A Proof of Lemmal4.2

In this section, we include the proof of Lemma and some preliminary facts that will be useful for
the proof.

Let  be a Rademacher vector, i.e. every entry r; is sampled independently uniformly from {—1,1}.
Further, we say that g is a Gaussian vector if every entry g; is a standard Gaussian with mean 0 and
variance 1. We have the following useful properties of Gaussians.

2

Fact A.1 (Appendix B.1 by [68]). Let g1,...g, be Gaussians with means y; and variances o7 .
¢ If 67 < 02 for all 4, then E[max,, |g;|] < 20+/2logn.

o If the Gaussians are independent, then ?:1 a;g; is Gaussian distributed with mean
n . n 2 92
> i1 aip and variance Y " | afo;.

« Ifthe g; are independent standard Gaussians with mean 0 and variance 1, then Y := >"7"_| g2
is Chi-squared distributed with mean E[v'Y] € O(y/n).

Another result we need is the following

Lemma A.2 (Lemma 5.2 of [75]). |N(BY, |-ll2,€)] < (1+2/¢)e.

We are now ready to prove the Lemma@ The proof of Lemma is similar to arguments used to
prove Dudley’s theorem. We also write here the statement of the Lemma for the sake of completeness

Lemma (Lemma. Let D be a distribution over BY and let P be a set of n points sampled from
D. Suppose that for a set of n-dimensional vectors V, we have absolute constants C,~ > 0 such that

log IN(V, ||-lsss €)| € O(e 2 log™ (n-e71) - ©). @)

log” ™ n
Go(V) €0 1/%

Then

Proof. For ease of notation, we use solutions S induced by points, but the proof carries over without
any modifications other than changing the notation to collections of subspaces Uf.

Consider an arbitrary cost vector v>. We write v as a telescoping sum

(o)
oS = thﬂ,s _ S
h=0

where v° = 0 and v is a vector from N'(V, ||.||o0, 27*) approximating v°. Observe that
||Uh+1,8 _ Uh,S”OO < H'Uh+l’8 _ US + ’US _ Uh,SHOo <2. 2—h (8)
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due to the triangle inequality. Thus we have

n-Gp(V) Epg {sup(v‘s)Tg} =Ep,
S

oo
Sgp Z(vthl,S 7 Uh,S)Tg:|

h=0

s

< EP,gz sup(vh‘Ll’S—vh’S)Tg}

h=o b S

oo

h+1,8 h,S\T

= Epg ) sup (" =)y

h=0 vh+1,$,vh,$e

LN (Vil oo, 2™ PFN) XN (V10,27 ")
logn
h+1,8 h,S\T

= ERQZ sup ("ThS )Ty

pyrt Ph LS S ¢

NVlloo 2™ PFDYXN (V| oo 27 ")
o0
+EP,g Z sup (Uh+1,S _ vh,S)Tg
helogn phH1S S e
NVl Nloo 2~ BTN (V)| ]| 00,27")
logn
h+1,8 h,S\T
= Epg) sup ("R — )Ty ©)
P PP LS S e
NVllloo 2™ PFDYXN (Vo027 ")

+Epg {sup(vs — vlog"’s)Tg (10)

s

We bound the terms[9]and[T0]differently, starting with the latter.
For every S
(v —0lemE)Tg < 0¥ — vl - E[| g]l2],

due to the Cauchy Schwarz inequality. Further,

1
o < V- flod =08 < V27T = [
n

S _ ,Ulog n,S

lv

which, combined with the third item in Fact[A T]yields

Epg {sup(vs — vlog"’s)Tg} €0 <\/E ﬁ) =0(1). (11)
S

We now consider the term@ Due to the second item of Fact (v"+LS — vhS)T g is Gaussian
distributed with mean 0 and variance

n
Z(Uh-‘rl,s _ Uh78)12 S 4n - 2—2h.
i=1
Thus, we have, using the first item in Fact

logn
EP,g Z sup (vthl,S _ Uh"S)Tg
e PP H1S S e
NV l-lloo 2 BTN (V| [l 0,27")
logn
< 3 /320272 10g NV, | o, 27 0) s NV, |y 21|
h=0

12)
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Now using equation (]zp we obtain that,

322 log ‘N(V, -lloos 2= DY x AV [[ll oo z—h)] € O(n-log" n)

So we have that

logn
S /3202720 log [N (Vi | ac 2-0+) x N (V, | loe.277)]| € O(y/n - log™2n) - (13)
h=0

Adding the bounds and for Terms and @ respectively yields the claim. O

Finally, we will frequently use the following triangle inequality extended to powers.

Lemma A.3 (Triangle Inequality for Powers (Lemma A.1 of [60])). Let a, b, c be an arbitrary set of
points in a metric space with distance function d and let z be a positive integer. Then for any € > 0

d(a,b)* < (1 +&)*d(a, c)* + <1j€> b, o)

2z 4¢

|d(a,b)* —d(a,c)?| <e-d(a,c)® + ( ) i d(b, c)*.

B Omitted Proofs for Center-Based Clustering

Lemma B.1. Let P C B{ be a set of points. Let V be the set of all cost vectors of P for (k, z)-
clustering. Then there exists an e-clustering net of size

NV, [ lloor €)] < exp(O(1) - z - k - d - log(ze ).

Proof. We start by proving the bound for k = 1. Suppose we are given a net N'(BY, ||.||2, §), for
a d to be determined later. Consider a candidate solution {s} with cost vector v1*} € V. Let
s’ be the point in € N(BY, ||.||2, ) of such that ||s — s'|| < &, if s’ is not unique any one will be
sufficient. Let v be the cost vector of . The number of distinct solutions S’ are N (B, ||.[|2, 6)| =
exp(O(1) - d - log §~1) due to Lemma

What is left to show is that all solutions constructed in this way satisfy the guarantee of N'(V, ||| o, ),
for an appropriately chosen . We have for any p € P and any non-negative integer z due to Lemma

2z4a\ !
llp=sl = =511 < arlp=sl+ (ZX2) oo

5 z—1
alo-sl 4@ (1) s

2. Then the term above is upper bounded by

IN

We set & = zizc and § = a.ﬁg _ W
at most € as ||p — s|| < 2. Now since |||p — s||* — ||p — s'||*| < e for all s € BY also implies

|minges [|p — s||* — minges ||p — '||*| < &, we have proven our desired approximation.

To conclude, observe that by our choice of d, the overall net N has size at most exp(O(1) - z - d -
log(ze™1)).

To extend this proof to k-centers, observe that any solution consisting of k& centers can be obtained by
selecting k points from B, rather than one. This raises the net size of the single cluster case by a
power of k. O

We now show that Lemmacombined with terminal embeddings yields the desired net.

Lemma (Equationin Lemma. Let D be a distribution over B2d and let P a set of n points
sampled from D and let V' be defined as in Theorem Then

NV, [-llsss )] < exp(O(1)2” - k - e logn - (log(2) + log(e ™))
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Proof. Let f : R? — R™ be a terminal embedding, that is f is such that m € O(2? - 2 log |P|
and for all p € P and q € R?

lp—qll” = A +e)lf(p) - FlDI7
as given by [62]. Therefore, for any candidate solution S, we also have
cost(p, 8) = (1 = 2e)cost(f (p), f(S)).

In other words, the set of cost vectors in the image of f is the desired O(e)-net for the true set of
cost vectors. Hence an e-net for the cost vectors induced by solutions in the image of f is also an
O(e)-net for the set of cost vectors. We thus may apply Lemmafor all cost vectors induced by
solutions in the image of f. After rescaling € by constant factors, the overall net size is therefore
exp(0(1)23 - k- e 2logn - (log(z) + log(e™1)))

O

C Onmitted Proofs for Subspace Clustering

In this section, we provide full proofs for Section Elrelative to subspace clustering.
We start with a few basic lemmas that will be useful in the calculations later.

We further require the following bounds that will prove useful in the calculations later.
Lemma C.1. Let a,b be numbers in [0, 2] and let & > 0. Suppose a®> = b? + ¢ - b. Then

la —b] <e.
Moreover, for any non-negative integer z, we have
|a® —b%| <2-(32)% - e.
Proof. For the first part of the lemma, we observe
l[a> = 0| =]a—b|-(a+b)<e-b
which implies
la —b] <e.
For the second part, Lemma[A3]implies
2 z—1 3 z—1
|aszz\§€~max(a,b)z+( Z+E) -|a7b|zgs-22+( Z+E> -e7 <2(32)%. O
€ €

This lemma now immediately implies the following corollary by rescaling e.

Corollary C.2. Let a,b be numbers in [0, 2] and let £ > 0. Suppose a* = b* + m max(e - b, e2).

Then for any non-negative integer z, we have

la® —b*| < e.

We now show that for any candidate subspace U we can find a subspace representing it that is spanned
by only a few vectors in P.

Lemma (Lemma. Let P C B{. For any orthogonal matrix U € RI*?, there exists M C P,
with |M| = O(j - €~ ?), such that

¥p € P |UT(I = I)p|| < e+ [|(1 — Mar)pll- (14)
Proof. Initially, let M = ). We add points to M in rounds and denote by M, the set after ¢ rounds.

Furthermore, let I1; be the projection matrix onto the subspace spanned by M; at round ¢. If there is
ap € Pinround ¢ such that

[UT (I —T0,)p|l > ll(I —T0y)p|| (15)

“The dependency on z is easily derived via a straightforward application of Lemma
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then we let M;1 = M; U {p}. Our goal is to show that after T" € O(je~2) many rounds, we have
|UT(I —7)p|| < e-||(I — II7)p]||. We show this by proving inductively

|UTI,|% > &2 - t.

For the base case ¢ = 0, this is trivially true. Thus suppose we add a point p in iteration ¢ + 1.
T
Reformulating Equation we have [V _UZTopl o By the Pythagorean theorem, we therefore

N TT—T)pll
ave
UT(I1 —10,)pl|?
UT.4||% = JUTTT 2+”—’>52-t+52>52-t—|—1.
H t+1||F H tHF ||(I — Ht)pH2 s = ( )

Now since II; is a projection and since U has j orthonormal columns j > ||UT |2 > ||[UTTL||%. If
T > &725, we obtain |[UTTr||% > j. This implies that U is contained in the space spanned by Mr.
Conversely, U must also be orthogonal to the kernel of My thatis U (I — II) = 0. Therefore after
at most e 25 rounds, we have |[UT (I — II7)p|| < e - ||(I — II7)p|. O

Lemma (Lemma. Let P C B{ be a set of points and let z be a positive integer. Then there exists
an (e, j)-projective net of size

N (V. [|-lloos €)] < exp(O(1) - d - j - log(je ™).

Proof. Let N be an ¢/j-net of the Euclidean unit ball, i.e. N = N(BY,|-]l2,¢/5) due to Lemma

Let N' = ®J_, N be the set of j—subsets of of N. We claim that for every .S, there exists an
€ N such that T
1S pll2 = 15" pll2 £ .

. J
Note that this implies the claim as |V € ((1 + 2?j)d) =exp(O(1) -d - j - log(je™b)).
Define SiT to be the vector in IV closest to the ith row of ST, i.e. [|ST — SiT||2 < e/j. We have
157" -8, < S 15T — ST, < e. Therefore
T T
157 pll2 = (S = 8" )p + " pll2
T T
<IST =8 )pllz + 118" pll2
T T
<8 pllz + 157 = 8" l2pll2
<118 pll2 +e.

The bound ||STp||2 > [|S"” p||2 — ¢ is proven analogously. O

‘We can now conclude with the proof of Equation in Lemma

Lemma ( Equationin Lemmal|5.2). Let D be a distribution over Bg and let P a set of n points
sampled from D and let V; ., be defined as in Theorem Then

N (Vjz, [l lloos €)1 < exp(O(1)(32)"F2 - k- e (log n + jlog(je ")) log e ™).

Proof. Let o, 8 > 0 be sufficiently small parameters depending on ¢ that will determined later. We
first describe a construction for nets for a single subspace of rank at most j, before composing to k
subspaces.

We start by describing the composition of the nets. For every subset M C P, with |M| € O(ja~2),
we let II5; denote an orthogonal projection matrix of the span of M. Note that this implies

rank(ITy;) = O(ja~2). Further, let N(IIy;) = /\f(B;a"k(HM)7 IIll2, 8) be a (B, j)-projective
net of the point set Upear {I1ysp} of size at most exp(O(1) - rank(Il,;) - log(j871)) given by
Lemma|5.4| Finally, let N := Uy, N (Iy).

We consider an arbitrary orthogonal matrix U € R?*¢, Denote by My the subset of points and by
Iy the projection matrix given by Lemma using « as the precision variable. We claim that for
every U, there exists an U’ € N such that for all p € P

z/2 >
‘(”HUPH% = U Typl3 + (1 = Te)pll3) ™ = 11 = UUT)p*| € Ola + B).
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In other words, by enumerating over all (3, j)-projective nets, we obtain an O(« + 3)-subspace
clustering net for (1, j, z)-clustering. The desired error of ¢ then follows by choosing « and 3
accordingly. For U, we construct U’ as follows. Let D = VI, ie. DDT = TI. Further, let
V = UTD, notice that V has at most 7 rows that have at most unit norm. Hence, there exists a
U’ € N such that

IUTypll2 — [UTIypll2| < &
that is a (3, j)-projective net.
We then obtain

ITpll — 107 Tupll3 + (I — y)pll3
= |Hypll3 — U Mopl3 £ 8 + [[(1 - Mv)pll3
= [Mopll3 - UV Tupll3 £ 6+ (I - To)pl3
I = OU ) wpll3 + [|(1 — Tu)pll; £ 5

(Eql6) = (I —UUT)pl3 £ 8- |UT(T —Ty)p||* — 2p" Ty UUT (I — TIy)"p
(Lem[p.5) = |(I-UUT)pl3+a® (I —UU )p|* £ 20 [|(I —UUT)p|| £ 8

Setting a? = B = WEQ, we then have due to Corollary

M”HUPH% — I upll3 + (I = Me)pll3]” = I = UU)pl*| <. (16)

To extend this from a single j-dimensional subspace to a solution I/ given by the intersection of k
j-dimensional subspaces, we define cost vectors v° obtained from A = ®%_, N as follows. For
each U € U let U’ be constructed as above and let I/’ be the union of the thus constructed U’. Then,

with a slight abuse of notation, letting Iy correspond to the subspace used to obtain U’, we define

vg := min
vreu’

z/2
(I = Ty )p|)? + [Tyl — [0 TTpl )|

Let U be the subspace to which p is assigned U and let U’ be the center in U’ used to approximate U

and let U™ = argming, 0 |[[(T = 10 )p|12 + [Ty p||2 — U711, p|2[||*/* and let U* € U be the
center approximated by U*’. Then applying Equation we have
I —oUt)p|*
< T -UTrTylf
< (I = Hoa)pll? + [Mywp| — U Toapl?[ 7 + ¢
< {1 =Tl + Morpll? = 0Tl 2 + ¢

Thus, the cost vectors obtained from N are a (k, j, z)-clustering net, i.e.

Y
‘vp <e.

S| . . / .
5| = \ in, [Top = [, 0] = min [lp — 5

What remains is to bound the size of the clustering net. Here we first observe that size of the clustering
net is equal to |[N| = |[N|*. For | N|, we have (Om,Ji‘ga,l)) < nOUe™"loga™) many choices of

N(II). In turn, the size of each N (II) is bounded by (3/5)~°U**) due to Lemma Thus the
overall size of N is

exp (k- j-O(a?loga™ ' (logn + jlog 8/5)))
=exp(0(1)(32)*"2 - k- j - e 2(logn + jlog(je 1)) loge™!)

as desired. O
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C.1 Proofs of Theorem[5.6](Section[5.1)

The proof of the theorem is a straightforward application of Theoremwith the following Lemma

Lemma C.3. Let D be a distribution over BY, let P a set of n points sampled from D, and let V be
defined as in Theorem@ Then for any v > 0

Rad, (V) € O ( K Log? (”)) .
n J

Proof. We use the following result due to Foster and Rakhlin [45].

Theorem C.4 (¢, contraction inequality (Theorem 1 by [45]))). Let F C X — RF, and let
¢ : R¥ — R be L-Lipschitz with respect to the Lo, norm, i.e. ||¢(X)—d(X')||oo < L-[|X — X'|| oo for
all X, X' € R*. Forany~ > 0, there exists a constant C' > 0 such that if | ¢ (f ()| V]| f ()| o < B,
then

o . CORLY - logB/2 P .
Rad,(¢o F) < C-LVK m?xRad,,,(F\L) log <max7¢ R, (F|,)

We use this theorem as follows. Our functions are associated with candidate solutions I/, that is
#(f) = mingey ||(I — UUT)p||3. In other words, f maps a point p to the k-dimensional vector,
where f;(p) = ||(I — U;UF)p||3 and ¢ selects the minimum value among all || I — U;UT)p||3.

Thus, we require three more steps. First, we have to bound the Lipschitz constant of the minimum
operator. Second, we have to give a bound on 3. Third and last, we have to give a bound on the
Rademacher complexity

1
Rady (V) = — - E, sup ST - uuT)pl3ry. (17)
peEP

The Lipschitz constant of the minimum operator with respect to the £, norm can be readily shown to
be 1 as for any two vectors x, y with min; y; = y;

miinmi —miinyi = miin:r,- —yj<z;—y; <lz; —yi| < |lz— vl

Since U is an orthogonal matrices and p € BY, we have ||(I — UUT)p||3 < 1 and thus 3 is bounded
by 1.

Thus, we only require a bound on Equation For this, we use a result by [50]. Since the result is
embedded in the proof of another result, we restate it here for the convenience of the reader.

Lemma C.5 (Compare the proof Theorem 3 of [50l). Let P be an set of n points in BS and let U be
the set of all orthogonal matrices of rank at most j. For every U € U, define fr(p) = ||(I-UUT)p||3
and let F be the set of all functions fy (p) Then.

1 .
Rady(F) = — B, sup 3" |(T = UUT)pl3 -1, € O (ﬂ) .

veu St

Proof. We have

Rad,(F) =E,sup Y |(I = UU )pll3r, = E, Y |Ip|*rp + Ersup > U pll3r,.
peEP peP peP
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We observe that the term . 37 || p||?>r, is 0. Thus, we focus on the second term. We have
E, sup Z 10 pl|3 -7,y E, sup Z pTUUTp-r, = E,sup Z trace(p"UUTp) - r,,
pepr peP peEP

= E,sup Z trace(UU pp”) - 1,
peP

= E,suptrace | UUT (r ~ppT)
rsu 1;3 »

IN

E,sup Ul || rp-pp"
v peP F

We have |U||r < /7, so we focus on HZPEP Tp .ppTH . Here, we have
F

2

Z Tp ppT trace Z Tp ppT Z rp - ppT

peP P peP peEP
= Z Z rp - 7q - trace (ppTqq") = Z Z 1 - (07 )2
pePqel peP qeP
This implies
n-Rad,(F) = E,sup Z HUTZ?H%% <E,sup||U|r Z Tp pp"
U
peEP peEP P
< ViE, Zer-rq«(qu)2
pEP qeP
(Jensen’s inequality) < +/j- [E, Z Z rp-rq - (pTq)?
peEP qeP
= Vi DT> <Vi- Y 1=1/nj.
peEP peEP
Solving the above for Rad,, (F') concludes the proof. O
We can now conclude the proof. Combining the bounds on L and 3 with Lemmaand Theorem
we have
Rad,,(Vj2) € O (\/% \/% log® 7 (n)>
as desired. |

C.2 Lower Bound

Finally, we also show that the bound given in Theorem@is optimal, up to polylog factors.
Theorem . There exists a distribution D supported on BY such that £(V; 2) € Q <\ / %])

Proof. We first describe the hard instance distribution D. We assume that we are given d = 2kj
dimensions. Let e; be the standard unit vector along dimension ¢ with ¢ € {1,...d}. Let p,e € [0, 1]
be a parameters, where ¢ is sufficiently small. We set the densities for a point ¢ as follows.

D ifg=e;ie{l,....k-j}
Plgj=¢p—c-p ifg=e,ie€{kj+1,...,d} (18)
0 otherwise
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We choose p such that integral over densities is 1, i.e. kj - p+ kj - (p — ep) = 1. It is straightforward
to verify that for € sufficiently small, p € (%7 k%) We denote the points {eq,...ey;} by G for
"good" and the points {ey;+1,...eq} by B for "bad".

We now characterize the properties of the optimal solution as well as suboptimal solutions.

Lemma C.6. Let D be the distribution described above in Equation @ Then for any optimal
solutiond = {Uy, ... Uy}, we have e; € U fori € {1,...,kj} and sometand OPT = kj-p-(1—e¢).

Proof. We transform the instance into a d x d diagonal matrix D where D, ; = \/P[e;]. So D is a
d x d diagonal matrix with diagonal entries equal to /p for the first k - j elements and \/p —¢ - p
for elements from k - j + 1 to d. Now consider any partition of the points into clusters C; with the
corresponding subspace Uy for (¢t € {1,...,k} ). The optimal solution for U; is simply the right
singular vector of the submatrix of D corresponding to points in Cy, which by the construction of D
is the j points with the largest weight. This means that each cluster can remove at most Y 7_; 1 = j
from the cost, so k clusters can remove at most Zle j from the cost. This imples that the cost of the
clustering is lower bounded by 3% D}, — M D}, = PO ;41 D7 ;. Conversely, the solution
U has exactly this cost, which implies that it must be optimal. O

Using Lemma we now have to, given n independent samples from D. Control the probability
that the sample P will (falsely) put a higher weight on some of the points in B than the points in G.
Let B., denote the set of misclassified points in B and let Popr denote the optimum computed on
the sample P. We have

E[cost(D, Popr)] = kj-p- (1 —¢€)+p-e-|Beyl|
and hence an expected excess risk bound of
E[cost(D, Popr)] — OPT = p - € - E[Bey].
By linearity of expectation, we have E[|Be,|] = kj - Plexj+1 € Beg]. Thus, Elcost(D, Popr)] —

OPT € O(1)e-Plegjt1 € Bes). Define Gioy, to be the set of points from G that are have an empirical
density of at most p. Let e/k;H denote the empirical density of ey ;1. We now claim that

P[Bk]' c Bez] > P[e/ka >pA €kj+1 € BQI]
Plej+1 € Beolerg1 > pl - Plerj+1 > pl > 1/2 - Plex;i1 > p)

The first inequality follows because we are considering a subset of the possible events, the second
inequality follows because the number of points with an empirical estimated density greater than p is
negatively correlated with the empirical density e/ijr\l of the point ey;. Specifically, conditioned on

€kj+1 > p. the mean and median density of any point e; € G is at most #p(n—p-n) =p-(1-p) <p.
Thus, the (marginal) mean and median density of any other point 1s below p and therefore the
probability that ej;11 will be in By, is at least 1/2.

Thus, what remains to be shown is a bound on Pley; > p]. Here, we use the tightness of the Chernoff
bound (see Lemma 4 of [48]).

Lemma C.7 (Tightness of the Chernoff Bound). Let X be the average of n independent, 0/1 random
variables. For any € € (0,1/2] and p1 € (0,1/2), assuming epn > 3 if each random variable is 1
with probability at least p, then

P[X > (1 +¢)p] > exp(—9¢%un).
Thus, sampling n elements, we have

P [ex; >p]:IF>{ekj> <1+%>.(1_6).p}

2

> exp (—9(1i7€)2(1 — s)pn) € Q(1) exp (—Z—jn) .
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If we require E[cost(D, Popr)] — OPT = ¢ - ¢ for a sufficiently small absolute constant ¢, we also

require P [ex; > p] = ¢ and hence \/% < e - ¢ for a sufficiently small absolute constants ¢’
and ¢”. Letting ¢ — 0 then shows that the excess risk can asymptotically decrease no faster than

Q <\/’le> 0

D Details for the Experiments (Section@)

D.1 Description of datasets

Mushroom comprises of 112 categorical features of the appearance of mushrooms with class labels
corresponding to poisonous or edible. MNIST contains 28x28 pixel images of handwritten digits.
Skin_Nonskin are RGB values given as 3 numerical features used to predict if a pixel is skin or not.
Lastly, Covtype consists of a mix of categorical and numerical features used to predict seven different
cover types of forests. In the main body, we focus on Covtype because of its large number of points.

D.2 Description of algorithms

Center based clustering For each experiment, we use an expectation maximization (EM) type
algorithm. Given a solution S, we first assign every point to its closest center and subsequently, we
recompute the center. For the case z = 2, we do this analytically and in this case the EM algorithm
is more commonly known as Llyod’s method [59]. For the cases, z € {1, 3,4}, the new center is
obtained via gradient descent. The initial centers are chosen via D? sampling, i.e. sampling centers
proportionate to the zth power of the distance between a point and its closest center (for z = 2 this is
the k-means++ algorithm by [6]).

We wrote all of the code using Python 3 and utilized the Pytorch library for implementations using
gradient descent. Specifically, we employed the AdamW optimizer to find the closest center with
a learning rate set to 0.01. All experiments were conducted on a machine equipped with a single
NVIDIA RTX 2080 GPU.

Subspace Clustering For subspace clustering, we consider j € {1, 2,5} to demonstrate the effects
of the subspace dimension on convergence rate, taking computational expenses into consideration.
Since there are no known tractable algorithms for these problems with guarantees, we initialize a
solution Y = {Uy, ..., Uy} by sampling k orthogonal matrices of rank j, where the subspace for
each matrix is determined via the volume sampling technique [35]. Subsequently, we run the EM
algorithm. As before, the expectation step consists of finding the closest subspace for every point. For
z = 2, the maximization step consists of finding the j principal component vectors of the data matrix
induced by each cluster. For the other values of z, it is NP-hard even approximate the maximization
step [24], so we use gradient descent to find a local optimum. Due to the fact that Skin_nonskin
only has 3 features, we only evaluate the excess risk for j € {1,2}. Due to a large computational
dependency on dimension, we do not evaluate subspaces on the MNIST dataset.

D.3 Experimental results

In this section, we provide plots of the excess risk and the found parameters of the best-fit lines for
each of the datasets.

Table 2: Best fit lines on Covtype and Mushroom (left to right)

c q1 q2 zZ c 51 q2

3-1072 044 0.54 1 1-107Y 048 0.51
4-107% 042 0.52 2 8:1072 048 051
6-10% 044 051 3 41072 049 0.50
1-107% 044 051 4 3-1072 049 0.50
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Figure 2: Excess risk for center-based clustering on the Covertype dataset. The shaded areas indicate
the maximal and minimal deviation for the respective sample sizes.
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Figure 3: Excess risk for center-based clustering on the Mushroom dataset. The shaded areas indicate
the maximal and minimal deviation for the respective sample sizes.

Table 3: Best fit lines on Skin_NonSkin and MNIST (left to right)

C

q1

q2

Z

C

q1

q2

AW =N

2.1072
3-1078
8.104
2-10~4

0.49
0.47
0.46
0.46

0.50
0.52
0.53
0.53

1
3
4
2

Q0 W Ot =

21071
-1072
-1072
. 10—02

0.49
0.50
0.50
0.50

0.51
0.50
0.50
0.50
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Figure 4: Excess risk for center-based clustering on the Skin_Nonskin dataset. The shaded areas
indicate the maximal and minimal deviation for the respective sample sizes.
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Figure 5: Excess risk for center-based clustering on the MNIST dataset. The shaded areas indicate
the maximal and minimal deviation for the respective sample sizes.
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Figure 6: Excess risk for subspace clustering on the Mushroom dataset. The shaded areas indicate
min/max values

Table 4: Best fit line for subspace clustering on Covtype and Mushroom (left to right)

j oz ¢ q ) i oz ¢ Q1 Q2

1 1 01 045 0.54 1 1 1-100% 048 0.51
1 2 2-100Z 048 0.51 1 2 1-100' 048 0.1
1 3 3-100% 046 053 1 5 1-100% 049 049
1 4 4-107° 046 052 2 1 7-1072 048 051
2 1 81072 048 051 2 2 6-1072 050 049
2 2 2-107% 047 0.51 2 5 6-1072 049 048
2 3 4-1005 046 053 3 1 4-1072 049 0.50
2 4 2-107% 046 0.52 3 2 3.1002 049 0.0
5 1 8-107% 048 0.1 3 5 3-1072 049 049
5 2 5-107° 046 0.53 4 1 2-1072 049 0.50
5 3 4-1007 047 0.52 4 2 2-1072 049 0.50
5 4 3-107° 047 0.51 4 5 1-1002 048 0.50
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Figure 7: Excess risk for subspace clustering on the Skin_Nonskin dataset. The shaded areas indicate
min/max values
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Table 5: Best fit line for subspace clustering on Skin-Nonskin
z c Q1 a2

-1072 048 0.50
-1073 045 053
<1073 046 053
-107* 046 053
0.46 0.53
-1075 046 053
-10™ 046 0.53
-107% 046 053
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