
Published as a conference paper at COLM 2025

CV Bench V⇤ Bench MMVP MMStar-V MME-RealWorld-V MMLU-Pro Total
# Images 2638 191 300 750 6405 - 10284
# Questions 2638 191 300 750 11436 12032 27347

Table 3: Benchmark statistics.

A Table of Content

1. Sec. B elaborates the details of the considered five vision-centric benchmarks
2. Sec. C provides the analysis of fine-tuned VLM’s response length versus question

difficulties.
3. Sec. D provides additional experimental results including additional comparison

with self-training and our efforts to improve VLAA-thinking and Virgo.
4. Sec. E provides the full evaluation results on text-only reasoning benchmark,

MMLU-Pro.
5. Sec. F provides implementation details in dataset generation, VLM training, and

VLM inference.
6. Sec. G provides additional qualitative results of our dataset generation pipeline.

B Benchmark and evaluation details

We describe the details of each benchmark:

1. CV-Bench (Tong et al., 2024a) is a comprehensive benchmark of over 2k manually-
inspected examples, evaluating visual understanding across domains such as object
recognition, scene understanding, and visual reasoning. We report the mean accu-
racy over four categories: count, depth, distance, and relation.

2. V⇤ Bench (Wu & Xie, 2024) targets fine-grained visual reasoning tasks that de-
mand detailed analysis of visual elements. We report the mean accuracy over two
categories: attribution and relation.

3. MMVP (Tong et al., 2024b) tests visual pattern recognition using “CLIP-blind
pairs”—visually distinct images perceived as similar by CLIP—highlighting sys-
tematic limitations in VLMs.

4. MMStar-V includes tasks assessing instance-level reasoning, fine-grained perception
(detecting subtle visual details), and coarse perception (understanding overall scene
context). In total, it consists of 750 examples.

5. MME-RW-V. MME-RealWorld (Zhang et al., 2024) evaluates real-world visual under-
standing across domains such as autonomous driving, remote sensing, monitoring,
diagrams, tables, and OCR, testing both perception and reasoning. From these, we
select three perception tasks—Remote Sensing, Monitoring, and Autonomous Driv-
ing—and two reasoning tasks—Monitoring and Autonomous Driving—to form
MME-RealWorld-V.

6. MMLU-Pro (Wang et al., 2024a) consists of over 12k questions from academic exams
and textbooks, spanning 14 diverse domains. We report the mean accuracies over
categories.

As a result, our evaluation provides a comprehensive view on the perceptual capabilities
enabled by the training datasets under consideration. Table 3 shows the basic statistics of
the considered benchmarks.

C Response length vs. question difficulty

Following prior works (Lightman et al., 2024; Snell et al., 2025), we define question dif-
ficulty with respect to a base VLM, i.e. Qwen2.5-VL-7B-Instruct. For each question, we
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Approach Avg CV-Bench V⇤ Bench MMVP MMStar-V MME-RW-V
Qwen2.5-VL-7B-Instruct 58.47 74.74 48.51 73.67 63.73 31.68

VLAA-thinking 42.32 68.50 53.53 66.67 0.53 22.38
+ only natural images 34.96 61.91 28.86 55.00 6.20 22.86

Virgo 50.87 67.22 44.14 57.67 57.60 27.71
+ improved formatting 52.58 68.94 46.54 66.33 53.47 27.60

Table 4: Attempted improvements on top of VLAA-Thinking and Virgo baselines.

Approach V⇤ Bench CV-Bench MMVP
Visual-CoT-7B-336 53.06 63.52 63
Qwen2.5-VL-7B-Instruct 48.51 74.74 73.67
+ LongPerceptualThoughts- SFT + DPO (Ours) 60.31 76.61 75

Table 5: Comparison with Visual CoT (Shao et al., 2024a) that reasons by explicitly modifying
images, e.g. through cropping regions of interests.

estimate the model’s accuracy using 11 samples and bin the questions into two quantiles:
easy and hard. Our analysis focuses on the outputs of the VLM fine-tuned via DPO on
LongPerceptualThoughts. Fig 4 shows the distribution of response lengths across the easy
and hard bins for four different tasks. We observe that the model naturally allocates more
test-time compute—reflected in longer responses—for harder questions, where its original
(pre-fine-tuning) performance was worse.

D Additional Results

Comparison with Visual-CoT Our work focuses on equipping VLMs with an internal
search mechanism that unfolds through a textual inner monologue. Prior studies have incor-
porated intermediate representations by explicitly modifying images, e.g. cropping (Shao
et al., 2024a). Here, we compare our approach with Visual-CoT-7b-336. Visual-CoT-7b-336
is trained in two stages, leveraging Vicuna-7B () and ViT-L/14-336 (). Its training data in-
cludes 438k question–answer pairs annotated with intermediate bounding boxes (Shao et al.,
2024a).

As shown in Tab. 5, Visual-CoT-7b-336 underperforms even our base instruction-tuned
VLM, Qwen2.5-VL-7B. Our method consistently surpasses baselines across diverse bench-
marks, highlighting its strong generalizability.

VLAA-Thinking and Virgo adjustments. As we saw degradation in performance when
training on both, Virgo and VLAA-Thinking, we spent additional time investigating the
datasets and the model behavior they are causing which lead to these results.

We found that VLAA-Thinking consists of large proportions of math questions whereas
natural image data is dominating the considered benchmarks as we focus on perceptual
tasks. We hypothesize that this distribution shift might lead to lower performance. To
investigate, we consider a version of VLAA-Thinking where we only keep the image subsets
containing natural images, i.e., ALLaVA-LAION and VizWiz, and randomly sample a subset
of the same size. For Virgo, we found that predictions would not consistently respect
the system prompt when formatting answers leading to inconsistencies with our regex-
based evaluation. We thus explore a version of the dataset where we only copy the answer
provided inside \boxed{} into <answer> tags, discarding the justification part of the answer,
while keeping the thinking part of the dataset the same.

The results of both adjustments can be found in Table 4. We observe that training on only
natural images in VLAA-Thinking hurts performance further, likely due to the limited data
diversity. One the other hand, when applying improved answer formatting the results on
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Avg Biology Business Chemistry CompSci. Econ. Engin. Health History Law Math Phil. Physics Psych. Other
Qwen2.5-VL-7B-Instruct 48.07 68.62 55.77 44.79 49.51 61.26 34.26 47.68 43.57 24.89 50.41 38.88 47.19 60.65 45.56

DOCCI 32.99 51.60 42.33 22.61 37.32 43.48 18.89 32.76 22.31 10.26 40.19 29.46 25.56 51.13 33.98
VLAA-Thinking 21.56 25.24 27.76 15.11 20.73 25.47 7.64 24.45 29.40 13.35 26.72 20.04 17.78 21.43 26.73
Virgo 37.95 64.02 44.36 28.98 36.59 50.36 10.63 38.63 37.27 21.16 41.67 33.07 33.18 53.88 37.45

Ours - SFT 50.77 71.83 56.78 50.35 51.22 62.68 38.49 50.86 42.78 25.07 64.25 40.88 50.65 60.78 44.16
Ours - SFT + DPO 50.20 73.08 55.26 45.94 48.29 62.09 37.98 51.10 45.41 28.25 59.07 40.68 48.73 62.28 44.70

Table 6: Results for all categories of the MMLU-Pro dataset.

Virgo improve slightly from 50.87% to 52.58%. However, despite these adjustments, the
datasets still fail to improve beyond the base model.

E Full MMLU-Pro Evaluation Results

We provide the detailed results on all MMLU-Pro categories in Table 6. We observe that
the model fine-tuned on our LongPerceptualThoughts dataset consistently outperforms
the baselines and provides improvements on top of the base model except for the Other
category.

F Implementation Details

F.1 LongPerceptualThoughts

Data generation. Our framework consists of three stages: generates verifiable multiple-
choice questions using MLLM, extracts simple chains of thought (CoTs) from vision-
language models MVLM, and expands them into rich, long-form reasoning traces using
frontier reasoning models MReason.

1. In Stage 1, we use gpt-4o-mini-2024-07-18 with temperature 0.7. First, we prompt
GPT-4o using the prompt in Fig. 5 to generate multiple-choice questions. Then, we
parse the outputs by prompting GPT-4o again using the prompt in Fig. 6.

2. In Stage 2, we use Qwen2.5-VL-7B-Instruct with temperature 0.7, top p 0.8, repeti-
tion penalty, 1.05, and set number of samples per input to 3.

3. In Stage 3, we use R1-Distill-Qwen-32B with temperature 0.7, top p 0.8, top k 50,
repetition penalty, 1.05, and set number of samples per input to 3. To avoid out-
puts include phrases like “As the description says”, we explicitly define bad words
as “describe, description, described, describes, descriptions, mention, mentions,
mentioned, misread, text, stated, says, mental”. The prompt is provided in Fig. ??

F.2 Training details

SFT Training. We fine-tune the language decoder with a batch size of 256, sweeping learning
rates over {10�5, 8 ⇥ 10�6, 6 ⇥ 10�6}. Training runs for up to 5 epochs with early stopping
based on the average validation accuracy. We set the maximum image resolution to 512⇥ 512
and the input cutoff length to 1024.

DPO Training. We fine-tune the language decoder with a batch size of 256, sweeping
learning rates over {1 ⇥ 10�6, 5 ⇥ 10�7, 1 ⇥ 10�7}. Training runs for up to 3 epochs with
early stopping based on the average validation accuracy. We set the maximum image
resolution to 512 ⇥ 512 and the input cutoff length to 1024. For DPO, we set b to 1. and
following Pang et al. (2024), we include SFT loss with a weight of 0.5.

F.3 DOCCI Captions

We select the same 500 images used to generate our dataset. Next, we format the training
dataset with the user prompt ”Provide a detailed description of the image.”, prepending
the image token and use the dense description provided in the dataset as the target answer
of the model without further processing. We train the model using learning rate 8 ⇥ 10�6
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with batch size 256 for a maximum of 20 epochs. The training reaches maximum average
accuracy on the validation set in the third epoch and we subsequently use this checkpoint
to report results in the main paper.

F.4 VLAA-thinking

We preprocess the dataset into two different versions, discarding samples where no reason-
ing trace could be extracted. The first version uses 24, 035 randomly selected samples from
the original dataset containing 158, 827 samples. The second version also 24, 035 random
samples, however, we filter the dataset for images from ALLaVA-LAION and VizWiz. The
latter specifically contains natural images - similar to the setting we train and evaluate on.
We use the official dataset3 provided and apply some minor processing to the dataset to for-
mat the samples into a similar format as ours. In particular, we extract the thinking process
and the answer from the ds answer column of the dataset and place these into <think> and
<answer> tags respectively. We use the same system prompt as for our model (see Sec. F.7).

Training. We finetune the language decoder using batch size 256. For both versions, we
perform hyper parameter tuning by sweeping learning rates {10�5, 8 ⇥ 10�6, 6 ⇥ 10�6}. We
train for a maximum of 5 epochs and perform early stopping based on the average accuracy
on the validation datasets.

F.5 Virgo

We use the dataset introduced in Virgo (Du et al., 2025) as DSD
4 as other versions are not

publicly available and it provides the best average performance in their experiments. As
instructed on the webpage we use the ”conversation” column of the dataset which the
authors report to be the final data used to train the Virgo-7B model. The conversation
column is constructed as the correct response with the shortest length of 5 samples given
each prompt.

We apply minor processing to the dataset to follow our format by replacing the
<|begin of solution|> and <|end of solution|> with <answer> and </answer>. Similarly,
we replace <|begin of thought|> and <|end of thought|> with <think> and </think>. Fi-
nally, we append ”Format the answer with the letter of the correct option in parentheses.”
to the system prompt if the question is a multiple choice question. Overall, the resulting
training dataset contains 14, 540 samples.

Training. For training, we follow the setup described in F.4, i.e., performing basic hyper
parameter tuning, with the only change to limit training to 3 epochs as we found that the
model performance peaks early during training. Surprisingly, we achieve the best validation
performance before the first epoch ends.

F.6 Evaluation

Inference setup. We use vLLM (Kwon et al., 2023) for inferencing all models with greedy
decoding. Detailed settings can be found in Tbl. 7. Further, we resize images’ longer side to
512 pixels preserving the aspect ratio if necessary. As the reasoning traces for MMLU-Pro
tend to be longer for all models due to the difficulty of the task, we double the maximum
number of new tokens generated. We use four NVIDIA RTX6000.

F.7 Prompt design

We provide the prompts used in formulating training and evaluation data:

1. VLM training: Inspired by the prompt provided by DeepSeek-R1 (DeepSeek-AI
et al., 2025), we design the prompt used to evaluate VLMs to provide thoughts and
answers, as shown in Fig. 10. For DOCCI descriptions, we use the prompt in Fig. 8

2. VLM evaluation: We evaluate VLMs that answer directly using the prompt in Fig. 9.

3https://huggingface.co/datasets/UCSC-VLAA/VLAA-Thinking
4https://huggingface.co/datasets/RUC-AIBOX/Virgo-Visual-Long-Thought-Dataset
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Setting Value
cutoff length 2048
max new tokens 1024 (2048 for MMLU-Pro)
temperature 0.0
top p 1.0
dtype half

Table 7: vLLM inference settings.

(a) CV-Bench - Count (b) MMStar - InstReason (c) MMStar - CoarsePercep

Figure 4: Response lengths vs. question difficulties. We analyze the responses of the VLM
fine-tuned on LongPerceptualThoughts via DPO. Interestingly, we find that the model
finetuned in our data naturally allocates more test-time compute for hard questions. We
follow Lightman et al. (2024); Snell et al. (2025) and determine question complexity using
rollouts on the base model.

G Qualitative dataset example

We provide an example of our dataset in Fig. 11.
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System: You are an assistant that converts image descriptions to
multi-choice visual questions.,!

User: Task:
You are given a detailed description of an image. Your goal is to

generate diverse vision-centric, detailed questions that require a
careful examination of the image for subtle visual details. Each
question should be answerable in a brief sentence or single phrase.

,!

,!

,!

Instructions:
- Focus on Visual Detail:

- Ask questions that require examining fine details such as textures,
patterns, and small or hidden elements.,!

- Encourage the reader to analyze spatial relationships like object
overlap, perspective, and layout.,!

- Include aspects of lighting, shadows, and color gradients that
affect the image�s mood and depth.,!

- Comprehensive Coverage:
- Ensure that the questions, as a group, address the majority of

important details mentioned in the image description.,!

- Design for Multiple-Choice:
- For each question, provide 4 answer options labeled A, B, C, and D.
- Include one correct answer and three plausible distractors.

- Encourage Careful Inspection:
- Design each question so that it cannot be answered without a close,

careful visual inspection of the image.,!

- Avoid generic or overly broad questions; each should target specific
visual cues mentioned or implied in the description.,!

- Clarity, Specificity, and Brevity in Answers:
- Formulate questions that are clear and focused on visual elements.
- Ensure each question is detailed enough to challenge the reader to

look beyond the surface.,!

- Avoid questions that can be answered with general knowledge or
assumptions.,!

- Each question should be answerable in a brief sentence or even a
single phrase.,!

- Structured Output:
- Provide the questions in a numbered list.
- Example Format: 1. <question> question here </question> <choices>

(A) ... (B) ... (C) ... (D) ... </choices> <answer> short answer
here </answer>

,!

,!

Image Description:
{{ image descriptions }}
Assistant:

Figure 5: Text prompt converting descriptions to multi-choices questions.
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User: You are given a text containing multiple multi-choice questions.
Each question includes a question statement, several choices, and an
answer. Your task is to reformat the text so that each multi-choice
question follows the structure below:

,!

,!

,!

1. <question> question text here </question> <choices> (A) choice A text
(B) choice B text (C) choice C text (D) choice D text </choices>
<answer> answer text here </answer>

,!

,!

Please ensure that:
- Each question is numbered sequentially (e.g., 1., 2., 3., . . . ).
- The question portion is enclosed within the �<question>� tags.
- All answer options are enclosed within the �<choices>� tags, with each

option clearly labeled (A), (B), (C), (D).,!

- The answer is enclosed within the �<answer>� tags.
- The original content is preserved, but any formatting issues are

corrected according to the template above.,!

Here is the original content: {{ raw outputs in Fig.5 }}
Assistant:

Figure 6: Text prompt to parse the response of Fig. 5 to multi-choices questions.

User: You are a large language model that answers visual questions by
generating a vivid mental image from a text description. Given a
visual question along with an image description, create a detailed
internal visualization of the image. Then, use this mental image to
spatially reason through and answer the question.

,!

,!

,!

,!

- After building the mental image from the text description, you should
not explicitly referencing the text description in your internal
reasoning. e.g., Avoid saying "The description states ..." within
<think>...</think> block.

,!

,!

,!

- Ensure your reasoning is logically sound and leads coherently to the
final answer. The steps you follow should clearly support the
conclusion you reach.

,!

,!

- Please provide your answer as (X), where X is the letter of the correct
option.,!

- Enclose your final answer within <answer> and </answer> tags.

Assistant: <think> {{ simeple CoT }} {{ cognitive phrase }}

Figure 7: Text prompt to generate R1 thoughts.

System: A conversation between User and Assistant. The user asks a visual
question, and the Assistant solves it. The answer are enclosed within
<answer> </answer> tags, respectively, i.e., <answer> answer here
</answer>. Format the answer with the letter of the correct option in
parentheses.

,!

,!

,!

,!

User: <image>Provide a detailed description of the image.
Assistant: {{ image descriptions }}

Figure 8: Training prompt for training on DOCCI descriptions.
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System: A conversation between User and Assistant. The user asks a visual
question, and the Assistant solves it. The answer are enclosed within
<answer> </answer> tags, respectively, i.e., <answer> answer here
</answer>. Format the answer with the letter of the correct option in
parentheses.

,!

,!

,!

,!

User: <image> {{ question }}
Select from the following choices.
{{ choices }}
Assistant:

Figure 9: Evaluation prompt for direct answers.

System: A conversation between User and Assistant. The user asks a visual
question, and the Assistant solves it. The assistant first thinks
about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags, respectively, i.e.,
<think> reasoning process here </think> <answer> answer here
</answer>. Format the answer with the letter of the correct option in
parentheses.

,!

,!

,!

,!

,!

,!

,!

User: <image>{{ question }}
Select from the following choices.
{{ choices }}
Assistant:

Figure 10: Evaluation prompt for thoughts and answers.

23



Published as a conference paper at COLM 2025

Question: How is the smaller tennis racket decorated within its strings?
Select from the following choices.
(A) A smiley face
(B) A floral design
(C) A logo
(D) A pattern of stars
% Correct answer: (A) A smiley face

Simple CoT

<think>
Upon examining the smaller tennis racket, I can see that there is a

distinct pattern of stars within its strings. This pattern is
consistent across the strings, making it clear what the design is.

,!

,!

</think>

<answer> (D) </answer>

Ours

<think>
Upon examining the smaller tennis racket, I can see that there is a

distinct pattern of stars within its strings. This pattern is
consistent across the strings, making it clear what the design is.
Wait, no, hold on. Actually, the image shows a smiley face inside the
strings, but it�s upside down. So that must be the decoration.

,!

,!

,!

,!

Wait, maybe I got confused. Let me double-check. The smaller racket has a
smiley face printed in black within the strings. So the correct
answer should be A smiley face. But wait, the options include both A
and C. Hmm, could it be a logo? No, because the Wilson racket has a
logo, but the smaller one has a smiley face. So the decoration is a
smiley face, which is option A.

,!

,!

,!

,!

,!

</think>

<answer> (A) </answer>

Figure 11: Qualitative example of our LongPerceptualThoughts dataset performing verifica-
tion.
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