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Detecting critical treatment effect bias
even in small subgroups
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PROBLEM SETTING

▶ P⋄ over (X,U, Y (0), Y (1), Y, T ) for ⋄ ∈ {rct, os}
▶ We observe D⋄ = {(Xi, Yi, Ti)}ni=1 sampled i.i.d from P⋄

Trade-off between randomized and observational data:

▶ Prct satisfies internal validity: T ⊥⊥ (Y (1), Y (0))

▶ we can estimate µrct(X) := EPrct [Y (1)− Y (0)|X]
▶ but the support of Prct

X is limited (e.g. no children)

▶ Pos covers a broader population: supp(Prct
X ) ⊂ supp(Pos

X)

▶ but many sources of bias =⇒ µos(X) is not identifiable

Can we detect when observational data
does not allow reliable inference?

…in observational study …in randomized trial
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NULL HYPOTHESIS

▶ Goal: Given a tolerance function δ, test for

H0 : |τ rct(X)− τ os(X)| ≤ δ(X), Prct
X − a.s.

▶ How: We can test if for some g⋆ : Rd → [−1, 1] in G

HG
0 : τ rct(X)− τ os(X) + g⋆(X)δ(X)︸ ︷︷ ︸

:=ψg⋆ (X)

= 0, Prct
X − a.s.

▶ but: g⋆ is unknown, and thus we cannot use the stan-
dard kernel conditional moment tests1,2

TEST STATISTIC

▶ Idea: The oracle cross U-statistic is asymptotically normal3

Ĥ2(ψg⋆) =
1

n2

n∑

i=1

2n∑

j=n+1

ψg⋆(Xi)k(Xi, Xj)ψg⋆(Xj)

with X1, . . . , X2n i.i.d. from Prct and bounded kernel k

▶ We can compute an asymptotically valid C.I. for

H2
OPT := min

g∈G
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→ |N (0, 1)|

▶ but: ψg depends on τ os, which is estimated from data

Theoretical guarantees: Asymptotic validity

Assume that

nos ≫ n and ∥τ os − τ̂ os∥L2(Prct) = OPos(n−1/2
os )

Then, under weak regularity conditions, we have
√
n Ĥ2(ψ̂g⋆)

σ̂
(

Ĥ2(ψ̂g⋆)
) → N (0, 1), as n→ ∞ and nos → ∞

Hence, ϕ̂α := I{Ĥ2
OPT ≥ zα/2} is asympt. valid at level α
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SEMI-SYNTHETIC EXPERIMENTS

▶ Data: MineThatData Email4

▶ X := customer data
▶ T := exposure to ads
▶ Y := dollars spent

▶ Set tolerance δ(x) = δ for all x

▶ Estimate δ̂LB := infδ{δ : ϕ̂(α) = 0}
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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(a) Increasing subgroup bias (b) Increasing nrct (c) Scenario 1 (d) Scenario 2

Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.

12

(a) Increasing subgroup bias (b) Increasing nrct (c) Scenario 1 (d) Scenario 2
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Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]
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In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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(a) Increasing subgroup bias (b) Increasing nrct (c) Scenario 1 (d) Scenario 2

Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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REAL-WORLD EVALUATION

▶ Data: Women’s Health Initiative

▶ T := hormone therapy (HT)
▶ Y := coronary heart disease

▶ Question: Is there enough bias to explain away the bene-
fits of HT in young women?

▶ Ground truth: No! (from established medical knowledge)

▶ Our strategy:

1. Estimate δ̂CT := EPos [τ os(X) | Xage ≤ 60]

2. Reject study if δ̂LB ≥ δ̂CT

Statistical tests ϕ̂CATE ϕ̂ATE ϕ̂CATEδ=0 ϕ̂ATEδ=0

δ̂CT 0.32 0.32 0.32 0.32

δ̂LB 0.25 0.11 ✗ ✗

Reject the study 0 0 1 1


