000 001 002 003 COMPC: COMPLETING A 3D POINT CLOUD WITH 2D DIFFUSION PRIORS

Anonymous authors

Paper under double-blind review

ABSTRACT

3D point clouds directly collected from objects through sensors are often incomplete due to self-occlusion. Conventional methods for completing these partial point clouds rely on manually organized training sets and are usually limited to object categories seen during training. In this work, we propose a test-time framework for completing partial point clouds across unseen categories without any requirement for training. Leveraging point rendering via Gaussian Splatting, we develop techniques of Partial Gaussian Initialization, Zero-shot Fractal Completion, and Point Cloud Extraction that utilize priors from pre-trained 2D diffusion models to infer missing regions and extract uniform completed point clouds. Experimental results on both synthetic and real-world scanned point clouds demonstrate that our approach outperforms existing methods in completing a variety of objects.

1 INTRODUCTION

025 026 027 028 029 030 031 3D point clouds have always been an important perceptual approach for the physical world, finding extensive use in various applications such as SLAM [\(Cadena et al., 2016\)](#page-10-0) or 3D detection [\(Geiger](#page-10-1) [et al., 2013;](#page-10-1) [Reddy et al., 2018\)](#page-11-0). However, point clouds are often captured from specific camera viewpoints [\(Yuan et al., 2018;](#page-12-0) [Kasten et al., 2024\)](#page-10-2) in real applications, which may lead to the incompleteness of collected points due to the self-occlusion. Effective and robust completion for partial point clouds can greatly reduce the cost for data collection, and are also useful for subsequent perception of the 3D world.

032 033 034 035 036 037 As illustrated in Fig. [1-](#page-1-0)(a), most existing completion methods [\(Yuan et al., 2018;](#page-12-0) [Zhao et al., 2021;](#page-12-1) [Zhou et al., 2022;](#page-12-2) [Yu et al., 2023\)](#page-12-3) adopt well-designed deep neural networks to directly generate complete point clouds from partial ones. These methods are usually trained on specific point cloud datasets [\(Yuan et al., 2018;](#page-12-0) [Yu et al., 2023\)](#page-12-3) and demonstrate outstanding performances on their respective test sets. However, they face challenges in handling data that differs from what they were trained on, such as unseen object categories or real-world scans. This limitation significantly hinders the practical deployment of these point cloud completion methods.

- **038 039 040 041 042 043 044 045 046 047 048 049 050 051** Leveraging the impressive capabilities of 2D diffusion models [\(Rombach et al., 2022;](#page-11-1) [Saharia et al.,](#page-11-2) [2022;](#page-11-2) [Ho et al., 2020\)](#page-10-3), SDS-complete [\(Kasten et al., 2024\)](#page-10-2) firstly propose a test-time point cloud completion methods utilizing text-to-3D generative models [\(Poole et al., 2022;](#page-11-3) [Wang et al., 2023\)](#page-11-4). As shown in Fig. [1-](#page-1-0)(b), this method optimizes a Neural surface [\(Yariv et al., 2021\)](#page-12-4) guided by Score Distillation Sampling (SDS) [\(Poole et al., 2022\)](#page-11-3) of the text-conditioned Stable Diffusion [\(Rombach](#page-11-1) [et al., 2022\)](#page-11-1). The Neural surface, modeled as a Signed Distance Field (SDF) following VolSDF [Yariv](#page-12-4) [et al.](#page-12-4) [\(2021\)](#page-12-4), incorporates the geometric details from the partial points by setting their SDF values to zero. The completed points are then generated from the optimized surface for assessment. By tapping into the extensive 2D knowledge provided by diffusion models, SDS-complete [\(Kasten et al.,](#page-10-2) [2024\)](#page-10-2) manages to achieve significantly robust point cloud completion without any training on specific training sets. However, a notable limitation of the method proposed by SDS-complete [\(Kasten](#page-10-2) [et al., 2024\)](#page-10-2) is its dependency on manually created text prompts for each point cloud to guide the completion. This requirement can encounter a challenge in real-world applications, where providing detailed and accurate text descriptions for incomplete point clouds is not always feasible.
- **052** In view of the above-mentioned issues, we propose a novel test-time point cloud completion frame-
- **053** work that eliminates the need for any extra manually provided information such as text descriptions. As discussed in PCN [\(Yuan et al., 2018\)](#page-12-0) and SDS-complete [\(Kasten et al., 2024\)](#page-10-2), existing completion

066 067 068 069 Figure 1: Different point cloud completion methods. (a) Existing network-based completion methods; (b) Test-time SDS-complete [\(Kasten et al., 2024\)](#page-10-2) with text prompts to guide Neural surface for completion; (c) Our method based on 3D Gaussian Splatting (GS) guided by the diffusion model from Zero 1-to-3 [\(Liu et al., 2023\)](#page-11-5) conditioned on the reference image rendered from partial points.

070 071 072 073 methods concentrate mainly on point clouds incomplete due to self-occlusion, which means that these point clouds often appear nearly complete from at least one viewpoint. Inspired by the amodal perception [\(Lehar, 1999;](#page-10-4) [Breckon & Fisher, 2005\)](#page-10-5), we aim to complete a point cloud by utilizing the observation from a reference viewpoint that provides the most complete view of the point cloud.

074 075 076 077 078 079 080 081 082 083 As illustrated in Fig. [1-](#page-1-0)(c), we estimate such a viewpoint and acquire a reference image of the partial point cloud. Inspired by the capability of novel view synthetic diffusion model, e.g., Zero 1-to-3 [\(Liu](#page-11-5) [et al., 2023\)](#page-11-5), we propose to use the reference image as a condition for guidance from the diffusion model to infer the missing regions. Utilizing 3D Gaussian Splatting (GS) [\(Kerbl et al., 2023\)](#page-10-6), which can render 2D images from discrete 3D Gaussians initialized from point clouds, we can effectively render the reference image. This approach also allows us to incorporate 2D diffusion priors into the process of modifying 3D geometry. Consequently, we can complete the missing regions by optimizing the 3D Gaussians with guidance from the 2D diffusion model. Moreover, we propose Preservation Constraint to maintain the geometric integrity of partial point clouds. The completed point clouds would be finally acquired from the 3D Gaussian centers.

084 085

Our main contributions can be summarized as below:

- We propose the Partial Gaussian Initialization to generate a reference image for partial points, which is observed from an estimated reference viewpoint;
- Based on the reference image, we develop the Zero-shot Fractal Completion to complete the missing regions by introducing 2D diffusion priors;
- We propose Point Cloud Extraction to extract uniform point clouds from 3D Gaussians;
- Through comprehensive evaluation across various data, we demonstrate that our approach surpasses conventional completion methods in handling both synthetic and real-world scanned point clouds.
- **093 094 095**

096

2 RELATED WORKS

097 098 2.1 3D GENERATION VIA 2D PRIORS

099 100 101 102 103 104 105 106 107 Since the notable success of 2D diffusion models in text-to-image generation [\(Rombach et al., 2022;](#page-11-1) [Saharia et al., 2022;](#page-11-2) [Ho et al., 2020\)](#page-10-3), text-to-3D and image-to-3D generation have attracted the attention of an increasing number of researchers. To achieve robust and generalizable 3D generation, researchers propose to lift 2D priors for 3D generation [\(Poole et al., 2022;](#page-11-3) [Wang et al., 2023;](#page-11-4) [Mohammad Khalid et al., 2022;](#page-11-6) [Michel et al., 2022\)](#page-11-7). These works usually optimize specific 3D representations by guidance from 2D diffusion models under different viewpoints, where the guidance is calculated with Score Distillation Sampling (SDS) [\(Poole et al., 2022\)](#page-11-3) through rendered images. Score Distillation Sampling (SDS) guides a target model (e.g., NeRF) by using gradients from a pre-trained diffusion model. This aligns the target model's output with the diffusion model's learned distribution, enabling high-quality generation in specialized domains.

108 109 110 111 112 113 114 115 116 117 118 Zero 1-to-3 [\(Liu et al., 2023\)](#page-11-5) achieve remarkable 3D generation quality by using SDS guidance from their pre-trained novel view synthesis diffusion model explicitly conditioned on the reference image and camera transformation. Conditioned on a single image, Zero 1-to-3 predicts an image consistent with plausible 3D shapes for any given camera pose. However, its reliance on NeRF representation leads to prolonged optimization times. 3D Gaussian Splatting (GS) [\(Kerbl et al.,](#page-10-6) [2023\)](#page-10-6) is an efficient 3D representation that encodes both geometrical and appearance information using a set of 3D Gaussians. Each Gaussian is defined by attributes such as 3D coordinates, scaling, opacity, rotation, and spherical harmonics parameters. By optimizing these attributes, information from 2D images can be incorporated into the Gaussians, enabling efficient novel-view rendering. Dreamgaussian [\(Tang et al., 2023\)](#page-11-8) offers a solution by optimizing 3D Gaussians through SDS from Zero 1-to-3, achieving a balance between high-quality outputs and acceptable optimization durations.

119 120 121 Motivated by Dreamgaussian, we recognize the potential of GS to refine 3D coordinates of Gaussian centers using guidance from 2D diffusion models. This insight presents an opportunity to apply 2D diffusion priors to tasks related to 3D point clouds, such as point cloud completion.

122

124

123 2.2 POINT CLOUD COMPLETION

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 Point cloud completion aims to recover completed point clouds from partial input point clouds. Ever since PCN [\(Yuan et al., 2018\)](#page-12-0) firstly applied deep neural networks to predict complete point clouds from partial inputs, numerous advancements [\(Zhang et al., 2020;](#page-12-5) [Xie et al., 2020;](#page-12-6) [Huang et al., 2020;](#page-10-7) [Yu et al., 2021;](#page-12-7) [Wang et al., 2020;](#page-11-9) [Xiang et al., 2022;](#page-12-8) [Wen et al., 2021\)](#page-12-9) have been made to enhance the accuracy of point cloud completion by altering network architectures. For example, GRNet [\(Xie et al.,](#page-12-6) [2020\)](#page-12-6) converts point clouds into grid formats and employs 3D CNNs for predicting the completed structures, while PFNet [\(Huang et al., 2020\)](#page-10-7) adopts a fractal approach to better preserve existing shape details. The Fractal approach focuses on predicting only the missing regions of point clouds, preserving existing details by retaining the shapes from the partial input. RFNet [\(Huang et al., 2021\)](#page-10-8) utilizes a differentiable layer to merge existing geometrical details from partial point clouds into completed results. More recent approaches [\(Wang et al., 2024;](#page-11-10) [Zhu et al., 2023;](#page-12-10) [Li et al., 2023;](#page-11-11) [Yu et al., 2021;](#page-12-7) [Xiang et al., 2022;](#page-12-8) [Zhou et al., 2022;](#page-12-2) [Yu et al., 2023;](#page-12-3) [Yan et al., 2022\)](#page-12-11) integrate carefully-designed transformers to improve completion accuracy by considering broader geometric relationships. DiffComplete [Chu et al.](#page-10-9) [\(2023\)](#page-10-9) is a diffusion-based model for 3D shape completion, leveraging probabilistic modeling to predict missing parts of 3D shapes while preserving structural coherence and diversity.

140 141 142 143 144 145 146 147 148 However, the effectiveness of these point cloud completion methods diminishes when applied to data that differ from their training sets, such as point clouds from unseen categories or other datasets. SDS-complete [\(Kasten et al., 2024\)](#page-10-2) proposed a test-time completion framework that employs VolSDF [\(Yariv et al., 2021\)](#page-12-4) for rendering, drawing on priors from pre-trained text-toimage 2D diffusion models [\(Rombach et al., 2022\)](#page-11-1). This approach maintains the original shapes by constraining the Signed Distance Field (SDF) values of the partial inputs. Yet, this strategy's reliance on text-to-image diffusion models for guidance necessitates well-defined text prompts for each partial point cloud, which may not be practical in real-world applications. Moreover, the optimization of SDS-Complete is quite time-consuming, which may take more than 1000 minutes for one point cloud.

149 150 151 152 153 154 155 In this study, we propose to leverage 3D Gaussian Splatting (GS) [\(Kerbl et al., 2023\)](#page-10-6) to bridge point clouds with priors from 2D diffusion models. By generating a reference image of the partial point cloud to serve as a condition for guidance from Zero 1-to-3 [\(Liu et al., 2023\)](#page-11-5), our method can extract uniform and completed point clouds from the 3D Gaussian centers. Since our method exclusively utilizes information gathered from the incomplete point cloud for completion, it eliminates the need for any additional manually specified prompts for each point cloud. Due to the efficient rendering from 3D GS, and stronger priors from Zero 1-to-3, our method can achieve much higher optimization efficiency than SDS-Complete [\(Kasten et al., 2024\)](#page-10-2).

156 157

3 METHODOLOGY

158 159

160 161 As shown in Fig. [2,](#page-3-0) the whole completion process is composed of Partial Gaussian Initialization (PGI), Zero-shot Fractal Completion (ZFC), and Point Cloud Extraction (PCE). For the given partial point cloud P_{in} , we firstly transform it into colorized reference image I_{in} and 3D Gaussians G_{in}

179 180 181 182 183 184 185 186 187 Figure 2: Illustration of our framework. ①In Partial Gaussian Initialization (PGI), Reference Viewpoint Estimation estimates a camera pose V_p where P_{in} can be most completely observed. We initialize 3D Gaussians G_{in} from P_{in} and render the reference image I_{in} under V_p . ©In Zero-shot Fractal Completion (ZFC), 3D Gaussians G_m begins with an initialization using noisy P_N and undergoes optimization guided by view-dependent guidance from the diffusion model f_Z in Zero 1-to-3 [\(Liu et al., 2023\)](#page-11-5) based on a randomly chosen camera pose V_i . Additionally, it incorporates a Preservation Constraint computed with respect to V_p . G_{in} is mixed with G_m to form G_{all} , introducing the partial geometry from \overline{P}_{in} . \Im After ZFC, we use Point Cloud Extraction (PCE) to extract surface points P_{surf} from centers of G_{all} , and convert P_{surf} into uniform P_{out} with Grid Pulling.

188 189 190 191 192 with Partial Gaussian Initialization. Subsequently, I_{in} and G_{in} are introduced to Zero-shot Fractal Completion to acquire 3D Gaussians G_{all} with the completed shape. Specifically, we use I_{in} to guide the optimization of 3D Gaussians G_m by borrowing priors from the 2D diffusion model in Zero 1-to-3 [\(Liu et al., 2023\)](#page-11-5). Finally, we extract uniform completed point clouds P_{out} from the centers of G_{all} with Point Cloud Extraction. **Please note that the completion is mainly achieved** by optimizing 3D Gaussian parameters in G_m , without networks as [Yuan et al.](#page-12-0) [\(2018\)](#page-12-0).

193 194 195

211 212

3.1 PARTIAL GAUSSIAN INITIALIZATION

196 197 198 199 200 201 202 Following the definition of point cloud completion task by PCN [\(Yuan et al., 2018\)](#page-12-0), only 3D coordinates are provided as input to infer the complete geometry. To introduce priors from pretrained 2D diffusion models, we use 3D Gaussian Splatting (GS) to achieve differentiable rendering from 3D point clouds to 2D images. In Partial Gaussian Initialization, we firstly estimate a reference camera pose V_p with the Reference Viewpoint Estimation. Then, we initialize 3D Gaussians G_{in} from the incomplete point cloud P_{in} . A reference image I_{in} for subsequent completion would be rendered from G_{in} under the pose V_p . G_{in} is frozen to preserve geometrical characteristics of P_{in} .

203 204 205 206 Reference Viewpoint Estimation. For any point cloud to be completed, we first determine an reference camera pose V_p , that captures its most completed observation. The completion process then builds upon this observation. Since the incomplete point cloud P_{in} typically spans across a surface, its most complete view is characterized by minimal self-occlusion and closeness to the camera.

207 208 209 210 Considering the potential occlusion of rear Gaussians by those in the foreground during rendering, we implement a filter $h(G_{in}, V_n)$ to identify the indices of the frontmost 3D Gaussians in G_{in} from the camera pose V_n . Given that the centers of G_{in} are anchored to P_{in} , we can estimate V_p by minimizing:

$$
I = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum
$$

 $V_p = \arg\min_{V_n} \text{CD}(P_{in}[h(G_{in}, V_n)], P_{in}) + w_0 \cdot \text{Depth}(P_{in}, V_n),$ (1)

213 214 215 where $CD(\cdot, \cdot)$ is the Chamfer Distance [\(Fan et al., 2017\)](#page-10-10) to measure shape differences between two point clouds. Depth (P_{in}, V_n) calculates the mean depths of P_{in} observed from the camera at pose V_n for regularization, and w_0 is a weighting factor to ensure balance. For this study, we estimate V_p by examining 5,000 camera positions uniformly distributed around the partial point cloud.

226 227 Figure 3: Differences between our binarized opacity and original continuous opacity. ≺ denotes smaller but not approaching.

228 229 230 Gaussian Attributes Setting. Upon estimating the reference camera pose V_p , we render a reference image I_{in} from 3D Gaussians G_{in} initialized from partial point cloud P_{in} . To render a characteristic reference image, we make a few modifications to the original 3D Gaussians:

231 232 233 1) The opacity G_{in}^o for all 3D Gaussians within G_{in} is set to a constant value of 1. This step ensures that Gaussians representing all partial points are nearly opaque and clearly visible during rendering.

234 235 2) The color G_{in}^c are set as scaled normal map as: $G_{in}^c = (1 + \mathcal{N}(P_{in}))/2$, where the normal vectors $\mathcal{N}(P_{in})$ are estimated with Open3d [\(Zhou et al., 2018\)](#page-12-12). We scale them from $-1 \sim 1$ to $0 \sim 1$.

236 237

3.2 ZERO-SHOT FRACTAL COMPLETION

238 239 240 241 Zero-shot Fractal Completion (ZFC) aims to introduce priors to transform G_{in} with the partial shape into G_{all} with the completed shape. As illustrated in Fig. [2,](#page-3-0) ZFC optimizes 3D Gaussians G_m for completion and is guided by the View-dependent Guidance and the Preservation Constraint.

242 243 244 245 246 247 Modification for 3D Gaussians. 1) Considering point clouds are observed as multiple equal size spheres, we set the scaling of all 3D Gaussians to a single shared scalar value to keep the shape of Gaussians consistent as points. To better cover the space around the partial point cloud P_{in} , we create noised $P_N = P_{in} + \mathcal{N}(0, \sigma_n^2)$ for the initialization of G_m . The scaling attribute of G_m is initialized as $G_m^s = \frac{1}{|P_N|} \sum Neighbour(P_N)$ from the noisy P_N as shown in Fig. [2,](#page-3-0) where $Neighbour$ denotes the nearest neighbor distance of each point in P_N .

248 249 250 251 252 2) Furthermore, as demonstrated in Fig. [3,](#page-4-0) the original approach to opacity can lead to a dispersion of Gaussian centers around the actual surface due to the range of opacities $0 \prec opacity < 1$ used in rendering. To address this problem, we apply a differentiable quantization [\(Huang et al., 2022\)](#page-10-11) for Gaussian opacity to binarize the values. For 3D Gaussians G_m with original opacity G_m^o , the binarization is implemented as follows:

253 254

255 256

269

$$
G_m^o = f_{stop}(\text{round}(G_m^o) - G_m^o) + G_m^o,\tag{2}
$$

where

$$
round(G_m^o) = \begin{cases} 1 & \text{if } G_m^o > 0.5, \\ \delta & \text{otherwise.} \end{cases}
$$

257 258 259 260 261 with $f_{stop}(\cdot)$ designed to halt gradient propagation. Here, the forward propagation result of Eq. [2](#page-4-1) is round (\hat{G}_m^o) , while the gradient during backpropagation is calculated based on G_m^o . δ is a predefined small constant set to 0.01 in this work because lower opacity may make the Gaussians hard to optimize. Consequently, 3D Gaussians with $G_m^o \to 1$ cluster near the surface as shown in Fig. [3,](#page-4-0) while those with $\bar{G}_m^o \to 0$ will be considered noise and excluded in subsequent processing.

262 263 264 265 266 267 268 View-dependent Guidance. To complete the missing regions, we leverage 2D diffusion priors from Zero 1-to-3 [\(Liu et al., 2023\)](#page-11-5) due to its capability to deduce the unseen regions based on available imagery. As illustrated in Fig. [2,](#page-3-0) we utilize the reference image I_{in} from Partial Gaussian Initialization to derive the SDS guidance [\(Poole et al., 2022\)](#page-11-3) based on image I_i rendered with Gaussian Splatting in a randomly selected viewpoint V_i , referred to as View-dependent guidance. Defining ϵ_{fZ} as the noise anticipated by the 2D diffusion model f_Z with t and ϵ indicating the time step and standard noise, respectively, the SDS guidance is calculated as:

$$
\nabla_{G_{all}} L_{SDS} = \mathbb{E}_{t,\epsilon} [(\epsilon_{f_Z}(I_i; I_{in}, V_i, t) - \epsilon) \frac{\partial I_i}{\partial G_{all}}].
$$
\n(3)

293 G Figure 4: Illustration of Grid Pulling module. $g(\cdot)$ is a MLP-based SDF learned from the completed point cloud P_{surf} . Merge denotes merge layer from [\(Huang et al., 2021\)](#page-10-8). Given the 3D grids \mathcal{G}, r is

the diagonal length of a unit grid. Sampled points would be $P_s = \{p \mid g(p) < 0.5r, p \in \mathcal{G}\}\.$ For the task of point cloud completion, we adopt a fractal approach as discussed in PFNet [\(Huang](#page-10-7) [et al., 2020\)](#page-10-7), focusing on optimizing only G_m within G_{all} for reconstructing missing regions, while

 G_{in} remains unchanged to conserve the original geometric characteristic of the partial point clouds P_{in} . Additionally, to manage the scaling G_m^s of 3D Gaussians G_m during optimization, we implement a regularization with a weighting factor of w_1 :

$$
L_{mreg} = w_1 \cdot |G_m^s|.\tag{4}
$$

 P_{out}

303 304 305 306 307 308 Preservation Constraint. To maintain the geometric shapes of the initial partial point clouds, we introduce Preservation Constraint aimed at reducing the shape differences between the partial point cloud P_{in} and Gaussian center coordinates P_{pre} acquired from the partial observation of 3D Gaussians G_{all} under V_p . Utilizing the surface filter $h(\cdot, \cdot)$ presented in Sec. [3.1,](#page-3-0) and considering G_{all} as the combined set of G_m and G_{in} with $P_G[\cdot]$ representing the centers of G_{all} , the observed Gaussians centers would be $P_{pre} = P_G[h(G_{all}, V_p)]$. The Preservation Constraint is formulated as:

$$
L_p = w_2 \cdot \text{CD}(P_{pre}, P_{in}),\tag{5}
$$

where $CD(\cdot, \cdot)$ is the Chamfer Distance [\(Fan et al., 2017\)](#page-10-10). w_2 is the weighting factor. This constraint ensures the alignment of G_{all} with P_{in} when observed from the reference camera pose V_p .

314 3.3 POINT CLOUD EXTRACTION

315

316 317 318 After the optimization of ZFC, we extract point cloud P_{out} from centers of 3D Gaussians G_{all} with Point Cloud Extraction. Specifically, we firstly select surface points P_{surf} from Gaussian centers P_G with Gaussian surface extraction. Then, we resample uniform P_{out} from P_{surf} by Grid Pulling.

319 320 321 322 323 Gaussian Surface Extraction. The centers of the 3D Gaussians can lie both on and below the surface of the shape after optimization. As a result, it is unsatisfactory to directly use these centers as the complete point cloud. To address this issue, we introduce a Gaussian Surface Extraction process to select surface points P_{surf} from the centers of 3D Gaussian G_{all} . This procedure is detailed in Alg. [1.](#page-5-0) By adjusting the opacity of all 3D Gaussians to either δ or 1, we note that Gaussians with minimal opacity δ hardly contributes to the rendering process. Consequently, our initial step involves

Figure 5: Qualitative comparison on synthetic data.

Table 1: Quantitative comparison on synthetic data. Bold marks the best results.

Object	Horse MaxPlanck Armadillo Cow		Homer Teapot	Bunny Nefertiti Bimba	Ogre	Aver
Metrics	CD/EMD					
PoinTr	2.75/4.47 6.34/6.84 3.51/6.07 3.13/4.25 1.90/4.19 3.81/5.12 6.39/8.03 4.29/5.50 5.53/6.73 3.41/5.06 4.10/5.63					
SeedFormer 3.24/5.30 6.91/7.62 3.28/6.21 3.11/4.00 2.04/3.52 3.41/4.94 6.92/9.10 4.25/5.78 5.63/7.09 3.31/5.73 4.21/5.93						
PointAttN 5.25/6.76 8.10/8.54 5.09/6.65 3.73/4.56 2.39/3.54 5.25/6.36 9.35/9.52 5.16/5.87 8.09/7.52 4.80/6.14 5.72/6.54						
ShapeFormer 4.17/5.38 3.48/4.49 3.76/4.68 4.53/5.29 2.27/2.84 2.55/2.86 4.52/4.44 3.09/3.87 5.00/5.85 3.39/4.69 3.68/4.44						
SVDFormer 2.70/3.89 8.37/6.45 4.12/6.53 3.55/4.39 2.42/3.35 5.87/6.08 6.59/6.90 4.27/5.02 5.47/4.91 4.59/5.36 4.79/5.29						
AdaPoinTr 4.88/5.45 8.60/8.51 5.14/5.95 3.48/4.53 2.28/3.34 3.92/4.56 9.33/8.87 5.54/6.14 8.16/7.64 4.53/5.41 5.59/6.04						
Ours	0.96/1.32 1.23/1.53 2.49/4.05 1.45/1.64 1.34/1.76 0.99/1.22 1.43/1.78 1.81/2.20 1.39/1.64 1.22/1.67 1.43/1.88					

345 346 filtering G_{all} based on opacity as outlined in Alg. [1.](#page-5-0) To this end, G_{all} is examined from N uniformly distributed camera positions and $h(\cdot, \cdot)$ is employed to extract the centers of the frontmost visible Gaussians as the surface points P_{surf} . We set $N = 500$ in this work.

347 348 349 350 351 352 Grid Pulling. It is evident in Fig. [2](#page-3-0) that the density of points in the completed regions of P_{surf} can significantly differ from that in the original partial point clouds. Ideally, we aim for a consistently dense and uniform distribution of points across the entire shape. Direct attempts to enhance point density within the Zero-shot Fractal Completion (ZFC) would lead to a substantial increase in computational cost. Inspired by NeuralPull [\(Ma et al., 2020\)](#page-11-12), we introduce a Grid Pulling (GP) module designed to resample points uniformly from initially non-uniform point clouds.

353 354 355 356 357 358 NeuralPull [\(Ma et al., 2020\)](#page-11-12) employs a Signed Distance Field (SDF) $g(\cdot)$ to pull randomly sampled points P_{sam} that are often generated by adding noise to P_{gt} as $P_{sam} = P_{gt} + N(0, \sigma_0^2)$ towards the surface defined by the original point cloud P_{gt} . σ_0 is the standard deviation for normal distribution $N(0, \sigma_0^2)$. The pulling operation is defined as: $P_{pull} = P_{sam} - g(P_{sam}) \cdot \nabla g(P_{sam}) / ||g(P_{sam})||_2$. The optimization of $g(\cdot)$ is guided by the Chamfer Distance (CD) as a measure of the distance between P_{qt} and the adjusted points:

$$
L_{pull}(P_{sam}, P_{gt}) = \text{CD}(P_{pull}, P_{gt}).
$$
\n(6)

361 362 363 364 365 Leveraging P_{surf} obtained from Gaussian Surface Extraction, GP module learns an SDF $q(\cdot)$ to align uniformly sampled points around P_{surf} with its surface. Unlike NeuralPull, which optimizes using only noised point clouds, our approach trains $g(\cdot)$ with both noised point clouds $P_{near} = P_{surf} +$ $N(0, \sigma_0^2)$, and P_{far} being randomly sampled within the 3D bounding box encompassing P_{surf} . The loss functions are defined as $L_{far} = L_{pull}(P_{far}, P_{surf})$ and $L_{near} = L_{pull}(P_{near}, P_{surf})$.

366 367 368 369 370 Additionally, we utilize a merge layer as suggested by [Huang et al.](#page-10-8) [\(2021\)](#page-10-8) to incorporate geometric details from P_{in} into P_{pull} . Given the distances from P_{pull} points to their nearest neighbors in P_{in} as $dist = \min_{x \in P_{pull}, \forall y \in P_{in}} ||x - y||_2$, and corresponding neighbor indexes $idx = \arg \min_{x \in P_{pull}, \forall y \in P_{in}} ||x - y||_2$, the merge layer g_m outputs a set of merged points:

$$
g_m(P_{pull}, P_{in}) = e^{-\frac{dist}{\sigma}} P_{in}[idx] + (1 - e^{-\frac{dist}{\sigma}}) P_{pull}, \tag{7}
$$

372 373 374 where σ is a small optimizable variable to decide how much to merge. The corresponding loss would be $L_{mer} = L_{pull}(g_m(P_{pull}, P_{in}), P_{surf}) + w_3 \cdot ||\sigma||_2$, where w_3 is the weighting factor for the regularization of σ . The overall training loss for $g(\cdot)$ is then:

$$
L_g = L_{far} + L_{near} + L_{mer}.\tag{8}
$$

377 As depicted in Fig. [4,](#page-5-1) we initialize a 128³ 3D grid G according to the bounding box of P_{surf} . Uniform points P_s would be selected by $P_s = \{p \mid g(p) < 0.5r, p \in \mathcal{G}\}\$. P_s is then pulled to

359 360

371

375 376

403

405 406 407

378

Figure 6: Qualitative comparison on Redwood dataset [\(Choi et al., 2016;](#page-10-12) [Kasten et al., 2024\)](#page-10-2).

Table 2: Quantitative comparison on Redwood dataset [\(Choi et al., 2016;](#page-10-12) [Kasten et al., 2024\)](#page-10-2). For the convenience, we re-optimize and normalize the results of SDS-Complete consistently to $-0.5 \sim 0.5$.

	In Domain						Out Domain				
Object									Table Exe-Chair Out-Chair Old-Chair Average Vase Off Can Vespa Tricycle Average		
Metrics									CD/EMD		
PoinTr									3.56/7.42 1.91/4.50 0.67/1.41 2.48/6.28 2.16/4.90 3.84/6.55 3.76/5.83 1.84/3.94 5.91/11.63 3.84/6.99		
SeedFormer									3.38/7.01 1.90/4.55 0.76/1.44 2.72/5.16 2.19/4.54 3.99/6.36 3.88/6.11 2.38/4.38 2.10/3.38 3.09/5.06		
PointAttN									5.71/7.11 2.88/5.65 0.73/1.46 3.73/6.02 3.26/5.06 5.35/6.97 4.93/6.44 2.69/4.70 1.72/3.59 3.67/5.43		
ShapeFormer									3.48/5.67 3.41/5.32 3.87/6.93 3.00/4.07 3.44/5.50 4.79/6.50 2.96/3.89 3.21/4.20 3.21/4.20 4.01/5.43		
SVDFormer 2.13/3.29 3.60/6.02 1.15/2.15 3.69/5.83 2.64/4.32 5.20/7.28 5.42/7.05 3.30/5.25 3.78/4.55 4.42/6.03											
AdaPoinTr 5.02/6.23 2.58/4.79 0.82/1.38 3.62/5.61 3.01/4.50 5.14/6.48 4.47/6.32 1.94/3.52 1.83/3.67 3.34/4.98											
SDS-Complete 1.35/2.30 1.96/2.65 2.51/3.92 2.77/3.77 2.15/3.16 3.00/5.25 3.79/4.28 3.36/5.73 3.18/3.49 3.33/4.69											
Ours									1.67/3.11 1.04/1.39 1.28/1.73 1.42/1.87 1.35/2.03 2.94/4.63 3.51/3.86 1.39/2.27 2.42/1.94 2.57/3.17		

402 404 the surface of P_{surf} and combined with P_{in} through merge layer. The output point clouds would be $P_{out} = g_m(P_s - g(P_s) \cdot \nabla g(P_s) / \|g(P_s)\|_2$, P_{in}). As P_{out} is quite dense, we sample it to the specified resolution during comparisons.

4 EXPERIMENTS

408 409 410 411 412 413 414 415 416 Considering the impracticality of applying test-time completion methods [\(Kasten et al., 2024\)](#page-10-2) to benchmarks like Completion3D [\(Tchapmi et al., 2019\)](#page-11-13) or ShapeNet [\(Chang et al., 2015\)](#page-10-13) containing thousands of point clouds, We sampled an appropriate amount of test data following SDS-Complete [\(Kasten et al., 2024\)](#page-10-2). For synthetic data, we sample partial point clouds by sampling from various viewpoints around completely modeled objects from established sources [\(Krishnamurthy &](#page-10-14) [Levoy, 1996;](#page-10-14) [DeCarlo et al., 2003;](#page-10-15) [Praun et al., 2000;](#page-11-14) [Lipman et al., 2008\)](#page-11-15). For real scans, we use Redwood [\(Choi et al., 2016\)](#page-10-12) following SDS-complete [\(Kasten et al., 2024\)](#page-10-2). Single scans are used as partial input while the ground truths are adopted by composing multiple scans. Comparisons on ShapeNet [\(Chang et al., 2015\)](#page-10-13) and Kitti [\(Geiger et al., 2013\)](#page-10-1) are presented in the appendix [A.](#page-12-13)

417 418 419 420 421 422 423 424 425 426 We compare our approach with state-of-the-art supervised methods including PointAttN[\(Wang](#page-11-10) [et al., 2024\)](#page-11-10), PoinTr [\(Yu et al., 2021\)](#page-12-7), SVDFormer [\(Zhu et al., 2023\)](#page-12-10), AdaPoinTr [\(Yu et al., 2023\)](#page-12-3), SeedFormer [\(Zhou et al., 2022\)](#page-12-2), ShapeFormer [\(Yan et al., 2022\)](#page-12-11). As SDS-complete [\(Kasten et al.,](#page-10-2) [2024\)](#page-10-2) only provide codes for the processing of Redwood dataset [\(Choi et al., 2016\)](#page-10-12), we implement corresponding comparisons on Redwood. The evaluation metrics include the L1 Chamfer Distance (CD) and Earth Mover's Distance (EMD) [\(Fan et al., 2017\)](#page-10-10) that measure the similarity between the reconstructed point clouds and the ground truths. All metrics are multiplied with 10^2 in subsequent comparisons. We standardize point clouds and conduct comparisons at a resolution of 16,384 points following PCN [\(Yuan et al., 2018\)](#page-12-0). Our results presented for comparisons on both synthetic data and real scans are averaged over three repeated experiments.

427 428

4.1 COMPARISON ON SYNTHETIC POINT CLOUDS

429 430 431 In this section, we conduct an evaluation on synthetic point clouds. The quantitative and qualitative results are presented in Table [1](#page-6-0) and Fig. [5,](#page-6-1) respectively. Existing network-based methods create noisy and incorrect shapes due to the discrepancies between their training data and the test data. As shown in Fig. [5,](#page-6-1) our method creates correct and reasonable completed results, which may benefit from abundant

Figure 7: Qualitative comparison between different colorization strategies. I_{in} and P_{out} denote the colorized reference image and completed point clouds, respectively.

priors from the pre-trained diffusion model. An interesting case is that our method completes an appropriate handle for the teapot in the first row of Fig. [5](#page-6-1) without any prompts and related geometries. It confirms that the pipeline can actually percept the actual categories of completed objects instead of simply inferring a shape to fill in the missing regions.

4.2 COMPARISON ON REAL SCANS

460 461 462 463 464 465 466 467 468 469 We follow SDS-complete [\(Kasten et al., 2024\)](#page-10-2) for the comparison on real scans from Redwood [\(Choi](#page-10-12) [et al., 2016\)](#page-10-12). Scans are divided into the "in domain" categories similar as training datasets of existing completion networks [\(Yu et al., 2021;](#page-12-7) [Zhou et al., 2022;](#page-12-2) [Yu et al., 2023;](#page-12-3) [Wang et al., 2024\)](#page-11-10), and "out domain" categories unseen during their training. The qualitative and quantitative comparison results are illustrated in Fig. [6](#page-7-0) and Table [2,](#page-7-1) respectively. As shown in Table [2,](#page-7-1) our method outperforms other methods on both "in domain" and "out domain" models, which further confirms the effectiveness and generalizability of our method. Existing fully-supervised methods may perform inferior even on the in-domain objects as illustrated in Table [2,](#page-7-1) which reveals their limitation on datasets differing from the training one. By introducing abundant priors from 2D diffusion model [\(Liu et al., 2023\)](#page-11-5), our method can achieve robust completion for objects across different datasets.

471 4.3 ABLATION STUDY FOR COLORIZATION STRATEGIES IN PGI

472 473 474 475 476 477 478 479 To confirm the necessity of using normal map for colorization in Partial Gaussian Initialization, we compare their performances against other strategies including using depth values and normalized coordinates. As shown in Fig. [7,](#page-8-0) these alternative strategies are clearly outperformed by the normal map composed of normal vectors, particularly in the circled areas. This superiority likely stems from the ability of normal vectors to more distinctly reflect surface changes in colors, thus better capturing the geometric characteristics in the reference image. We also provide quantitative comparisons of different colorization strategies in Table [3,](#page-8-1) using average metrics from in-domain and out-of-domain Redwood dataset. The results show that the normal map consistently outperforms other methods.

480 481 482

4.4 ABLATION STUDY FOR ZFC AND PCE

483 484 485 In this work, we propose ZFC to introduce diffusion priors to infer the missing regions, and PCE to extract uniform point clouds from the 3D Gaussian centers. ZFC is composed of view dependent guidance and Preservation Constraint, while PCE consists of Gaussian surface extraction and Grid Pulling. From Fig. [8,](#page-9-0) we can see that our method with all components have uniform and reasonable

459

Figure 8: Qualitative ablation study for ZFC and PCE. Surf, Pres, and GP denote Gaussian Surface Extraction, Preservation Constraints, and Grid Pulling, respectively.

505 506 507 508 509 completed results. In PCE, GP obviously generates quite uniform point clouds from the non-uniform ones directly acquired from 3D Gaussians. Gaussian Surface Extraction operation extracts the surface from relatively disorganized Gaussian centers. In ZFC, view dependent guidance creates coarse results with relatively correct overall shapes. Preservation Constraint avoids redundant shapes by introducing strict constraints between partially observed points and existing partial point clouds.

510 511 512 513 514 515 516 517 We also provide quantitative ablation study for our proposed components in Table [4.](#page-8-2) We evaluated our method on both Redwood and synthetic datasets. The results demonstrate that the Preservation Constraint improves performance compared to standard view-dependent diffusion guidance. Although Gaussian surface extraction significantly enhances the CD metric by selecting surface points, it negatively affects the EMD metric due to the high non-uniformity, as shown in the fourth column of Fig. [8.](#page-9-0) In contrast, the final Grid Pulling (GP) module acquire more uniform surface points, leading to better EMD performance, although the CD metric experiences a slight decline due to precision loss caused by potential deformations in GP. More detailed ablation study can be found in the appendix [A.](#page-12-13)

518

519

503 504

520 5 LIMITATION

Our method shares similar limitations as claimed by SDS-complete [\(Kasten et al., 2024\)](#page-10-2). As a test-time completion method, although our method does not require any training, the optimization on the test data would take relatively long time cost. For instance, completing a point cloud from the Redwood dataset takes approximately 15 minutes with our method on a RTX A6000 GPU. However, our framework is much more efficient than the existing test-time method SDS-complete [\(Kasten et al.,](#page-10-2) [2024\)](#page-10-2), which takes up to 1950 minutes for optimization as reported in their supplementary material. Please check the appendix [A.4](#page-14-0) for failure cases of our method and additional implementation details.

6 CONCLUSION

530 531 532 533 534 535 536 537 538 539 In this work, we introduce a test-time point cloud completion framework that leverages the rich priors from 2D diffusion models [\(Liu et al., 2023;](#page-11-5) [Zhang et al., 2023\)](#page-12-14) through 3D Gaussian Splatting rendering, which can robustly complete collected partial 3D point clouds without any requirements of training. Our framework consists of three main components: Partial Gaussian Initialization (PGI), Zero-shot Fractal Completion (ZFC), and Point Cloud Extraction (PCE). In PGI, we initialize 3D Gaussians using the partial point cloud to render a reference image from an estimated reference viewpoint. We then employ ZFC to infer the missing regions of the partial point cloud by optimizing 3D Gaussians, using view-dependent guidance conditioned on the reference image. Finally, with PCE, we extract uniformly completed point clouds from 3D Gaussian centers. Our method outperforms both existing network-based and test-time approaches in achieving robust completion across multiple categories of both synthetic and real scanned data.

540 541 REFERENCES

547

553

569

- **542 543** Toby P Breckon and Robert B Fisher. Amodal volume completion: 3d visual completion. *Computer Vision and Image Understanding*, 99(3):499–526, 2005.
- **544 545 546** Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira, Ian Reid, and John J Leonard. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. *IEEE Transactions on robotics*, 32(6):1309–1332, 2016.
- **548 549 550** Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository. *arXiv preprint arXiv:1512.03012*, 2015.
- **551 552** Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large dataset of object scans. *arXiv preprint arXiv:1602.02481*, 2016.
- **554 555 556** Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-sdf: Conditional generative modeling of signed distance functions. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2262–2272, 2023.
- **557 558 559** Ruihang Chu, Enze Xie, Shentong Mo, Zhenguo Li, Matthias Nießner, Chi-Wing Fu, and Jiaya Jia. Diffcomplete: Diffusion-based generative 3d shape completion. *Advances in Neural Information Processing Systems*, 2023.
- **560 561 562 563** Douglas DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella. Suggestive contours for conveying shape. *ACM Trans. Graph.*, 22(3):848–855, 2003. doi: 10.1145/882262. 882354. URL <https://doi.org/10.1145/882262.882354>.
- **564 565 566** Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object reconstruction from a single image. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 605–613, 2017.
- **567 568** Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset. *The International Journal of Robotics Research*, 32(11):1231–1237, 2013.
- **570 571** Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- **572 573 574 575** Tianxin Huang, Hao Zou, Jinhao Cui, Xuemeng Yang, Mengmeng Wang, Xiangrui Zhao, Jiangning Zhang, Yi Yuan, Yifan Xu, and Yong Liu. Rfnet: Recurrent forward network for dense point cloud completion. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12508–12517, 2021.
- **577 578 579** Tianxin Huang, Jiangning Zhang, Jun Chen, Zhonggan Ding, Ying Tai, Zhenyu Zhang, Chengjie Wang, and Yong Liu. 3qnet: 3d point cloud geometry quantization compression network. *ACM Transactions on Graphics (TOG)*, 41(6):1–13, 2022.
- **580 581 582** Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le. Pf-net: Point fractal network for 3d point cloud completion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7662–7670, 2020.
- **583 584 585** Yoni Kasten, Ohad Rahamim, and Gal Chechik. Point cloud completion with pretrained text-to-image diffusion models. *Advances in Neural Information Processing Systems*, 36, 2024.
- **586 587** Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4), 2023.
- **588 589 590 591 592** Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon meshes. In John Fujii (ed.), *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, New Orleans, LA, USA, August 4-9, 1996*, pp. 313–324. ACM, 1996. doi: 10.1145/237170.237270. URL <https://doi.org/10.1145/237170.237270>.
- **593** Steven Lehar. Gestalt isomorphism and the quantification of spatial perception. *Gestalt theory*, 21: 122–139, 1999.

621

628

635

- **598 599 600** Yaron Lipman, David Levin, and Daniel Cohen-Or. Green coordinates. *ACM Trans. Graph.*, 27(3): 78, 2008. doi: 10.1145/1360612.1360677. URL [https://doi.org/10.1145/1360612.](https://doi.org/10.1145/1360612.1360677) [1360677](https://doi.org/10.1145/1360612.1360677).
- **601 602 603** Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3: Zero-shot one image to 3d object. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 9298–9309, 2023.
- **605 606 607** Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. Neural-pull: Learning signed distance functions from point clouds by learning to pull space onto surfaces. *arXiv preprint arXiv:2011.13495*, 2020.
- **608 609 610** Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. Text2mesh: Text-driven neural stylization for meshes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13492–13502, 2022.
- **611 612 613 614** Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa. Clip-mesh: Generating textured meshes from text using pretrained image-text models. In *SIGGRAPH Asia 2022 conference papers*, pp. 1–8, 2022.
- **615 616** Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. *arXiv preprint arXiv:2209.14988*, 2022.
- **617 618 619 620** Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Judith R. Brown and Kurt Akeley (eds.), *Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, New Orleans, LA, USA, July 23-28, 2000*, pp. 465–470. ACM, 2000. doi: 10.1145/344779.344987. URL <https://doi.org/10.1145/344779.344987>.
- **622 623 624** N Dinesh Reddy, Minh Vo, and Srinivasa G Narasimhan. Carfusion: Combining point tracking and part detection for dynamic 3d reconstruction of vehicles. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1906–1915, 2018.
- **625 626 627** Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. Highresolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- **629 630 631 632** Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion models with deep language understanding. *Advances in Neural Information Processing Systems*, 35:36479–36494, 2022.
- **633 634** Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian splatting for efficient 3d content creation. *arXiv preprint arXiv:2309.16653*, 2023.
- **636 638** Lyne P Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian Reid, and Silvio Savarese. Topnet: Structural point cloud decoder. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 383–392, 2019.
- **639 640 641** Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian chaining: Lifting pretrained 2d diffusion models for 3d generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12619–12629, 2023.
- **642 643 644 645** Jun Wang, Ying Cui, Dongyan Guo, Junxia Li, Qingshan Liu, and Chunhua Shen. Pointattn: You only need attention for point cloud completion. In *Proceedings of the AAAI Conference on artificial intelligence*, pp. 5472–5480, 2024.
- **646 647** Xiaogang Wang, Marcelo H Ang Jr, and Gim Hee Lee. Cascaded refinement network for point cloud completion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 790–799, 2020.
- **648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699** Xin Wen, Peng Xiang, Zhizhong Han, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Yu-Shen Liu. Pmp-net: Point cloud completion by learning multi-step point moving paths. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7443–7452, 2021. Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han. Snowflake point deconvolution for point cloud completion and generation with skip-transformer. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):6320–6338, 2022. Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao, Shengping Zhang, and Wenxiu Sun. Grnet: Gridding residual network for dense point cloud completion. *arXiv preprint arXiv:2006.03761*, 2020. Xingguang Yan, Liqiang Lin, Niloy J Mitra, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. Shapeformer: Transformer-based shape completion via sparse representation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6239–6249, 2022. Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces. *Advances in Neural Information Processing Systems*, 34:4805–4815, 2021. Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu, and Jie Zhou. Pointr: Diverse point cloud completion with geometry-aware transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12498–12507, 2021. Xumin Yu, Yongming Rao, Ziyi Wang, Jiwen Lu, and Jie Zhou. Adapointr: Diverse point cloud completion with adaptive geometry-aware transformers. *arXiv preprint arXiv:2301.04545*, 2023. Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn: Point completion network. In *2018 International Conference on 3D Vision (3DV)*, pp. 728–737. IEEE, 2018. Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 3836–3847, 2023. Wenxiao Zhang, Qingan Yan, and Chunxia Xiao. Detail preserved point cloud completion via separated feature aggregation. *arXiv preprint arXiv:2007.02374*, 2020. Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 16259–16268, 2021. Haoran Zhou, Yun Cao, Wenqing Chu, Junwei Zhu, Tong Lu, Ying Tai, and Chengjie Wang. Seedformer: Patch seeds based point cloud completion with upsample transformer. In *European conference on computer vision*, pp. 416–432. Springer, 2022. Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d data processing. *arXiv preprint arXiv:1801.09847*, 2018. Zhe Zhu, Honghua Chen, Xing He, Weiming Wang, Jing Qin, and Mingqiang Wei. Svdformer: Complementing point cloud via self-view augmentation and self-structure dual-generator. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 14508– 14518, October 2023. A APPENDIX A.1 DETAILS OF PARAMETER SETTINGS In Table [5,](#page-13-0) we provide detailed information on the hyper-parameters discussed in Sec. [3.](#page-2-0) Our experiments are conducted on RTX A6000/A5000 GPU, with PyTorch 1.12 and CUDA 11.6.
- **700 701** Ablation for Grid Pulling. Grid Pulling (GP) module is proposed to resample uniform and regular point clouds from non-uniform P_{surf} in the Point Cloud Extraction. As claimed in Sec. [3.3,](#page-6-0) L_{far} and L_{near} are used to optimize an continuous surface presented by MLP while Merge layer is introduced

 Figure 9: Ablation study for Grid Pulling module. Far, Near, and Merge denote the L_{far} , L_{near} , and merge layer $g_m(\cdot)$, respectively.

 to merge output point clouds with partial input. From results in Fig. [9,](#page-13-1) we can observe that L_{far} and L_{near} contribute to overall contours and local shapes, respectively. Nonetheless, they are still limited to the over-smoothed results. The merge layer helps preserve local geometrical details in the circled regions from the partial input point cloud. We also provide a quantitative comparison on GP module in Table [6.](#page-14-1) We can see that each component in GP contributes to the final performance.

Figure 10: Ablation Study for the 3D Gaussian modifications. Scaling and Opacity denotes the parameter-shared scalar scaling and binary opacity operations mentioned in Sec. [3.2,](#page-4-2) respectively.

A.2 ABLATION STUDY FOR MODIFICATIONS OF 3D GAUSSIANS

 As presented in Sec. [3.2,](#page-4-2) we make a few modifications to the original 3D Gaussian Splatting [\(Kerbl](#page-10-6) [et al., 2023\)](#page-10-6) including the parameter-shared scalar scaling definition and binary opacity estimation. In this section, we conduct a few experiments to validate the effectiveness of these proposed operations. To better illustrate their performances, we conduct comparisons based on P_{surf} directly acquired from the Gaussian centers in ZFC. The results are presented in Fig. [10.](#page-13-2)

 Adopting a shared scalar scaling helps in revealing more defined geometric details in the point cloud completion task. The original settings of separate scaling across different 3D Gaussians tend to produce blurring edges and lose finer details. In addition, the binary opacity operation obviously reduce the noises in P_{surf} . With the original opacity settings, a considerable number of 3D Gaussians with moderate opacity values would scatter around the actual surfaces, blurring the distinction between the object and its surroundings. The binary opacity method effectively eliminates this issue,

Table 6: Quantitative comparison for Grid Pulling module evaluated on Redwood dataset.

Table 7: Quantitative comparison for 3D Gaussian modifications evaluated on Redwood dataset.

ensuring a cleaner bounding and more accurate surface representation. As shown in Table [7,](#page-14-2) the modifications on 3D Gaussians have significant influence on the completion performances.

770 771 772

A.3 EFFECT OF THE FRACTAL COMPLETION STRATEGY

773 774 775 776 777 778 779 As illustrated in Fig. [2,](#page-3-0) we introduce the fractal completion strategy in ZFC by optimizing 3D Gaussians G_m together with frozen 3D Gaussians G_{in} initialized from partial point clouds. In this section, we conduct experiments to verify the effect of this strategy. A few visualized examples are presented in Fig. [11.](#page-15-0) When not using fractal completion strategy, we directly optimize 3D Gaussians G_m for all structures without concatenation with G_{in} . We observe that completions without the fractal completion strategy tend to overlook some shape details present in the input partial point clouds. The quantitative results in Table [8](#page-15-1) further validate the advantages of the fractal strategy.

780 781

782

A.4 FAILURE CASES

783 784 785 786 787 Fig. [12](#page-16-0) presents some failure cases. Our method encounters similar problems as SDS-complete [\(Kas](#page-10-2)[ten et al., 2024\)](#page-10-2) when generating thin surfaces in occluded areas. In these cases, 2D diffusion priors tend to imagine the thin occluded regions as reasonable but thicker structures as shown in Fig. [12.](#page-16-0) This problem could be potentially addressed by fine-tuning the 2D diffusion priors, or introducing some regularization during the optimization process. We will explore it in our future work.

788 789

A.5 DISCUSSION ABOUT THE INCOMPLETENESS OF REFERENCE OBSERVATION

790 791 792 793 794 795 As discussed in Sec. [3.2](#page-4-2) and Sec. [1,](#page-0-0) we utilize the reference image I_{in} as a guiding condition for completion using the diffusion model [\(Liu et al., 2023\)](#page-11-5) on the point clouds. The reference image is generated from an estimated viewpoint aimed at capturing the most complete observation of the point cloud P_{in} . However, due to sensor limitations, observations from this viewpoint may still exhibit some degree of incompleteness in certain cases. In this section, we delve into a brief discussion regarding the impact of such incompleteness.

796 797 798 799 800 801 802 As illustrated in Fig. [13,](#page-16-1) we eliminate points within varying-sized regions located at the center and edges of the partial point cloud observed from the reference viewpoint mentioned in Sec. [3.2.](#page-4-2) It is evident that our approach effectively fills in the missing regions at the center of the point clouds, demonstrating its capability to infer missing areas based on surrounding points to a certain extent. Moreover, our method successfully addresses small gaps in the edge regions, as depicted in the second and third columns of Fig. [13.](#page-16-1) Although large gaps in the edge regions may result in defects within the respective areas, they do not impede completion in other regions.

803 804 805 806 807 808 809 In addition to the incompleteness of observations, partial point clouds may also be affected by noise due to poor natural illumination or reflections from object surfaces. To evaluate the robustness of our method to such noise, we introduce varying levels of noise to the synthetic partial point clouds described in Sec[.4.](#page-7-2) The quantitative results are summarized in Tabl[e9,](#page-15-2) and qualitative comparisons are shown in Fig. [14.](#page-17-0) While the performance of our method decreases as the noise level increases, it consistently outperforms existing approaches. As illustrated in Fig. [14,](#page-17-0) noise with a standard deviation of 0.01 introduces noticeable blurring to the input partial points, yet our method is still able to recover the overall contour effectively. This demonstrates that our approach exhibits a degree of robustness to

Figure 11: Ablation Study for the Fractal completion strategy. W/ Fractal and W/O Fractal denote using and not using Fractal completion strategy, respectively.

Table 8: Quantitative comparison for the Fractal strategy evaluated on Redwood dataset.

noise. The primary contribution of this work lies in the development of a practical framework that leverages 2D diffusion priors for 3D point cloud completion. Comparisons on real scans from the Redwood dataset [Choi et al.](#page-10-12) [\(2016\)](#page-10-12) validate the effectiveness of our method in handling real-world data. Enhancing its robustness may further remain a promising direction for future research.

Table 9: Quantitative comparisons on noised input point clouds. Std denotes the Standard deviation of added noises.

			PoinTr Seedformer PointAttN SVDFormer ShapeFormer AdaPoinTr Ours Std CD/EMD CD/EMD CD/EMD CD/EMD CD/EMD CD/EMD CD/EMD		
	0 4.10/5.63 4.21/5.93 5.72/6.54 4.79/5.29		3.68/4.44	5.59/6.04 1.43/1.88	
	$0.001 4.15/5.59$ 4.17/5.91 5.76/6.55 4.73/5.22		3.65/4.52	5.59/6.04 1.53/1.87	
	$0.005 4.24/5.83$ 4.31/6.11 5.75/6.59 4.92/5.52		4.03/4.89	5.65/6.19 2.02/2.25	
	0.01 4.16/5.85 4.34/6.22 5.62/6.73 4.86/5.75		4.06/5.00	5.57/6.44 3.18/4.07	

A.6 DISCUSSION ABOUT DIFFERENT INCOMPLETENESS LEVELS

In this section, we evaluate the performances of our method on partial input with different incompleteness levels. For convenience, we use synthetic objects from Sec. [4](#page-7-2) to construct evaluation sets with varying levels of incompleteness. Specifically, we initialize the first virtual camera at a pose of $elevation = 0, azimuth = -140, and$ $\bar{f}ov \approx 80^\circ$. Additional virtual cameras are placed along the azimuth at 15° intervals. By merging 1, 3, and 7 consecutive depth maps, we generate partial point clouds with different levels of incompleteness. These data are used for comparison experiments. The qualitative and quantitative comparisons are presented in Fig. [15](#page-18-0) and Table [10,](#page-17-1) respectively. We can see that more completed partial input constructed from more depth maps will bring finer details to the completed results. Our method consistently outperforms other methods in this setting.

A.7 EVALUATION ON MULTI-MODAL METRICS

 Since our method relies on SDS guidance from Zero 1-to-3 [Liu et al.](#page-11-5) [\(2023\)](#page-11-5), it may produce different completion results with each optimization. To evaluate its performance under these variations, we assess our method using multi-modal metrics, including TMD, UHD, and MMD, following the approach in [\(Chou et al., 2023\)](#page-10-16). We perform four repeated optimizations for both our method and SDS-complete on the in-domain categories of Redwood, as detailed in Sec. [4.2,](#page-8-3) to compute these metrics. The results are summarized in Table [11.](#page-18-1) Our method achieves superior performance on UHD and MMD metrics, further validating its effectiveness for 3D point cloud completion. Although it

Figure 13: Discussion about the incompleteness of reference observation. Center and Edge denote the locations of different missing regions. R is the radii of eliminated regions.

shows a lower TMD, which evaluates completion diversity, this actually reflects its steady convergence toward the ground truths—a positive attribute for the task of 3D point cloud completion.

A.8 COMPARISONS BASED ON MESHES

 Our method potentially support the generation of 3D meshes due to the introducing of Grid Pulling module. As mentioned in Sec [3,](#page-2-0) the Grip Pulling is proposed to re-sample uniform points from the non-uniformed point cloud P_{surf} , where a SDF fuction $g(\cdot)$ is introduced to fit the overall shape of P_{surf} to do the resampling. Therefore, we can use Marching Cubes following NeuralPull [Ma et al.](#page-11-12)

>

Figure 14: Qualitative comparisons under different noise perturbations. Std denotes the Standard deviation of added noises. The green box marks a local area of a noised point cloud.

Table 10: Quantitative comparisons under different incompleteness levels. The levels denote how many depth maps are used to construct the partial input.

			PoinTr Seedformer PointAttN SVDFormer ShapeFormer AdaPoinTr Ours Level CD/EMD CD/EMD CD/EMD CD/EMD CD/EMD CD/EMD CD/EMD		
			3.30/4.07	5.33/5.82 1.86/2.01	
			3.42/4.26	5.28/5.82 1.76/2.04	
		$\begin{array}{c cccccc} 1 & 3.77/5.13 & 4.16/6.02 & 5.52/6.29 & 4.63/5.08 \\ 3 & 3.61/5.10 & 3.92/5.93 & 5.45/6.28 & 4.36/5.02 \\ 7 & 3.06/4.95 & 3.48/5.72 & 5.18/6.13 & 4.16/4.95 \end{array}$	3.00/3.77 5.26/5.85 1.48/1.87		

[\(2020\)](#page-11-12) to extract meshes from $g(\cdot)$. The results are presented in Fig. [16.](#page-18-2) We can see that our method can also create more accurate mesh shapes than SDS-Complete [Kasten et al.](#page-10-2) [\(2024\)](#page-10-2).

A.9 EVALUATION ON SHAPENET

In this section, we further compare our methods with network-based methods on 16 common models from 4 different categories of ShapeNet dataset. The results are presented in Table [12](#page-18-3) and Fig. [17.](#page-19-0) Although our method performs slightly inferior to network-based methods on the known category objects, it surpasses other methods on the unknown category objects. Please note that network-based methods use 3D ground truths from known categories for supervision during training, while our method does not introduce any training with such ground truths. As a test-time point cloud completion method, the core contribution of our method is its generalizablity for point cloud objects from any category. This has been confirmed by experiments on multiple kinds of data including synthetic objects in Sec. [4.1,](#page-7-3) Redwood dataset in Sec. [4.2,](#page-8-3) and ShapeNet in Sec. [A.9.](#page-17-2)

A.10 EVALUATION ON LIDAR POINTS

 As discussed in Sec. [3,](#page-2-0) we render the reference image I_{in} from the incomplete point cloud P_{in} , under the estimated camera pose V_p . This operation means that we actually observe the point cloud from a pinhole camera model, which may be closer to point clouds from depth scanners, such as Redwood dataset [\(Choi et al., 2016;](#page-10-12) [Kasten et al., 2024\)](#page-10-2). To validate the effectiveness of our method across different sensor types, we conduct a comparison using point clouds from the Kitti dataset [\(Geiger](#page-10-1) [et al., 2013\)](#page-10-1), which are acquired with LiDAR sensors. Point clouds from Pedestrian, Cyclist, Car, and Truck are adopted for evaluation. Since ground truth data are unavailable for these point clouds, we mainly present qualitative comparison in Fig. [18.](#page-19-1) Notably, our method demonstrates the ability for reasonable completion even with LiDAR-derived point clouds.

Figure 15: Qualitative comparisons under different incompleteness levels. The levels denote how many depth maps are used to construct the partial input.

Methods		Metrics Table Exe-Chair Out-Chair Old-Chair Aver			
	\vert TMD \uparrow 1.26	1.70	1.18	1.25	1.35
SDS-Complete UHD \downarrow 9.31		10.39	10.63	16.67	11.75
	$MMD \downarrow 1.27$	1.66	1.86	2.11	1.73
	TMD \uparrow 0.57	0.53	0.42	0.65	0.54
Ours	$ UHD \downarrow 8.47$	4.73	8.64	12.02	8.47
	$MMD \downarrow 1.47$	1.04	1.28	1.42	1.30

Table 12: Quantitative comparison on ShapeNet dataset. "Known category" and "Unknown category" denote categories included and not included in the training set of network-based methods, respectively.

Figure 16: Comparisons based on Meshes.

Figure 17: Qualitative comparison on objects from ShapeNet [\(Geiger et al., 2013\)](#page-10-1) dataset.

