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Abstract1

Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring suc-2

cess for Knowledge Graph Completion (KGC) tasks, often outperforming Graph3

Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate4

node features and generalise to unseen nodes in inductive settings. Our work5

bridges the gap between FMs and GNNs by proposing REFACTOR GNNS. This6

new architecture draws upon both modelling paradigms, which previously were7

largely thought of as disjoint. Concretely, using a message-passing formalism,8

we show how FMs can be cast as GNNs by reformulating the gradient descent9

procedure as message-passing operations, which forms the basis of our REFACTOR10

GNNS. Our REFACTOR GNNS achieve state-of-the-art inductive performance11

while using an order of magnitude fewer parameters.12

1 Introduction13

In recent years, machine learning on graphs has attracted significant attention due to the abun-14

dance of graph-structured data and developments in graph learning algorithms. Graph Neural15

Networks (GNNs) have shown state-of-the-art performance for many graph-related problems, such16

as node classification [1] and graph classification [2]. Their main advantage is that they can easily be17

applied in an inductive setting: generalising to new nodes and graphs without re-training. However,18

despite many attempts at applying GNNs for multi-relational link prediction such as Knowledge19

Graph Completion [3], there are still few positive results compared to factorisation-based mod-20

els (FMs) [4, 5]. As it stands, GNNs either – after resolving reproducibility concerns – deliver21

significantly lower performance [6, 7] or yield negligible performance gains at the cost of highly22

sophisticated architecture designs [8]. A notable exception is NBFNet [9], but even here the advance23

comes at the price of a high computational inference cost compared to FMs. Furthermore, it is24

unclear how NBFNet could incorporate node features, which – as we will see in this work – leads to25

remarkably lower performance in an inductive setting. On the flip side, FMs, despite being a simpler26

architecture, have been found to be very accurate for knowledge graph completion when coupled27

with appropriate training strategies [10] and training objectives [11, 12]. However, they also come28

with shortcomings in that they, unlike GNNs, can not be applied in an inductive setting.29

Given the respective strengths and weaknesses of FMs and GNNs, can we bridge these two seemingly30

different model categories? While exploring this question, we make the following contributions:31

• By reformulating the training process using message-passing primitives, we show a practical32

connection between FMs and GNNs, i.e. FMs can be treated as a special instance of GNNs.33

• Based on this connection, we propose a new family of architectures, REFACTOR GNNS, that34

interpolates between FMs and GNNs and allow FMs to be used inductively.35

• In an empirical investigation across well-established benchmarks (see the appendix), our REFAC-36

TOR GNNS achieve state-of-the-art inductive performance across the board and comparable37

transductive performance to FMs – despite using an order of magnitude fewer parameters.38
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2 Background39

Knowledge Graph Completion [KGC, 13] is a canonical task of multi-relational link prediction.40

The goal is to predict missing edges given the existing edges in the knowledge graph. Formally,41

a knowledge graph contains a set of entities (nodes) E = {1, . . . , |E|}, a set of relation (or edge)42

types R = {1, . . . , |R|}, and a set of typed edges between the entities T = {(vi, ri, wi)}|T |
i=1, where43

each triple (vi, ri, wi) indicates a relationship of type ri ∈ R between the subject vi ∈ E and the44

object wi ∈ E of the triple. Given a (training) knowledge graph, the KGC task [3] aims at identifying45

missing links by answering (v, r, ?) queries i.e. predicting the object given the subject and the relation.46

Multi-relational link prediction models can be trained via maximum likelihood, by fitting a parameter-47

ized conditional categorical distribution Pθ(w | v, r) over the candidate objects of a relation, given the48

subject v and the relation type r: Pθ(w|v, r) = Softmax(Γθ(v, r, ·))[w], where Γθ : E ×R×E → R49

is a scoring function that, given a triple (v, r, w), returns the likelihood that the corresponding edge50

appears in the graph. In this paper, we illustrate our derivations using DistMult [4] as the score51

function Γ and defer extensions to general score functions, e.g. ComplEx [5] to the appendix. In52

DistMult, the score function Γθ is defined as the tri-linear dot product of the embeddings of the53

subject, relation type, and object of the triple: Γθ(v, r, w) =
∑K
i=1 fϕ(v)ifϕ(w)igψ(r)i, where54

fϕ : E → RK and gψ : R → RK are learnable maps parameterised by ϕ and ψ that encode entities55

and relation types into K-dimensional representations, and θ = (ϕ, ψ). We will refer to f and g as56

the entity and relational encoders, respectively.57

We can learn the model parameters θ by minimising the expected negative log-likelihood L(θ) of the58

ground-truth entities for the queries (v, r, ?) obtained from T :59

argmin
θ

L(θ) where L(θ) = − 1

|T |
∑

(v,r,w)∈T

logPθ(w|v, r). (1)

During inference, we use the distribution Pθ for ranking missing links.60

Factorisation-based Models for KGC. In factorisation-based models, which we assume to be61

DistMult, fϕ and gψ are simply parameterised as look-up tables, associating each entity and relation62

with a continuous distributed representation:63

fϕ(v) = ϕ[v], ϕ ∈ R|E|×K and gψ(r) = ψ[r], ψ ∈ R|R|×K . (2)

GNN-based Models for KGC. GNNs were originally proposed for node or graph classification64

tasks [14, 15]. To adapt them to KGC, previous work has explored two different paradigms: node-wise65

entity representations [16] and pair-wise entity representations [9, 17]. Though the latter paradigm66

has shown promising results, it requires computing an embedding representation for any pair of67

nodes, which can be too computationally expensive for large-scale graphs with millions of entities.68

Additionally, node-wise representations allow for using a single evaluation of fϕ(v) for multiple69

queries involving v. Models based on the first paradigm differ from pure FMs only in the entity70

encoder and lend themselves well for a fairer comparison with pure FMs. We will therefore focus on71

this class and leave the investigation of pair-wise representations to future work.72

Let qϕ : G × X →
⋃
S∈N+ RS×K be a GNN encoder, where G = {G | G ⊆ E × R × E} is73

the set of all possible multi-relational graphs defined over E and R, and X is the input feature74

space, respectively. Then we can set fϕ(v) = qϕ(T , X)[v]. Following the standard message-passing75

framework [2, 18] used by the GNNs, we view qϕ = qL ◦ ... ◦ q1 as the recursive composition of76

L ∈ N+ layers that compute intermediate representations hl for l ∈ {1, . . . , L} (and h0 = X) for all77

entities in the KG. Each layer is made up of the following three functions:78

• A message function qlM : RK×R×RK → RK that computes the message along each edge. Given79

an edge (v, r, w) ∈ T , qlM not only makes use of the node states hl−1[v] and hl−1[w] (as in standard80

GNNs) but also uses the relation r. Denote the message as ml[v, r, w] = qlM
(
hl−1[v], r, hl−1[w]

)
;81

• An aggregation function qlA :
⋃
S∈N RS×K → RK that aggregates all messages82

from the 1-hop neighbourhood of a node; denote the aggregated message as zl[v] =83

qlA
(
{ml[v, r, w] | (r, w) ∈ N 1[v]}

)
;84

• An update function qlU : RK × RK → RK that produces the new node states hl by combining85

previous node states hl−1 and the aggregated messages zl: hl[v] = qlU(h
l−1[v], zl[v]).86
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3 Implicit Message-Passing in FMs87

The sharp difference in analytical forms might give rise to the misconception that GNNs incorporate88

message-passing over the neighbourhood of each node (up to L-hops), while FMs do not. In this work,89

we show that by explicitly considering the training dynamics of FMs, we can uncover and analyse the90

hidden message-passing mechanism within FMs. In turn, this will lead us to the formulation of a91

novel class of GNNs well suited for multi-relational link prediction tasks (Section 4). Specifically,92

we propose to interpret the FMs’ optimisation process of their objective (1) as the entity encoder. If93

we consider, for simplicity, a gradient descent training dynamic, then94

fϕt(v) = ϕt[v] = GDt(ϕt−1, T )[v] = GDt ◦...GD1︸ ︷︷ ︸
t

(ϕ0, T )[v], (3)

where ϕt is the embedding vector at the t-th step, t ∈ N+ is the total number of iterations and ϕ0 is a95

random initialisation. GD is the gradient descent operator:96

GD(ϕ, T ) = ϕ− α∇ϕL = ϕ+ α
∑

(v,r,w)∈T

∂ logP (w|v, r)
∂ϕ

, (4)

where α = β |T |−1, with a η > 0 learning rate. We now dissect Equation (4) in two different (but97

equivalent) ways. In the first, which we dub the edge view, we separately consider each addend of98

the gradient ∇ϕL. In the second, we aggregate the contributions from all the triples to the update99

of a particular node. With this latter decomposition, which we call the node view, we can explicate100

the message-passing mechanism at the core of the FMs. While the edge view suits a vectorised101

implementation better, the node view further exposes the information flow among nodes, allowing us102

to draw an analogy to message-passing GNNs.103

To fully uncover the message-passing mechanism of FMs, we now focus on the gradient descent104

operation over a single node v ∈ E , referred to as the central node in the GNN literature. Recalling105

Equation (4), we have:106

GD(ϕ, T )[v] = ϕ[v] + α
∑

(v,r,w)∈T

∂ logP (w̄ | v̄, r̄)
∂ϕ[v]

, (5)

which aggregates the information stemming from the updates presented in the edge view. The next107

theorem describes how this total information flow to a particular node can be recast as an instance of108

message passing (cf. Section 2). We defer the proof to the appendix.109

Theorem 3.1 (Message passing in FMs). The gradient descent operator GD (Equation (5)) on110

the node embeddings of a DistMult model (Equation (2)) with the maximum likelihood objective111

in Equation (1) and a multi-relational graph T defined over entities E induces a message-passing112

operator whose composing functions are:113

qM(ϕ[v], r, ϕ[w]) =

{
ϕ[w]⊙ g(r) if (r, w) ∈ N 1

+[v],
(1− Pθ(v|w, r))ϕ[w]⊙ g(r) if (r, w) ∈ N 1

−[v];
(6)

qA({m[v, r, w] : (r, w) ∈ N 1[v]}) =
∑

(r,w)∈N 1[v]

m[v, r, w]; (7)

qU(ϕ[v], z[v]) = ϕ[v] + αz[v]− βn[v], (8)
where, defining the sets of triples T −v = {(s, r, o) ∈ T : s ̸= v ∧ o ̸= v},114

n[v] =
|N 1

+[v]|
|T |

EPN1
+

[v]
Eu∼Pθ(·|v,r)g(r)⊙ ϕ[u] +

|T −v|
|T |

EPT −vPθ(v|s, r)g(r)⊙ ϕ[s], (9)

where PN 1
+[v] and PT −v are the empirical probability distributions associated to the respective sets.115

What emerges from the equations is that each gradient step contains an explicit information flow116

from the neighbourhood of each node, which is then aggregated with a simple summation. Through117

this direct information path, t steps of gradient descent cover t-hop neighbourhood of v. As t goes118

towards infinity – or in practice – as training converges, FMs capture the global graph structure. The119

update function (8) somewhat deviates from classic message-passing as n[v] of Equation (9) involves120

global information. However, we note that we can interpret this mechanism under the framework of121

augmented message passing [19] and, in particular, as an instance of graph rewiring.122

Based on Theorem 3.1 and Equation (3), we can now view ϕ as the transient node states h (cf.123

Section 2) and GD on node embeddings as a message-passing layer. This dualism sits at the core of124

the ReFactor GNN model, which we describe next.125

3



REFACTOR GNNS: Revisiting Factorisation-based Models from a Message-Passing Perspective

4 REFACTOR GNNs126

FMs are trained by minimising the objective (1), initialising both sets of parameters (ϕ and ψ) and127

performing GD until approximate convergence (or until early stopping terminates the training). The128

implications are twofold: i) the initial value of the entity lookup table ϕ does not play any major role129

in the final model after convergence; and ii) if we introduce a new set of entities, the conventional130

wisdom is to retrain1 the model on the expanded knowledge graph. This is computationally rather131

expensive compared to the “inductive” models that require no additional training and can leverage132

node features like entity descriptions. However, as we have just seen in Theorem 3.1, the training133

procedure of FMs may be naturally recast as a message-passing operation, which suggests that134

it is possible to use FMs for inductive learning tasks. In fact, we envision that there is an entire135

novel spectrum of model architectures interpolating between pure FMs and (various instantiations136

of) GNNs. Here we propose one simple implementation of such an architecture which we dub137

REFACTOR GNNS. Figure 1 gives an overview of REFACTOR GNNs.138

The ReFactor Layer. A REFACTOR GNN contains L REFACTOR layers, that we derive from139

Theorem 3.1. Aligning with the GNN notations we introduced in Section 2, given a KG T and entity140

representations hl−1 ∈ R|E|×K , the REFACTOR layer computes the representation of a node v as141

follows:142

hl[v] = ql(T , hl−1)[v] = hl−1[v]− βnl[v] + α
∑

(r,w)∈N 1[v]

qlM (hl−1[v], r, hl−1[w]), (10)

where the terms nl and qlM derive from Equation (9) and Equation (6), respectively. Differing from the143

R-GCN, the first GNN on multi-relational graphs, where the incoming and outgoing neighbourhoods144

are treated equally [16], REFACTOR GNNS treat incoming and outgoing neighbourhoods differently.145

As we will show in the experiments, this allows REFACTOR GNNS to achieve good performances146

also on datasets containing non-symmetric relationships. In fact, the REFACTOR layer is built upon147

DistMult, which, despite being a symmetric operator, induces asymmetry into the final representation.148

Equation (10) describes the full batch setting, which can be expensive if the KG contains many149

edges. Therefore, in practice, whenever the graph is big, we adopt a stochastic evaluation of the150

REFACTOR layer by decomposing the evaluation into several mini-batches. We partition T into a set151

of computationally tractable mini-batches. For each of them, we restrict the neighbourhoods to the152

subparagraph induced by it and readjust the computation of nl[v] to include only entities and edges153

present in it. We leave the investigation of other stochastic strategies (e.g. by taking Monte Carlo154

estimations of the expectations in Equation (9)) to future work. Finally, we cascade the mini-batch155

evaluation to produce one full layer evaluation.156

Training. The learnable parameters of REFACTOR GNNS are the relation embeddings ψ. Inspired157

by [20], we learn ψ by layer-wise (stochastic) gradient descent. This is in contrast to conventional158

GNN training, where we need to backpropagate through all the layers. A (full-batch) GD training dy-159

namic for ψ can be written as ψt+1 = ψt−η∇Lt(ψt), where Lt(ψt) = −|T |−1
∑

T logPψt(w|v, r),160

with:161

Pψt(w|v, r) = Softmax(Γ(v, r, ·))[w], Γ(v, r, w) = ⟨ht[v], ht[w], gψt(r)⟩

and the node state update as162

ht =

{
X if t mod L = 0
qt mod L(T , ht−1) otherwise (11)

Implementation-wise, such a training dynamic equals to using an external memory for storing163

historical node states ht−1 akin to the procedure introduced in [21]. The memory can then be queried164

to compute ht using Equation (10). Under this perspective, we periodically clear the node state cache165

every L full batches to force the model to predict based on on-the-fly L-layer message-passing. After166

training, we obtain ψ∗ and do the inference by running L-layer message-passing with ψ∗.167

Due to page limits, we leave the empirical study over the proposed REFACTOR GNNS in the appendix.168

In general, we observe REFACTOR GNNS to achieve state-of-the-art inductive performance.169

1Typically until convergence, possibly by partially warm-starting θ.
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A Architecture295

v1

1 − P(v2 ∣ v1, r)
ϕ[v2] ⊙ g(r)

v2 v3

v4
1 − P(v3 ∣ v1, r)

ϕ[v3] ⊙ g(r)

ϕ[v4] ⊙ g(r)

w r

Γ

v

Softmax

P(v ∣ w, r)

Figure 1: ReFactor GNN architecture – the left figure describes the messages (coloured edges) used
to update the representation of node v1, which depend on the type of relationship between the sender
nodes and v1 in the graph G = {(v2, r1, v1), (v3, r2, v1), (v1, r3, v4)}; the right figure describes
the computation graph for calculating P (v | w, r), where v, w ∈ E and r ∈ R: the embedding
representations of w, r, and v are used to score the edge (w, r, v) via the scoring function Γ, which is
then normalised via the Softmax function.

Figure 1 shows the architecture of REFACTOR GNNS.296

B Experiments297

We perform experiments to answer the following questions regarding REFACTOR GNNS:298

• Q1. REFACTOR GNNS are derived from a message-passing reformulation of FMs: do they also299

inherit their predictive accuracy in transductive KGC tasks? Appendix B.1300

• Q2. Are REFACTOR GNNS more statistically accurate than other GNN baselines in inductive301

KBC tasks? Appendix B.2302

• Q3. Can we simplify REFACTOR GNNS by removing the term n[v], which involves nodes not303

in the 1-hop neighbourhood? Appendix B.3304

For transductive experiments, we used three well-established KGC datasets: UMLS [22], CoDEx-305

S [23], and FB15K237 [24]. For inductive experiments, we used the inductive KGC benchmarks306

introduced by GraIL [17], which include 12 datasets, or rather 12 pairs of knowledge graphs:307
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Entity Encoder UMLS CoDEx-S FB15K237
Lookup (FM, specif. DistMult) 0.90 0.43 0.30

REFACTOR GNNS (L = ∞) 0.93 0.44 0.33

Table 1: Test MRR for transductive KGC tasks.

(FB15K237_vi, FB15K237_vi_ind), (WN18RR_vi, WN18RR_vi_ind), and (NELL_vi, NELL_vi_ind),308

where i ∈ [1, 2, 3, 4], and (_vi, _vi_ind) represents a pair of graphs with a shared relation vocabulary309

and non-overlapping entities. We follow the standard KGC evaluation protocol by fully ranking310

all the candidate entities and computing two metrics using the ranks of the ground-truth entities:311

Mean Reciprocal Ranking (MRR) and Hit Ratios at Top K (Hits@K) with K ∈ [1, 3, 10]. For the312

inductive KGC, we additionally consider the partial-ranking evaluation protocol used by GraIL for313

fair comparison. Empirically, we find full ranking more difficult than partial ranking, and thus more314

suitable for reflecting the differences among models on GraIL datasets – we would like to call for315

future work on GraIL datasets to also adopt full ranking protocol on these datasets.316

We grid-searched over the hyper-parameters, and selected the best configuration based on validation317

MRR. Since training deep GNNs with full-graph message passing might be slow for large knowledge318

graphs, we follow the literature [25–27] to sample sub-graphs for training GNNs. Considering that319

sampling on-the-fly often prevents high utilisation of GPUs, we resort to a two-stage process: we320

first sampled and serialised sub-graphs around the target edges in the mini-batches; we then trained321

the GNNs with the serialised sub-graphs. To ensure we have sufficient sub-graphs for training the322

models, we sampled for 20 epochs for each knowledge graph, i.e. 20 full-passes over the full graph.323

The sub-graph sampler we currently used is LADIES [26].324

B.1 REFACTOR GNNS for Transductive Learning (Q1)325

REFACTOR GNNS are derived from the message-passing reformulation of FMs. We expect them326

to have roughly the same performance as FMs for transductive KGC tasks. To verify this, we run327

experiments on the datatsets UMLS, CoDEx-S, and FB15K237. For fair comparison, we use ?? as328

the decoder and consider i) lookup embedding table as the entity encoder, which forms the FM when329

combined with the decoder (Section 2), and ii) REFACTOR GNNS as the entity encoder. REFACTOR330

GNNS are trained with L = ∞, i.e. we never clear the node state cache. Since transductive KGC331

tasks do not involve new entities, the node state cache in REFACTOR GNNS can be directly used for332

link prediction. Table 1 summarises the result. We observe that REFACTOR GNNS achieve a similar333

or slightly better performance compared to the FM. This shows that REFACTOR GNNS are able to334

capture the essence of FMs and thus maintain strong at transductive KGC.335

B.2 REFACTOR GNNS for Inductive Learning (Q2)336

Despite FMs’ good empirical performance on transductive KGC tasks, they fail to be inductive as337

GNNs. According to our reformulation, this is due to the infinite message-passing layers hidden338

in FMs’ optimisation. Discarding infinite message-passing layers, REFACTOR GNNS enable FMs339

to perform inductive reasoning tasks by learning to use a finite set of message-passing layers for340

prediction similarly to GNNs.341

Here we present experiments to verify REFACTOR GNNS’s capability for inductive reasoning. Specif-342

ically, we study the task of inductive KGC and investigate whether REFACTOR GNNS can generalise343

to unseen entities. Following [17], on GraIL datasets, we trained models on the original graph, and344

run 0-shot link prediction on the _ind test graph. Similar as the transductive experiments, we use ??345

as the decoder and vary the entity encoder. We denote three-layer REFACTOR GNNS as ReFactor346

GNNs (3) and six-layer REFACTOR GNNS as ReFactor GNNs (6). We consider several baseline347

entity encoders: i) no-pretrain, models without any pretraining on the original graph; ii) GAT(3),348

three-layer graph attention network [28]; iii) GAT(6), six-layer graph attention network; iv) GraIL, a349

sub-graph-based relational GNN [17]; v) NBFNet, a path-based GNN [9], current SoTA on GraIL350

datasets. In addition to randomly initialised vectors as the node features, we also use as node features351

RoBERTa Encodings of the entity descriptions, which are produced by SentenceBERT [29]. Due to352

space reason, we present the results on (FB15K237_v1, FB15K237_v1_ind) in Figure 2. Results353

on other datasets are similar and can be found in the appendix. We can see that without RoBERTa354
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Figure 2: Inductive KGC Performance. Models are trained on the KG FB15K237_v1 and tested on
another KG FB15K237_v1_ind, where the entities are completely new. The results of GraIL and
NBFNet are taken from [9]. It is unclear how to incorporate node features in GraIL and NBFNet.

Embeddings as node features, REFACTOR GNNS perform better than GraIL (+23%); with RoBERTa355

Embeddings as node features, REFACTOR GNNS outperform both GraIL (+43%) and NBFNet356

(+10%), achieving new SoTA results on inductive KGC tasks.357

Performance vs Parameter Efficiency as #Message-Passing Layers Increases. Usually, as358

the number of message-passing layers increases in GNNs, the over-smoothing issue occurs while359

the computational cost also increases exponentially. REFACTOR GNNS avoid this by layer-wise360

training and sharing the weights across layers. Here we compare REFACTOR GNNS with {1, 3, 6, 9}361

message-passing layer(s) with same-depth GATs – results are summarised in Figure 3. We observe362

that increasing the number of message-passing layers in GATs does not necessarily improve the363

predictive accuracy – the best results were obtained with 3 message-passing layers on FB15K237_v1364

while using 6 and 9 layers leads to performance degradation. On the other hand, REFACTOR GNNS365

obtain consistent improvements when increasing #Layers from 1 to 3, 6, and 9. REFACTOR GNNS366

(6, 6) and (9, 9) clearly outperform their GAT counterparts. Most importantly, REFACTOR GNNS367

are more parameter-efficient than GATs, with a constant #Parameters as #Layers increases.368

B.3 Beyond Message-Passing (Q3)369

As shown by Theorem 3.1, REFACTOR GNNS contain not only terms capturing information flow370

from the 1-hop neighbourhood, which falls into the classic message-passing framework, but also371

a term n[v] that involve nodes outside the 1-hop neighbourhood. The term n[v] can be treated372

as augmented message-passing on a dynamically rewired graph [19]. Here we perform ablation373

experiments to measure the impact of the n[v] term. Table 2 summarises the ablation results: we374

can see that, without the term n[v], REFACTOR GNNS with random vectors as node features yield375

a 2% lower MRR, while REFACTOR GNNS with RoBERTa encodings as node features produce376

a 7% lower MRR. This suggests that augmented message-passing also plays a significant role in377

REFACTOR GNNS’ generalisation properties in downstream link prediction tasks. Future work might378

gain more insights by further dissecting the n[v] term.379

9



REFACTOR GNNS: Revisiting Factorisation-based Models from a Message-Passing Perspective

#Message-Passing Layers

Te
st

 M
R

R

#P
ar

am
s 

(M
)

0.0

0.2

0.4

0.6

0

2

4

6

1 2 3 6 9

GAT ReFactorGNN -- #Params GAT 　 -- #Params ReFactorGNN

Figure 3: Performance vs Parameter Efficiency as #Layers Increases on FB15K237_v1. The left
axis is Test MRR while the right axis is #Parameters. The solid lines and dashed lines indicate the
changes of Test MRR and the changes of #Parameters.

Test MRR Frozen Random Representations RoBERTa Encodings
with n[v] 0.425 0.486

without n[v] 0.418 0.452

Table 2: Ablation on n[v] for REFACTOR GNNS (6) trained on FB15K237_v1.

C Related Work380

Multi-Relational Graph Representation Learning. Previous work on multi-relational graph381

representation learning focused either on FMs [3–5, 11, 12, 30–32] or on GNN-based models [16, 33–382

35]. Recently, FMs were found to be significantly more accurate than GNNs in KGC tasks, when383

coupled with specific training strategies [10, 11, 36]. While more advanced GNNs [9] for KBC are384

showing promise at the cost of extra algorithm complexity, little effort has been devoted to establish385

the links between plain GNNs and FMs, which are strong multi-relational link predictors despite their386

simplicity. Our work aims to align GNNs with FMs so that we can combine the strengths from both387

families of models.388

Relationships between FMs and GNNs. We would like to clarify our scope, by highlighting that389

our “FM” refers to factorisation-based models used for KGC, different from matrix factorisation,390

where there are no relational parameters. Similarly, our “GNN” refers to GNNs developed for KGC,391

which incorporate (positional) node features as elaborated in Section 2. We recognise that a very392

recent work [37] builds a theoretical link between structural GNNs and node (positional) embeddings,393

where the second model category encompasses not only FMs but also many practical GNNs. Both394

our FMs and GNNs fall into the second model category. Therefore, we consider our work building a395

more fine-grained connection between positional node embeddings produced by FMs and positional396

node embeddings produced by GNNs, while at the same time focusing on KGC. Beyond FMs in KGC,397

using graph signal processing theory, [38] show that matrix factorisation (MF) based recommender398

models correspond to ideal low-pass graph convolutional filters. Coincidentally, they also find infinite399
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neighbourhood coverage in MF although using a completely different approach and focusing on a400

different domain in contrast to our work.401

Message Passing in GNNs. Message passing allows to recursively decompose a global function402

into simple local, parallelisable computations [39]. Recently, [2] provided a unified message-passing403

reformulation for various GNN architectures, including Graph Attention Networks [28], Gated Graph404

Neural Networks [40], and Graph Convolutional Networks [1]. In this work, we show that FMs can405

also be cast as a special type of GNNs, by considering SGD updates [41] over node embeddings406

as message-passing operations between nodes. To the best of our knowledge, our work is the407

first to provide such connections between FMs and GNNs. In our work, we show that FMs can408

be seen as instances of GNNs, with a characteristic feature being in the nodes being considered409

during the message-passing process: our REFACTOR GNNS can be seen as using an Augmented410

Message-Passing process on a dynamically re-wired graph [19].411

D Conclusion & Future Work412

Our work establishes a link between FMs and GNNs on the task of multi-relational link prediction.413

The reformulation of FMs as GNNs addresses the question why FMs are stronger multi-relational414

link predictors compared to plain GNNs. Guided by the reformulation, we further propose a new415

variant of GNNs, REFACTOR GNNS, which combines the strengths of both FMs and classic GNNs.416

Empirical experiments show that REFACTOR GNNS produce significantly more accurate results than417

our GNN baselines on link prediction tasks.418

Since we adopt a two-stage (sub-graph serialisation and model training) approach instead of online419

sampling, there can be side effects from the low sub-graph diversity. In our experiments, we only420

used LADIES [26] for sub-graph sampling. We plan to experiment with different sub-graph sampling421

algorithms, such as GraphSaint [27], and see how this affects the downstream link prediction results.422

Furthermore, it would be interesting to analyse decoders other than DistMult, as well as additional423

optimisation schemes beyond SGD and AdaGrad.424

E Theorem 1 Proof425

In this section, we prove Theorem 1, which we restate here for convenience.426

Theorem E.1 (Message passing in FMs). The gradient descent operator GD (5) on the node427

embeddings of a DistMult model (Equation (2)) with the maximum likelihood objective in Equation (1)428

and a multi-relational graph T defined over entities E induces a message-passing operator whose429

composing functions are:430

qM(ϕ[v], r, ϕ[w]) =

{
ϕ[w]⊙ g(r) if (r, w) ∈ N 1

+[v],
(1− Pθ(v|w, r))ϕ[w]⊙ g(r) if (r, w) ∈ N 1

−[v];
(12)

qA({m[v, r, w] : (r, w) ∈ N 1[v]}) =
∑

(r,w)∈N 1[v]

m[v, r, w]; (13)

qU(ϕ[v], z[v]) = ϕ[v] + αz[v]− βn[v], (14)

where, defining the sets of triplets T −v = {(s, r, o) ∈ T : s ̸= v ∧ o ̸= v},431

n[v] =
|N 1

+[v]|
|T |

EPN1
+

[v]
Eu∼Pθ(·|v,r)g(r)⊙ ϕ[u] +

|T −v|
|T |

EPT −vPθ(v|s, r)g(r)⊙ ϕ[s], (15)

where PN 1
+[v] and PT −v are the empirical probability distributions associated to the respective sets.432

Proof. Remember that we assume that there are no triplets where the source and the target node are433

the same (i.e. (v, r, v), with v ∈ E and r ∈ R), and let v ∈ E be a node in E . First, let us consider the434

gradient descent operator GD over v’s node embedding ϕ[v]:435

GD(ϕ, T )[v] = ϕ[v] + α
∑

(v̄,̄r,w̄)∈T

∂ logP (w̄ | v̄, r̄)
∂ϕ[v]

.

The gradient is a sum over components associated with the triplets (v̄, r̄, w̄) ∈ T ; based on whether436

the corresponding triplet involves v in the subject or object position, or does not involve v at all, these437

components can be grouped into three categories:438
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1. Components corresponding to the triplets where v̄ = v∧w̄ ̸= v. The sum over these components439

is given by:440

∑
(v,̄r,w̄)∈T

∂ logP (w̄ |v, r̄)
∂ϕ[v]

=
∑

(v,̄r,w̄)∈T

[
∂Γ(v, r̄, w̄)

∂ϕ[v]
−

∑
u

P (u|v, r̄)∂Γ(v, r̄, u)
∂ϕ[v]

]

=
∑

(r̄,w̄)∈N 1
+[v]

ϕ[w̄]⊙ g(r̄)−
∑

(v,̄r,w̄)∈T

∑
u

P (u|v, r̄)g(r̄)⊙ ϕ[u].

2. Components corresponding to the triplets where v̄ ̸= v∧w̄ = v. The sum over these components441

is given by:442

∑
(v̄,̄r,v)∈T

∂ logP (v| v̄, r̄)
∂ϕ[v]

=
∑

(v̄,̄r,v)∈T

[
∂Γ(v̄, r̄, v)

∂ϕ[v]
−

∑
u

P (u| v̄, r̄)∂Γ(v̄, r̄, u)
∂ϕ[v]

]

=
∑

(v̄,̄r)∈N 1
−[v]

g(r̄)⊙ ϕ[v̄] (1− P (v| v̄, r̄)).

3. Components corresponding to the triplets where v̄ ̸= v∧w̄ ̸= v. The sum over these components443

is given by:444

∑
(v̄,̄r,w̄)∈T

∂ logP (w̄ | v̄, r̄)
∂ϕ[v]

=
∑

(v̄,̄r,w̄)∈T

[
0−

∑
u

P (u| v̄, r̄)∂Γ(v̄, r̄, u)
∂ϕ[v]

]

=
∑

(v̄,̄r,w̄)∈T

−P (v| v̄, r̄)∂Γ(v̄, r̄, v)
∂ϕ[v]

.

=
∑

(v̄,̄r,w̄)∈T

−P (v| v̄, r̄)g(r̄)⊙ ϕ[v̄].

Collecting these three categories, the GD operator over ϕ[v], or rather the node representation update445

in DistMult, can be rewritten as:446

GD(ϕ, T )[v] = ϕ[v] + α
∑

{(r̄,w̄)∈N 1
+[v]}

ϕ[w̄]⊙ g(r̄) +
∑

(r̄,v̄)∈N 1
−[v]

ϕ[v̄]⊙ g(r̄) (1− P (v| v̄, r̄))

︸ ︷︷ ︸
v’s neighbourhood→v

(16)

−α
∑

(v̄,̄r,w̄)∈T ,v̄ ̸=v,w̄ ̸=v

P (v| v̄, r̄)g(r̄)⊙ ϕ[v̄]− α
∑

(v,̄r,w̄)∈T

∑
u

P (u|v, r̄)g(r̄)⊙ ϕ[u]

︸ ︷︷ ︸
beyond neighbourhood→v

. (17)

Note that the component “v’s neighbourhood → v” (highlighted in red) in Equation (16) is a sum447

over v’s neighbourhood – gathering information from positive neighbours ϕ[w̄], (·, w̄) ∈ N 1
+[v] and448

negative neighbours ϕ[v̄], (·, v̄) ∈ N 1
−[v]. Hence, each atomic term of the sum can be seen as a449

message vector between v and v’s neighbouring node. Formally, letting w be v’s neighbouring node,450

the message vector can be written as follows451

m[v, r, w] = qM(ϕ[v], r, ϕ[w]) =

{
ϕ[w]⊙ g(r), if (r, w) ∈ N 1

+[v],

ϕ[w]⊙ g(r)(1− P (v|w, r)), if (r, w) ∈ N 1
−[v],

(18)

which induces a bi-directional message function qM . On the other hand, the summation over these452

atomic terms (message vectors) induces the aggregate function qA:453

z[v] = qA({m[v, r, w] : (r, w) ∈ N 1[v]})

=
∑

(r̄,w̄)∈N 1
+[v]

ml[v, r̄, w̄] +
∑

(r̄,v̄)∈N 1
−[v]

ml[v̄, r̄, v] =
∑

(r,w)∈N 1[v]

m[v, r, w]. (19)
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Finally, the component “beyond neighbourhood → v” (highlighted in blue) is a term that contains
dynamic information flow from global nodes to v. If we define:

n[v] =
1

|T |
∑

(v,̄r,w̄)∈T

∑
u

P (u|v, r̄)g(r̄)⊙ ϕ[u] +
1

|T |
∑

(v̄,̄r,w̄)∈T ,v̄ ̸=v,w̄ ̸=v

P (v| v̄, r̄)g(r̄)⊙ ϕ[v̄],

the GD operator over ϕ[v] then boils down to an update function which utilises previous node state454

ϕ[v], aggregated message z[v] and a global term n[v] to produce the new node state:455

GD(ϕ, T )[v] = qU(ϕ[v], z[v]) = ϕ[v] + αz[v]− βn[v]. (20)

Furthermore, n[v] can be seen as a weighted sum of expectations by recasting the summations over456

triplets as expectations:457

n[v] =
|N 1

+[v]|
|T |

E(v,̄r,w̄)∼PN1
+

[v]
Eu∼P (·|v,̄r)g(r̄)⊙ ϕ[u] +

|T −v|
|T |

E(v̄,̄r,w̄)∼PT −v
P (v| v̄, r̄, )g(r̄)⊙ ϕ[v̄]

(21)

where T −v = {(v̄, r̄, v̄′) ∈ T | v̄ ̸= v ∧ v̄′ ̸= v} is the set of triplets that do not contain v.458

E.1 Extension to AdaGrad and N3 Regularisation459

State-of-the-art FMs are often trained with training strategies adapted for each model category. For
example, using an N3 regularizer [11] and AdaGrad optimiser [42], which we use for our experiments.
For N3 regularizer, we add a gradient term induced by the regularised loss:

∂L

∂ϕ[v]
=

∂Lfit

∂ϕ[v]
+ λ

∂Lreg

∂ϕ[v]
=

∂Lfit

∂ϕ[v]
+ λsign(ϕ[v])ϕ[v]2

where Lfit is the training loss, Lreg is the regularisation term, sign(·) is a element-wise sign function,460

and λ ∈ R+ is a hyper-parameter specifying the regularisation strength. The added component461

relative to this regularizer fits into the message function as follows:462

qM(ϕ[v], r, ϕ[w]) =

{
ϕ[w]⊙ g(r)− λsign(ϕ[w])ϕ[w]2, if (r, w) ∈ N 1

+[v],

ϕ[w]⊙ g(r)(1− P (v|w, r))− λsign(ϕ[w])ϕ[w]2, if (w, r) ∈ N 1
−[v];

(22)

Our derivation in Section 3 focuses on (stochastic) gradient descent as the optimiser for training
FMs. Going beyond this, complex gradient-based optimisers like AdaGrad use running statistics of
the gradients. For example, for an AdaGrad optimiser, the gradient is element-wisely re-scaled by

1√
sv+ϵ

∇ϕ[v]L where s is the running sum of squared gradients and ϵ > 0 is a hyper-parameter added
to the denominator to improve numerical stability. Such re-scaling can be absorbed into the update
equation:

AdaGrad(ϕ, T )[v] = ϕ[v] + (αz[v]− βn[v]) ∗ 1√
s[v] + ϵ

.

F Additional Results on Inductive KGC Tasks463

In this paper, we describe the results on FB15K237_v1_ind under some random seed. To confirm464

the significance and sensitivity, we further experiment with additional 5 random seeds. Due to465

our computational budget, for this experiment, we resorted to a coarse grid when performing the466

hyper-parameters sweeps. Following standard evaluation protocols, we report the mean values and467

standard deviations of the filtered Hits@10 over 5 random seeds. Numbers for Neural-LP, DRUM,468

RuleN, GraIL, and NBFNet are taken from the literature [9, 17]. “-” means the numbers are not469

applicable. Table 3 summarises the results. REFACTOR GNNS are able to make use of both types470

of input features, while textual features benefit both GAT and REFACTOR GNNS for most datasets.471

Increasing depth benefits WN18RR_vi_ind (i ∈ [1, 2, 3, 4]) most. Future work could consider the472

impact of textual node features provided by different pretrained language models. Another interesting473

direction is to investigate the impact of depth on GNNs for datasets like WN18RR, where many kinds474

of hierarchies are observed in the data.475
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In addition to the partial ranking evaluation protocol, where the ground-truth subject/object entity476

is ranked against 50 sampled entities,2 we also consider the full ranking evaluation protocol, where477

the ground-truth subject/object entity is ranked against all the entities. Table 4 summarises the478

results. Empirically, we observe that full ranking is more suitable for reflecting the differences479

between models than partial ranking. It also has less variance than partial ranking, since it requires480

no sampling from the candidate entities. Hence, we believe there is good reason to recommend the481

community to use full ranking for these datasets in the future.482

2One implementation for such evaluation can be found in https://github.com/kkteru/grail/blob/
master/test_ranking.py#L448.
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Depth 3 6 ∞
∆ Test MRR 0.060 0.045 0.016

Table 5: The Impact of Meaningful Node Feature on FB15K237_v1. ∆ Test MRR is computed
by test mrr (Roberta Encodings as node features) − test mrr (Random vectors
as node features). Larger ∆ means meaningful node features bring more benefit.

G Additional Results on The Impact of Meaningful Node Features483

To better understand the impact meaningful node features have on REFACTOR GNNS for the task of484

knowledge graph completion, we compare REFACTOR GNNS trained with Roberta Encodings (one485

example of meaningful node features) and REFACTOR GNNS trained with Random Vectors (not486

meaningful node features). We perform experiments on FB15K237_v1 and vary the number of487

message-passing layers: L ∈ {3, 6,∞}. Table 5 summarises the differences. We can see that488

meaningful node features are highly beneficial if REFACTOR GNNS are only provided with a small489

number of message-passing layers. As more message-passing layers are allowed, the benefit of490

REFACTOR GNNS diminishes. The extreme case would be L = ∞, where the benefit of meaningful491

node features becomes negligible. We hypothesise that this might be why meaningful node features492

haven not been found to be useful for transductive knowledge graph completion.493

H Additional Results on Parameter Efficiency494

Figure 4 shows the parameter efficiency on the dataset FB15K237_v2.495

I Experimental Details: Setup, Hyper-Parameters, and Implementation496

As we stated in the experiments section, we used a two-stage training process. In stage one, we sample497

subgraphs around query links and serialise them. In stage two, we load the serialised subgraphs498

and train the GNNs. For transductive knowledge graph completion, we test the model on the same499

graph (but different splits). For inductive knowledge graph completion, we test the model on the500

new graph, where the relation vocabulary is shared with the training graph, while the entities are501

novel. We use the validation split for selecting the best hyper-parameter configuration and report the502

corresponding test performance. We include reciprocal triplets into the training triplets following503

standard practice [11].504

For subgraph serialisation, we first sample a mini-batch of triplets and then use these nodes as seed505

nodes for sampling subgraphs. We also randomly draw a node globally and add it to the seed nodes.506

The training batch size is 256 while the valid/test batch size is 8. We use the LADIES algorithm [26]507

and sample subgraphs with depths in [1, 2, 3, 6, 9] and a width of 256. For each graph, we keep508

sampling for 20 epochs, i.e. roughly 20 full passes over the graph.509

For general model training, we consider hyper-parameters including learning rates in [0.01, 0.001],510

weight decay values in [0, 0.1, 0.01], and dropout values in [0, 0.5]. For GATs, we use 768 as the511

hidden size and 8 as the number of attention heads. We train GATs with 3 layers and 6 layers. We512

also consider whether or not to combine the outputs from all the layers. For REFACTOR GNNS, we513

use the same hidden size as GAT. We consider whether the ReFactor Layer is induced by a SGD514

operator or by a AdaGrad operator. Within a ReFactor Layer, we also consider the N3 regulariser515

strength values [0, 0.005, 0.0005], the α values [0.1, 0.01], and the option of removing the n[v], where516

the message-passing layer only involves information flow within 1-hop neighbourhood as most the517

classic message-passing GNNs do.518

We use grid search to find the best hyper-parameter configuration based on the validation MRR.519

Each training run is done using two Tesla V100 (16GB) GPUs with, where data parallelism was520

implemented via the DistributedDataParallel component of pytorch-lightning. For inductive learning521

experiments, inference for all the validation and test queries on small datasets like FB15K237_v1522

takes about 1-5 seconds, while on medium datasets it takes approximately 20 seconds, and on big523

datasets like WN18RR_v4 it requires approximately 60 seconds. For most training runs, the memory524

footprint is less than 40% (13GB). The training time for 20 full passes over the graph is about 1, 7,525

and 21 minutes respectively for small, medium, and large datasets.526
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Figure 4: Performance vs Parameter Efficiency as #Layers Increases FB15K237_v2. The left axis is
Test MRR while the right axis is #Parameters. The solid lines and dashed lines indicate the changes
of Test MRR and the changes of #Parameters.

We adapt the LADIES code base for sampling on knowledge graphs3. The datasets we use527

can be downloaded from https://github.com/villmow/datasets_knowledge_embedding528

and https://github.com/kkteru/grail. We implement REFACTOR GNNS using the529

MessagePassing API4 in PyG. Specially, we consider using message_and_aggregate function5530

to compute the aggregated messages.531

3https://github.com/acbull/LADIES
4https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
5https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html
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