
Appendix475

A Extended Related Work and Discussion476

Parameter-Efficient Fine-tuning. Parameter-efficient tuning methods select a small subset of477

parameters or insert a few parameters to a pre-trained network. Then they only update the small478

subset of parameters, while keeping others fixed [7, 8, 9, 10, 11, 12, 13, 41]. For example, Adapters479

[13, 12] insert a small module into the transformer blocks and only update it. Similarly, prompt480

tuning [7] introduces a small vector that is concatenated with the input embeddings. BitFit [10] only481

tunes the bias term of the model. LoRA [11] injects trainable rank decomposition matrices into the482

transformer block. Although these methods are “parameter-efficient”, they actually cannot reduce the483

memory usage of the model itself. This is because we still needs to build the computation graph for484

the whole model. Instead, the memory usage of optimizer states will be significantly reduced, which485

is in proportional to the number of trainable parameters [14].486

Gradient Checkpointing. Gradient checkpointing helps decrease activation memory usage by487

saving only a selection of activations. However, it demands additional computation during the488

backward pass, as discarded activations must be recalculated [17, 16]. According to the report of489

Checkmate2 [16], it achieves “a 2.3x memory reduction when training a BERT model with Checkmate490

optimizations (at 1x extra overhead for rematerialization)”.491

Limitations Although WTA-CRS significantly reduces the computation of the backward pass in a492

hardware-friendly way i.e., dropping entire rows/columns in the tensor, the current implementation493

still hampers the execution time of linear operations. This is because the extra sampling process and494

data movement counteract the acceleration. However, we note that (1) the overhead can be greatly495

reduced with better implementation, e.g., using prefetch and operation-fusion technique [28]; (2) the496

existing implementation can still yield a large speedup when employing larger batch sizes (Figure 9).497

Potential Negative Societal Impacts. Our research primarily focuses on reducing the memory498

requirement of fine-tuning Language Models (LMs). The carbon emissions produced by LM fine-499

tuning may pose environmental issues. Our next step is to further improve the efficiency of LM500

fine-tuning, particularly on hardware with lower energy consumption.501

B Unbiasedness of Weight Gradient502

This part we directly follow the proof of Theorem 1 in ActNN [15]. For completeness, we provide503

the proof sketch here that is short and easy to follow. Specifically, here we use ReLU as the activation504

function for illustration convenience. We note that the conclusion in this section holds for any505

non-linear activation function. Specifically, the forward pass of ReLU-Linear at the lth layer is506

Z(l+1) = H(l)W(l),

H(l+1) = ReLU(Z(l+1)),

and the backward pass of ReLU is:507

E[∇Z(l+1)] = E[1Z(l+1)>0 ⊙∇H(l+1)]

= 1Z(l+1)>0 ⊙ E[∇H(l+1)],

where ⊙ is the element-wise product and 1 is the indicator function. The element-wise product508

is linear operation and 1Z(l+1)>0 is only related to the pre-activation Z(l+1) in the forward pass.509

We only apply the approximation during the backward pass so 1Z(l+1)>0 can be extracted from510

the expectation. We know that for the last layer L, we have E[∇H(L)] = H(L) since we do not511

apply activation at the output layer. We then can prove by induction that E[∇H(l+1)] = H(l+1) and512

E[∇W(l)] = W(l) for any layer l.513

2https://github.com/parasj/checkmate/issues/153

13

C Proof514

C.1 Derivation of Equation (3)515

Let X ∈ Rn×m, Y ∈ Rm×q be two matrices. The matrix multiplication XY can be estimated as516

GEMM(X,Y) =

m∑
i=1

X:,iYi,: ≈
k∑

t=1

1

kpit
X:,itYit,: = X′Y′,

Equation (3) shows the approximation error E[||XY−X′Y′||F] is minimized when the probabilities517

pi =
||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2

.

Proof. Let f(i) = X:iYi:

pi
∈ Rn×q . We note that f(i) is an unbiased estimation of XY. Namely,518

Ej∼P [f(j)] =

m∑
i=1

pi
X:,iYi:

pi
= XY.

Then we have519

X′Y′ =
1

k

k∑
t=1

f(it), (8)

where i1, · · · , it are the index of the sampled column-row pairs at tth random trials. For each it, its520

variance is521

Var[f(it)] = Var[
X:itYit:

pit
]

= E[
X2

:it
Y2

it:

p2it
]− E2[

X:itYit:

pit
]

= E[
X2

:it
Y2

it:

p2it
]− (XY)2.

=

m∑
t=1

X2
:tY

2
t:

pt
− (XY)2. (9)

where the first step follows from the fact that Var[x] = E[x2]− E2[x].522

Then we have,523

E[||XY −X′Y′||F] =
n∑

i=1

q∑
j=1

E[(XY −X′Y′)2ij]

=

n∑
i=1

q∑
j=1

Var[(X′Y′)ij].

By combining Equation (8) and Equation (9) into the above equation, we have524

E[||XY −X′Y′||F] =
1

k

n∑
i=1

q∑
j=1

m∑
t=1

X2
itY

2
tj

pt
− 1

k
∥XY∥2F .

=
1

k

m∑
t=1

∥X:,t∥22∥Yt,:∥22
pt

− 1

k
∥XY∥2F .

14

To minimize E[||XY −X′Y′||F], the optimal probability distribution can be obtained via solving525

the following optimization problem:526

min
p1,··· ,pm

m∑
t=1

∥X:,t∥22∥Yt,:∥22
pt

,

s.t.
m∑
t=1

pt = 1.

The solution to the above convex problem is the distribution defined in Equation (3). Namely,527

pi =
||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2

.

528

C.2 Unbiasedness of Our Proposed Estimator529

Theorem 1 (Proof in Appendix C.2). The estimator defined in Equation (4) is an unbiased estimator530

for matrix production XY, i.e, Ej∼PD\C [
∑

c∈C f(c)pc + (1−
∑

c∈C pc)f(j)] = XY.531

Proof.

Ej∼PD\C

[∑
c∈C

f(c)pc + (1−
∑
c∈C

pc)f(j)
]

=
∑
c∈C

f(c)pc + (1−
∑
c∈C

pc)Ej∼PD\C [f(j)]

=
∑
c∈C

f(c)pc + (1−
∑
c∈C

pc)
∑

j∈D\C

pj
1−

∑
c∈C pc

f(j)

=
∑
c∈C

f(c)pc +
∑

j∈D\C

f(j)pj

=Ej∼P [f(j)]

=XY

532

C.3 Variance of Our Proposed Estimator533

Theorem 2 (Proof in Appendix C.3). Suppose the total budget of column-row pairs is k. If C satisfies534 ∑
c∈C

pc >
|C|
k
, (7)

then we have Var[ĝ(X,Y)] < Var[g(X,Y)]. Moreover, Var[ĝ(X,Y)] is minimized when |C| =535

min|C|∈{0,··· ,k}
1−

∑
c∈C pc

k−|C| .536

Proof. Recall that the original estimator for matrix production XY is defined as537

Ei∼P [f(i)]. (10)

and our proposed family of estimator is defined as:538

h(j) = Ej∼PD\C

[∑
c∈C

f(c)pc + (1−
∑
c∈C

pc)f(j)
]
. (11)

15

We first define three independent random variables as belows:539

u ∼ PC , (12)

j ∼ PD\C , (13)

b ∼ Bernoulli(1−
∑
c∈C

pc). (14)

According to the Law of total variance, we have540

Var[f(i)] = Eb

[
V ar[f(i)|b]

]
+Varb

[
E[f(i)|b]

]
≥ Eb

[
Var[f(i)|b]

]
=

∑
c∈C

pcVar[f(i)|b = 0] + (1−
∑
c∈C

pc)Var[f(i)|b = 1]

≥ (1−
∑
c∈C

pc)Var[f(i)|i ∈ D\C] (15)

where the first step follows from the fact that for any random variance x,y, we have Var[y] =541

E[Var[y|x]] + Var[E[y|x]]. Also, by Equation (11), we have542

Var[h(j)] = (1−
∑
c∈C

pc)
2Var[f(j)|j ∈ D\C]. (16)

By combining the above two inequality, we have543

Var[h(j)] ≤ (1−
∑
c∈C

pc)Var[f(i)]. (17)

Equation (17) quantitatively shows the variance reduction of h(j) over f(i). Then we compare our544

estimator ĝ(X,Y) and g(X,Y) in terms of variance.545

First, because g(X,Y) = 1
k

∑k
t=1 f(it), i1, · · · ik

i.i.d∼ P . Thus we have546

Var[g(X,Y)] =
1

k
Var[f(i)]. (18)

Similarly, we have547

Var[ĝ(X,Y)] =
1

k − |C|
Var[h(j)]. (19)

By combining Equation (17) into the above two equations, we have548

Var[ĝ(X,Y)] =
1

k − |C|
Var[h(j)] (20)

≤
1−

∑
c∈C pc

k − |C|
Var[f(i)]

≤
1−

∑
c∈C pc

k − |C|
kVar[g(X,Y)],

where the first step follows from Equation (17). By setting 1−
∑

c∈C pc

k−|C| k ≤ 1, we arrive the conclusion549

that when
∑

c∈C pc >
|C|
k , we have Var[ĝ(X,Y)] ≤ Var[g(X,Y)].550

Further, 1−
∑

c∈C pc

k−|C| k achieves the minimal when |C| = min|C|∈{0,··· ,k}
1−

∑
c∈C pc

k−|C| .551

552

16

D Implementation Details553

The pseudocode for approximated linear layer with WTA-CRS and standard line layer is given in554

Algorithm 1 and Algorithm 3, respectively. The column-row pair sampling procedure is given in555

Algorithm 2. For the ease of illustration, we ignore the sequential length. As we mentioned in the556

main text, we only replace the GEMM in the backward pass with WTA-CRS . According to Equation (1c),557

we need the activation gradient∇Z to perform the column-row pair sampling during the forward pass.558

Thus we initialize a cache in CPU memory to store the gradient norm of activations from the last559

step. When performing column-row pair selection, we need to swap the gradient norm of activations560

between CPU and GPU, which will cause extra time overhead due to the data movement. Fortunately,561

we note that the number of elements in the gradient norm of activations is significantly less than the562

one in activations, which does not cause a significant time overhead.563

Algorithm 1: Forward & Backward pass of Approximated Linear Layer
Hyperparameter: The total budget of column-row pairs k.
procedure INIT:

Initialize Cache ∈ RN as an empty matrix in main memory // N is the total number
of samples in the dataset. Cache is used for saving the norm of
output gradient ∇Z.

end
procedure FORWARD PASS:

Input: activation H ∈ RB×D, weight W ∈ RD×D, indices of the current batch samples
BI = {j1, · · · , jB}.

ctx← {} // the context which saves tensors for backward
Z = HW
H′, ind←SUBSAMPLE(H, Cache[BI], k)
// Cache[BI] is the cached gradient norm from the backward pass; ind

is the set of involved column-row pair indices
ctx← {H′,W, BI, ind}
return Z

end
procedure BACKWARD PASS:

Input: ctx from the forward pass, output gradient∇Z ∈ RB×D

H′,W, BI, ind← ctx
∇H = ∇ZW⊤

∇Z′ ← ∇Z[ind]
// ∇Z′ ∈ Rk×D

∇W = H′⊤∇Z′

for j in BI do
Cache[j] = ∥∇Zj,:∥2

end
// Update the gradient norm of samples in the current batch
return ∇H,∇W

end

17

Algorithm 2: SUBSAMPLE

Input: activation H ∈ RB×D, gradient norm z ∈ RB , the total budget of column-row pairs k.
for i = 1, · · · , B do

pi ← zi||Hi,:||2∑B
j=1 zi||Hj,:||2

// The probability of column-row pairs defined in

Equation (3).
end
k̂ ← mink̂∈{0,··· ,k}

1−
∑

c∈C pc

k−k̂
, s.t. C = |k̂|. // C is the set of column-row pair

indices associated with |C| largest pi.
Sample k − |C| i.i.d. column-row pairs Cstoc = {i1, · · · , ik−|C|} from the distribution PD\C

ind← C ∪ Cstoc
for j ∈ Cstoc do

H[j, :]← H[j, :] ∗ 1−
∑

c∈C pc

(k−|C|)pj
// We need to normalize the stochastic part

in Equation (6) to ensure the unbiasedness.
end
H′ ← H[ind] // H′ ∈ Rk×D

return H′, ind

Algorithm 3: Forward & Backward pass of the standard Linear layer
procedure FORWARD PASS:

Input: activation HQ ∈ RBS×D, weight WQ ∈ RD×D, batch indices index
ctx← {} // the context which saves tensors for backward
ZQ = HQWQ

ctx← {HQ,WQ}
return ZQ

end
procedure BACKWARD PASS:

Input: ctx from the forward pass, output gradient∇ZQ

HQ,WQ ← ctx
∇HQ = ∇ZQW

⊤
Q

∇WQ = H⊤
Q∇ZQ

return ∇HQ,∇WQ

end

18

E More Experimental Results564

0.1 0.2 0.3 0.4 0.5 0.6 0.7
| |
k Ratio

0.2

0.4

0.6
Pr

ob
ab

ili
ty

 M
as

s c
p c

Query Layer (k = 0.1| |)
2-th layer
4-th layer
6-th layer
| |
k Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7
| |
k Ratio

0.2

0.4

0.6

Key Layer (k = 0.1| |)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
| |
k Ratio

0.2

0.4

0.6

Value Layer (k = 0.1| |)

Fig. 10. The probability mass
∑

c∈C pc versus |C|
k in Equation (7) at k = 0.1|D|. Here we visualize

the column-row index distribution of query/key/value layer T5-base model, fine-tuned on RTE dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
| |
k Ratio

0.25

0.50

0.75

Pr
ob

ab
ili

ty
 M

as
s c

p c

Query Layer (k = 0.5| |)

2-th layer
4-th layer
6-th layer
| |
k Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7
| |
k Ratio

0.25

0.50

0.75

Key Layer (k = 0.5| |)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
| |
k Ratio

0.25

0.50

0.75

Value Layer (k = 0.5| |)

Fig. 11. The probability mass
∑

c∈C pc versus |C|
k in Equation (7) at k = 0.5|D|. Here we visualize

the column-row index distribution of query/key/value layer T5-base model, fine-tuned on RTE dataset.

0 20 40 60 80 100
Iteration

0.6

0.7

Pr
ob

ab
ili

ty
 M

as
s c

p c

Query Layer (| |
| | = 0.1)

2-th layer
4-th layer
6-th layer

0 20 40 60 80 100
Iteration

0.6

0.7

Key Layer (| |
| | = 0.1)

0 20 40 60 80 100
Iteration

0.6

0.7

Value Layer (| |
| | = 0.1)

Fig. 12. The probability mass of top-10% column-row pairs in Equation (3) versus iterations. Here
we visualize the query/key/value layer T5-base model, fine-tuned on RTE dataset.

E.1 More Experimental Analysis on Theorem 2565

To evaluate Theorem 2 more comprehensively, below we also plot the
∑

c∈C pc versus |C|
k at k =566

0.1|D| and k = 0.5|D| in Figure 10 and 11, respectively. We also plot
∑

c∈C pc versus iterations567

in Figure 12. We summarize that the the column-row index distribution is concentrated on a few568

column-row pairs. Thus, the assumption in Theorem 2 holds under the context of fine-tuning569

transformers.570

E.2 More Experimental Speed Analysis571

Increasing the batch size can often result in faster model convergence and/or enhance the final572

performance. Ideally, we should adjust the batch size according to the requirements of our model573

rather than being constrained by the GPU’s memory capacity. To illustrate this, we have represented574

the correlation between peak memory usage and maximum mini-batch size for T5-Base, T5-Large,575

and T5-3B in Figure 13. Our observations highlight that WTA-CRS effectively increases the maximum576

available batch size.577

We also provide the apple-to-apple speed comparison for linear operation with and without WTA-CRS578

in Table 3. In Table 3, “Fwd”, “Bwd”, and “F-B” are the time of forward pass, the time of backward579

pass, and the total time for both the forward and backward pass, respectively. We summarize that580

under the same workload, the current implementation of WTA-CRS may roughly slow down the linear581

19

Method T5-
ATT

T5-
FF

T5
Block

T5-
Large

Fwd Full 8 10 17 1052
WTA-CRS 22 16 37 2013

Bwd Full 16 19 34 2073
WTA-CRS 15 14 30 1738

F-B Full 24 29 51 3125
WTA-CRS 37 30 67 3751

Table 3: Latency (ms) of Forward and Backward pass.

operation about 20%. This is because the extra sampling process and data movement counteract582

the acceleration (see Algorithm 1). However, we note that (1) the overhead can be greatly reduced583

with better implementation, e.g., using prefetch and operation-fusion technique [28]; (2) the existing584

implementation can still yield a large speedup when employing larger batch sizes (Figure 9).585

500 1000 1500
Batch-size

20

40

60

80

Pe
ak

 M
em

 c
os

t (
G

B
)

Full
LoRA
LoRA+WTA-CRS@0.3
LoRA+WTA-CRS@0.1

(a) T5-Base

200 400 600
Batch-size

20

40

60

80

Pe
ak

 M
em

 c
os

t (
G

B
)

Full
LoRA
LoRA+WTA-CRS@0.3
LoRA+WTA-CRS@0.1

(b) T5-Large

100 200
Batch-size

40

60

80

Pe
ak

 M
em

 c
os

t (
G

B
)

Full
LoRA
LoRA+WTA-CRS@0.3
LoRA+WTA-CRS@0.1

(c) T5-3B

Fig. 13. Peak memory usage versus maximum mini-batch size of T5.

F Experimental Settings586

We give the detailed hyper-parameter setting in this section. Specifically, for both T5 and BERT587

models, the parameters are updated with the AdamW optimizer β1 = 0.9 β2 = 0.999 ϵ = 10−8 and588

weight decay = 0. The the learning rate is adjusted with a linear LR Scheduler, which maintains a589

constant learning rate for the initial 500 steps, and adjusts it gradually thereafter. The input sequences590

are padded to the maximum length 128. WTA-CRS has a LoRA dimension 32 if it is combined with591

LoRA. To achieve the optimal solution, the T5-Base, Large, 3B and BERT-Base and Large models592

have different learning rate, training epoch number, and mini-batch size on different datasets, which593

are given in Tables 5, 6, 7, respectively.594

F.1 Computational Infrastructure595

The computational infrastructure information is given in Table 4.596

Table 4: Computing infrastructure for the experiments.
Device Attribute Value
Computing infrastructure GPU
GPU model NVIDIA-A100
GPU Memory 81251MB
CUDA Version 11.4
CPU Memory 512GB

20

Table 5: Learning rate.
Model Method CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B

BERT-Base WTA-CRS@0.3 2e-5
LoRA+WTA-CRS@0.3 2e-4 5e-4 2e-4 3e-4 3e-4 2e-4 2e-4 3e-4

T5-Base

WTA-CRS@0.3 3e-5 3e-6 3e-5 3e-5
WTA-CRS@0.1 3e-5
LoRA+WTA-CRS@0.3 3e-4 3e-5 3e-4 3e-5 3e-5 3e-5 3e-4 3e-4
LoRA+WTA-CRS@0.1 3e-4 3e-5 3e-4 3e-5 3e-5 3e-5 3e-4 3e-4

BERT-Large WTA-CRS@0.3 2e-5
LoRA+WTA-CRS@0.3 3e-4 2e-4 2e-4 2e-4 2e-4 2e-4 3e-4 3e-4

T5-Large WTA-CRS@0.3 3e-5 3e-6 3e-5 3e-5
WTA-CRS@0.1 3e-5 3e-6 3e-5 3e-5
LoRA+WTA-CRS@0.3 3e-4 3e-5 3e-4 3e-5 3e-5 3e-5 3e-4 3e-4
LoRA+WTA-CRS@0.1 3e-4 3e-5 3e-4 3e-5 3e-5 3e-5 3e-4 3e-4

T5-3B LoRA+WTA-CRS@0.3 3e-4 3e-5 3e-4 3e-4 3e-4 3e-5 3e-4 3e-4
LoRA+WTA-CRS@0.1 3e-4 3e-5 3e-4 3e-4 3e-4 3e-5 3e-4 3e-4

Table 6: Training epoch number.
Model Method CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B

BERT-Base WTA-CRS@0.3 20 20 10 10 10 10 20 10
LoRA+WTA-CRS@0.3 60 20 20 20 20 20 40 40

T5-Base

WTA-CRS@0.3 40 10 20 10 10 10 50 20
WTA-CRS@0.1 40 10 20 10 10 10 50 20
LoRA+WTA-CRS@0.3 40 10 20 20 20 10 50 20
LoRA+WTA-CRS@0.1 40 10 20 20 20 10 50 20

BERT-Large WTA-CRS@0.3 60 20 20 10 10 10 40 10
LoRA+WTA-CRS@0.3 60 20 20 20 20 20 40 40

T5-Large

WTA-CRS@0.3 20 10 20 10 10 10 40 20
WTA-CRS@0.1 20 10 20 10 10 10 40 20
LoRA+WTA-CRS@0.3 40 10 40 10 10 10 60 20
LoRA+WTA-CRS@0.1 40 10 20 10 10 10 60 20

T5-3B LoRA+WTA-CRS@0.3 40 10 20 10 10 10 60 20
LoRA+WTA-CRS@0.1 40 10 20 10 10 10 60 20

Table 7: Training mini-batch size.
Model Method CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B

BERT-Base/Large WTA-CRS@0.3 128 16
LoRA+WTA-CRS@0.3 128 16

T5-Base/Large/3B

WTA-CRS@0.3 100
WTA-CRS@0.1 100
LoRA+WTA-CRS@0.3 100
LoRA+WTA-CRS@0.1 100

21

