributions.
Given a distribution of images p(x) representing images
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drawn from different classes in Imagenet, we can model the
likelihood of the distribution as a composition

pθ(x) ∝ pϕ(w | x)
∏
i

piθ(x)
wi ,

where wi refers to the weighting coefficient for each compo-
nent. In Figure 14, we illustrate that the discovered compo-
nents in this setting represent each of the original Imagenet
classes in the input distribution of images. We further il-
lustrate how these discovered components to be composed
together to generate images with multiple classes of objects.

5. Implementing Compositional Generation
In this section, we discuss some challenges with implement-
ing compositional sampling with common generative model
parameterizations and discuss a generative model parame-
terization that enables effective compositional generation.
We then present some practical implementations of compo-
sitional sampling in both continuous and discrete domains.

5.1. Challenges With Sampling from Compositional
Distributions

Given two probability densities p1(x) and p2(x), it is of-
ten difficult to directly sample from the product density
p1(x)p2(x). Existing generative models typically represent
probability distributions in a factorized manner to enable
efficient learning and sampling, such as at the token level in
autoregressive models (Van Den Oord et al., 2016) or across
various noise levels in diffusion models (Sohl-Dickstein
et al., 2015). However, depending on the form of the factor-
ization, the models may not be straightforward to compose.

For instance, consider two learned autoregressive factoriza-
tions p1(xi|x0:i−1) and p2(xi|x0:i−1) over sequences x0:T .
The autogressive factorization of the product distribution
pproduct(x) ∝ p1(x)p2(x) corresponds to

pproduct(xi|x0:i−1) =
∑

xi+1:T

p1(xi+1:T |x0:i)p1(xi|x0:i−1)

p2(xi+1:T |x0:i)p2(xi|x0:i−1),

where we need to marginalize over all possible future values
of xi+1:T . Since this marginalization is different depen-
dent on the value of xi, pproduct(xi|x0:i−1) is not equivalent
to p1(xi|x0:i−1)p2(xi|x0:i−1) and therefore autoregressive
factorizations are not directly compositional. Similarly, two
learned score functions from diffusion models are not di-
rectly composable as they do not correspond to the noisy
gradient of the product distribution (Du et al., 2023a).

While it is often difficult to combine generative models,
representing the probability density explicitly enables us
to combine models by manipulating the density. One such
approach is to represent probability density as an Energy-
Based Model, pi(x) ∝ e−Ei(x) (Hinton, 2002; Du & Mor-

datch, 2019). Under this factorization by definition, we can
construct the product density corresponding to

e−(E1(x)+E2(x)) ∝ e−E1(x)e−E2(x), (2)

corresponding to a new EBM E1(x) + E2(x). It is impor-
tant to observe that EBMs generally represent probability
densities in an unnormalized manner, and the product of
two normalized probability densities p1(x) and p2(x) will
be an unnormalized probability density as well (where the
normalization constant is intractable to compute as it re-
quires marginalization over the sample space). Additional
operations between probability densities such as mixtures
and inversions of distributions can also be expressed as
combinations of energy functions (Du et al., 2020a).

To generate samples from any EBM distribution, it is neces-
sary to run Markov Chain Monte Carlo (MCMC) to itera-
tively refine a starting sample to one that is high likelihood
(low energy) under the EBM. We present practical MCMC
algorithms for sampling from composed distributions in
continuous spaces in Section 5.2 and discrete spaces in
Section 5.3 with EBMs. Recently, new methods for imple-
menting compositional sampling using separately trained
classifiers to efficiently specify each conditioned factor have
been developed (Garipov et al., 2023), which we encourage
the reader to also read.

5.2. Effective Compositional Sampling on Continuous
Distributions

Given a composed distribution represented as EBM E(x)
defined over inputs x ∈ RD, directly finding a low energy
sample through MCMC becomes increasingly inefficient as
the data dimension D rises. To more effectively find low-
energy samples in EBMs in high-dimensional continuous
spaces, we can use the gradient of the energy function to
help guide sampling. In Du & Mordatch (2019), Langevin
dynamics is used to implement efficient sampling, where a
sample can be repeatedly optimized using the expression

xt = xt−1 − λ∇xE(x) + ϵ, ϵ ∼ N (0, σ),

where x0 is initialized from uniform noise. By convert-
ing different operations such as products, mixtures, and
inversions of probability distributions into composite en-
ergy functions, the above sampling procedure allows us to
effectively compositionally sample from composed distribu-
tions (Du et al., 2020a).

There has been a substantial body of recent work on im-
proving learning in EBMs (Du & Mordatch, 2019; Nijkamp
et al., 2019; Grathwohl et al., 2019; Du et al., 2020b; Grath-
wohl et al., 2021) but EBMs still lag behind other generative
approaches in efficiency and scalability of training. By lever-
aging the close connection of diffusion models with EBMs
in (Song & Ermon, 2019) we can also directly implement
the compositional operations with EBMs with diffusion
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models (Du et al., 2023a), which we briefly describe below.

Given a diffusion model representing a distribution p(x), we
can interpret the T learned denoising functions ϵ(x, t) of the
diffusion model as representing T separate EBM distribu-
tions, e−E(x,t), where ∇xE(x, t) = ϵ(x, t). This sequence
of EBM distributions transition from e−E(x,T ) representing
the Gaussian distribution N (0, 1) to e−E(x,0) representing
the target distribution pi(x). We can draw samples from
this sequence of EBMs using annealed importance sam-
pling (Du et al., 2023a), where we initialize a sample from
Gaussian noise and sequentially run several steps of MCMC
on each EBM distribution, starting at e−E(x,T ) and ending
at e−E(x,0).

This EBM interpretation of diffusion models allows them
to be composed using operations such as Equation 2 by ap-
plying the operation to each intermediate EBM correspond-
ing to the component diffusion distributions, for instance
e−(E1(x,k)+E2(x,k)). We can then use an annealed impor-
tance sampling procedure on this sequence of composite
EBMs. Note that this annealed importance procedure is
necessary for accurate compositional sampling – using the
reverse diffusion process directly on this composed score
does not sample from the composed distribution (Du et al.,
2023a).

A variety of different MCMC samplers such as ULA,
MALA, U-HMC, and HMC can be used as intermediate
MCMC samplers for this sequence of EBM distributions.
One easy-to-implement MCMC transition kernel that is easy
to understand is the standard diffusion reverse sampling ker-
nel at a fixed noise level. We illustrate in Appendix A that
this is equivalent to running a ULA MCMC sampling step.
This allows compositional sampling in diffusion models
to be easily implemented by simply constructing the score
function corresponding to the composite distribution we
wish to sample from and then using the standard diffusion
sampling procedure, but with the diffusion reverse step ap-
plied multiple times at each noise level.

5.3. Effective Compositional Sampling on Discrete
Distributions

Given an EBM representing a composed distribution E(x)
on a high dimensional discrete landscape, we can use Gibbs
sampling to sample from the resultant distribution, where
we repeatedly resample values of individual dimensions of x
using the marginal energy function E(xi | x−i). However,
this process is increasingly inefficient as the underlying
dimensionality of the data increases.

The use of a gradient of the energy function E(x) to ac-
celerate sampling in the discrete landscape is difficult, as
the gradient operation is not well defined in discrete space
(though there are also promising discrete analogs of gradi-

Image Model

Language
Model

Memory Model

Image

Video Model Action Model

Action

Audio Model

Audio

Figure 15. Decentralized Decision Making. By composing gen-
erative models operating over various modalities we can construct
decentralized architectures for intelligent agents. Communication
between models is induced by inference over the joint distribution.

ent samplers (Grathwohl et al., 2021)). However, we can
leverage our learned generative distributions to accelerate
sampling, by using one generative model as a proposal dis-
tribution and the remaining energy functions to implement
a Metropolis-Hastings step (Li et al., 2022; Verkuil et al.,
2022).

As an example, to sample from an energy function E(x) =
E1(x) + E2(x), given an initial MCMC sample xt, we
can draw a new sample xt+1 by sampling from the learned
distribution e−E1(x), and accept the new sample xt+1 with
a Metropolis acceptance rate

a(xt+1) = clip(eE2(xt)−E2(xt+1), 0, 1).

This procedure allows us to leverage e−E1(x) to guide sam-
pling from e−E(x) .

6. Discussion and Future Directions
Most recent research on building generative models has
focused on increasing the computational scale and data on
which models are trained. We have presented an orthogonal
direction to constructing complex generative systems,
by building systems compositionally, combining simpler
generative models to form more complex ones. We have
illustrated how this can be more data and computation-
efficient to learn, enable flexible reprogramming, and how
such components can be discovered from raw data.

Such compositional systems have additional benefits in
terms of both buildability and interpretability. As individ-
ual models are responsible for independent subsets of data,
each model can be built separately and modularly by dif-
ferent institutions. Simultaneously, at execution time, it is
significantly easier to understand and monitor the execu-
tion of each simpler constituent model than a single large
monolithic model.

In addition, such compositional systems can be more envi-
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ronmentally friendly and easier to deploy than large mono-
lithic models. Since individual models are substantially
smaller, they can run efficiently using small amounts of com-
putation. In addition, it is more straightforward to deploy
separate models across separate computational machines.

In the setting of constructing an artificially intelligent agent,
such a compositional architecture may look like a decentral-
ized decision-making system in Figure 15. In this system,
separate generative models are responsible for processing
each modality an agent receives and other models respon-
sible for decision-making. Sampling composed generative
distribution of models corresponds to message passing be-
tween models, inducing cross-communication between mod-
els similar to a set of daemons communicating with each
other (Selfridge, 1988). Individual generative models in
this architecture can be substituted with existing models
such as LLMs for proposing plausible plans for actions and
text-to-video presenting future world states.

Finally, while we have provided a few promising results on
applications of compositional generative modeling, there
are many limitations to address in future work. First, the
current work on compositional modeling assumes a fixed
prespecified structure through which models are composed,
limiting generalization to new distributions. To flexibly ap-
ply compositional models across new tasks, it would be
important to construct systems that can instead automati-
cally discover the correct compositional structure between
models as well as the appropriate per-model weighting.

Second, current work on discovering compositional struc-
ture assumes that data is naturally factorized into an indepen-
dent product of components. In many real-world settings,
gathered data will often exhibit spurious correlations that
violate such independence assumptions, causing existing al-
gorithms to fail to discover the correct structure. Exploring
more robust approaches to discovering compositional struc-
ture such as through prior knowledge or active intervention
in the environment are rich directions for future work.

Lastly, while our focus in this position paper has been on
combining separately trained generative models, it would be
interesting to theoretically characterize compositional gen-
eralization in such systems as well as alternative approaches
to improve such generalization. Past theoretical work has
characterized compositional generalization in additive mod-
els (Wiedemer et al., 2024; Lachapelle et al., 2024), and
it would be interesting to extend such analysis to compo-
sitional generative modeling. Furthermore, it would be in-
teresting to explore adding explicit compositional structure
to individual models to improve compositional generaliza-
tion (Misino et al., 2022; Sehgal et al., 2023).
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Appendix

A. Implementing ULA Transitions as Multiple Reverse Diffusion Steps
We illustrate how a step of reverse sampling on a diffusion model at a fixed noise level is equivalent to ULA MCMC
sampling at the same fixed noise level. We use the αt and βt formulation from (Ho et al., 2020). The reverse sampling step
on an input xt at a fixed noise level at timestep t is given by a Gaussian with a mean

µθ(xt, t) = xt −
βt√
1− ᾱt

ϵθ(xt, t).

with the variance of βt (using the variance small noise schedule in (Ho et al., 2020)). This corresponds to a sampling update,

xt+1 = xt −
βt√
1− ᾱt

ϵθ(xt, t) + βtξ, ξ ∼ N (0, 1).

Note that the expression ϵθ(xt,t)√
1−ᾱt

corresponds to the score ∇xpt(x), through the denoising score matching objective (Vincent,
2011), where the EBM pt(x) corresponds to the data distribution perturbed with t steps of noise. The reverse sampling step
can be equivalently written as

xt+1 = xt − βt∇xpt(x) + βtξ, ξ ∼ N (0, 1). (A1)

The ULA sampler draws an MCMC sample from the EBM probability distribution pt(x) using the expression

xt+1 = xt − η∇xpt(x) +
√
2ηξ, ξ ∼ N (0, 1), (A2)

where η is the step size of sampling.

By substituting η = βt in the ULA sampler, the sampler becomes

xt+1 = xt − βt∇xpt(x) +
√
2βtξ, ξ ∼ N (0, 1). (A3)

Note the similarity of ULA sampling in Eqn A3 and the reverse sampling procedure in Eqn A1, where there is a factor of
√
2

scaling of the added Gaussian noise in the ULA sampling procedures. This means that we can implement the ULA sampling
by running the standard reverse process, but by scaling the noise added in each timestep by a factor of

√
2. Alternatively,

we can directly we can directly use the reverse sampling procedure in Eqn A1 to run ULA, where this then corresponds to
sampling a tempered variant of pt(x) with temperature 1√

2
(corresponding to less stochastic samples from the composed

probability distribution).
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