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Abstract Feature engineering, a crucial step of machine learning, aims to construct useful features from 4

raw data to improve model performance. In recent years, great e�orts have been devoted 5

to Automated Feature Engineering (AutoFE) to replace expensive human labor. However, 6

all existing methods treat AutoFE as an optimization problem over a discrete feature space, 7

leading to the problems of feature explosion and computational ine�ciency. Unlike previous 8

work, we perform AutoFE in a continuous vector space and propose a di�erentiable method 9

called DIFER in this paper. Speci�cally, we �rst propose an evolutionary framework to 10

search for better features iteratively. In each feature evolution step, we introduce a feature 11

optimizer based on the encoder-predictor-decoder, which maps features into the continuous 12

vector space via the encoder, optimizes the embedding along the gradient direction induced 13

by the predictor, and recovers better features from the optimized embedding by the decoder. 14

Extensive experiments on classi�cation and regression datasets demonstrate that DIFER 15

can signi�cantly outperform the state-of-the-art AutoFE method in terms of both model 16

performance and computational e�ciency. The implementation of DIFER is avaialable on 17

https://anonymous.4open.science/r/DIFER-3FBC/. 18

1 Introduction 19

Feature engineering, the process of constructing features from raw data, directly determines the 20

upper bound of various machine learning algorithms (e.g., Random Forest and Logistic Regression). 21

However, it requires considerable domain knowledge to construct features. Also, huge computa- 22

tional resources are needed to evaluate and then �lter features. Thus, it is a cost-intensive task to 23

�nd useful and meaningful features. 24

Recently, the AutoFE (Automated Feature Engineering) methods that search for useful features 25

without any human intervention have received more and more attention. AutoFE formalizes feature 26

construction as applying transformations (e.g., arithmetic operators) to the raw features. The 27

expansion-reduction algorithm (Kanter and Veeramachaneni, 2015; Lam et al., 2017) iteratively 28

applies all transformations to each feature and selects the features based on the model performance. 29

Without expert guidance, such method consumes signi�cant computational resources for feature 30

evaluation due to the exponentially growing feature space. To reduce the cost, learning-based 31

AutoFE methods are proposed. TransGraph (Khurana et al., 2018) trains a Q-learning agent to decide 32

the transformation. Due to applying each action (i.e., transformation) to all features, TransGraph 33

also su�ers from the feature explosion problem. LFE (Nargesian et al., 2017) trains an MLP (Multi- 34

Layer Perceptron) to recommend the most likely useful transformation for each feature. However, 35

it does not support the composition of transformations. NFS (Chen et al., 2019) generates a feature 36

transformation sequence for each raw feature under the guidance of an RNN controller. Although 37

NFS can achieve SOTA (state-of-the-art) performance, the computational e�ciency is still low. An 38

inherent cause of ine�ciency for the existing approaches is the fact that AutoFE is treated as an 39

optimization problem over a discrete space. 40

In this paper, we address the AutoFE problem from a di�erent perspective and propose the �rst 41

gradient-based approach called DIFER (DI�erentiable automated Feature EngineeRing). We �rst 42

propose an evolutionary framework to generate better features iteratively. Then, in each feature 43

evolution step, we propose a tree-like structure called parse tree to represent constructed features 44
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�exibly, and leverage a feature optimizer based on the encoder-predictor-decoder. Speci�cally, 45

instead of searching in the discrete feature space, the encoder maps the traversal string of the parse 46

tree into a continuous vector space. Constructing a better feature is equivalent to generating better 47

embedding in the continuous vector space. The following predictor takes the feature embedding 48

as input, predicts its performance score, and directly optimizes the embedding by gradient ascent 49

along the score direction. The optimized embedding is further decoded as a better feature in the 50

discrete space. 51

Extensive experimental results on both classi�cation and regression tasks reveal that DIFER 52

is not only e�ective but also e�cient. Compared to the SOTA approach, DIFER achieves better 53

performance on 22 out of 25 datasets with 40 times fewer feature evaluations. Moreover, DIFER 54

can be e�ective when using di�erent machine learning algorithms. 55

To summarize, our main contributions can be highlighted as follows: 56

• We propose a feature evolution framework to search for better features iteratively. 57

• To represent constructed features, we design the parse tree structure, which is more �exible and 58

expressive than the commonly-used sequence representation. 59

• We introduce a novel feature optimizer based on the encoder-predictor-decoder for feature 60

evolution and thus can achieve di�erentiable AutoFE. To our best knowledge, DIFER is the �rst 61

di�erentiable AutoFE method. 62

• Extensive experimental results on a variety of tasks demonstrate that DIFER outperforms the state- 63

of-the-art AutoFE approach in terms of both model performance and computational e�ciency. 64

2 Related work 65

Feature engineering aims to transform raw data into features that can better express the nature of 66

the problem. Recently, feature engineering has gradually shifted from leveraging human knowledge 67

to automated methods. Existing AutoFE approaches can be divided into three categories. 68

Heuristic Approaches: Deep Feature Synthesis (DFS), the component of Data Science Machine 69

(Kanter and Veeramachaneni, 2015), �rst enumerates all transformations on all features and then 70

performs feature selection directly based on the improvement of model performance. One Button 71

Machine (Lam et al., 2017) adopts a similar approach. However, this expansion-reduction approach 72

su�ers from a severe computational performance bottleneck due to the huge feature evaluation 73

overhead. To avoid enumerating the entire feature space, Cognito (Khurana et al., 2016) introduces 74

a tree-like exploration of feature space and presents handcrafted heuristics traversal strategies such 75

as breadth-�rst search and depth-�rst search. AutoFeat (Horn et al., 2019) iteratively subsamples 76

features using beam search. However, heuristic approaches cannot learn from past experiences and 77

thus has a low search e�ciency. 78

Learning-Based Approaches: To explore feature space e�ciently, learning-based AutoFE methods 79

have been proposed. LFE (Nargesian et al., 2017) trains an MLP and recommends the most likely 80

useful transformation for each raw feature. However, it does not support transformation composi- 81

tion and works only for classi�cation tasks. TransGraph (Khurana et al., 2018) trains a Q-learning 82

agent to decide which transformation should be applied. Due to performing each transformation 83

on all features, TransGraph su�ers from feature explosion and low computational e�ciency. 84

NAS-Based Approaches: Neural Architecture Search (Elsken et al., 2019) has aroused signi�cant 85

research interests in the �eld of AutoML (He et al., 2020). The reinforcement learning-based 86

NAS method (Zoph and Le, 2017) views the structure of a neural network as a variable-length 87

string. Then, it uses a recurrent network as the controller to generate such strings and trains the 88

controller with policy gradient. This approach can be adopted into AutoFE. For instance, NFS (Chen 89

et al., 2019), the current SOTA AutoFE method, utilizes several RNN-based controllers to generate 90

transformation sequences for each raw feature. However, evaluating enormous sequences results 91
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in substantial computational overhead. Most importantly, due to the side e�ects of reducing binary 92

transformations to unary ones, NFS cannot generate complex features like
�+�
�−� . 93

To improve the computational e�ciency of NAS, di�erentiable methods have been proposed. 94

DARTS (Liu et al., 2018) relaxes the categorical choice to a softmax over all possible operations, 95

leading to a di�erentiable learning objective. NAO (Luo et al., 2018) maps the discrete architecture 96

space to a continuous hidden space and optimizes existing architectures in the continuous space. 97

The di�erentiable NAS methods bring more inspiration to AutoFE. In this paper, we propose the 98

�rst di�erentiable AutoFE method called DIFER, which can e�ciently construct useful low-order 99

and high-order features with much fewer feature evaluations. 100

3 Methodology 101

3.1 Problem Formulation 102

Let � = 〈�,~〉 be a dataset with a target vector ~ and = 3-dimensional instances � = {51, · · · , 53 }, 103

where 58 ∈ R=
is the 8-th raw feature. We denote the performance of the machine learning model 104

" that is learned from � and measured by an evaluation metric ! (e.g., F1-score or mean squared 105

error) as !" (�,~). Without loss of generality, the higher !" indicates better model performance. 106

Furthermore, we apply the composition of transformations C ∈ R= × · · · ×R= → R=
to features 107

for constructing new features. Let > denote the arity of the transformation C , we construct a new 108

feature
ˆ5 = C

(
ˆ51, · · · , ˆ5>

)
, where

ˆ59 denotes the 9-th input of C to construct
ˆ5 for 9 ∈ {1, · · · , >}. 109

Given a set of transformations with di�erent arities ) = {C1, · · · , C<}, we de�ne the feature space 110

�) as follows: ∀ ˆ5 ∈ �) ,
ˆ5 satis�es any of the following conditions: 111

•
ˆ5 ∈ � 112

• ∃C ∈ ), ˆ5 = C

(
ˆ51, · · · , ˆ5>

)
, where

ˆ51, · · · , ˆ5> ∈ �) 113

Formally, let U ( ˆ5 ) denote the order of the feature
ˆ5 ∈ �) , U ( ˆ5 ) can be de�ned as: 114

U ( ˆ5 ) =
{
1 +max9 U

(
ˆ59

)
ˆ5 = C ( ˆ51, · · · , ˆ5> )

0
ˆ5 ∈ �

(1)

For example, we use the composition of the unary transformation square and the binary transforma- 115

tion divide to construct BMI (Body Mass Index), whose order is 2, by divide (weight, square (height)) 116

with the raw features weight and height. 117

Therefore, the goal of AutoFE is to �nd the set of constructed features � ∗ that can achieve the 118

best performance: 119

� ∗ = argmax

�̂

!" (� ∪ �̂ , ~), s.t. �̂ ⊂ �) (2)

In practice, we limit the order of features and search in the feature space �)
:

= { ˆ5 | ˆ5 ∈ 120

�) ∧ U ( ˆ5 ) ≤ :} since the size of the original space is in�nite (i.e., |�) | = ℵ0). we explore �)
:

121

and search for top features ranked by the performance metric !"

(
� ∪ { ˆ5 }, ~

)
as � ∗. Moreover, 122

similar to most existing AutoFE methods (e.g., NFS (Chen et al., 2019), (Nargesian et al., 2017), and 123

TransGraph (Khurana et al., 2018)), we also append the constructed features to � to maximize the 124

modeling performance for a given algorithm. 125

3.2 Overview of DIFER 126

As shown in Figure 1, we propose an evolutionary framework to achieve AutoFE. The overall 127

framework is divided into three phases: population initialization, feature evolution, and feature 128

selection. 129
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Figure 1: Overview of DIFER.

The population initialization phase constructs feature set �cand by randomly sampling features 130

from �)
:

. We train a machine learner " , which takes instances as input and predicts the labels ~, 131

from scratch and evaluate its performance as the performance score of the feature !" (� ∪ { ˆ5 }, ~). 132

Then, we can get the score set (cand = {!" (� ∪ { ˆ5 }, ~) | ˆ5 ∈ �cand}. 133

The feature evolution phase aims to construct new features iteratively. In each iteration, we 134

�rst select top-3 features from �cand according to (cand. To enhance the diversity of evolution, we 135

take two di�erent approaches to generate new features at the same time. One way is to perform 136

gradient-based optimization based on the feature optimizer and add 3/2 optimized features to 137

�cand (i.e., exploitation). The other way is to add 3/2 unduplicated randomly-generated features 138

to �cand for exploration. The process of feature evolution is repeated until a maximum number of 139

feature evaluations is reached. In the feature optimization process, the two key components are the 140

parse-tree-based feature representation and the gradient-directed feature optimizer that consists of 141

an encoder, a predictor, and a decoder. Due to its �exibility in the optimization of complex feature 142

transformation, the encoder-predictor-decoder-based feature optimizer is suitable for the AutoFE 143

problem. 144

After the feature evolution phase, we select top features from �cand and add them to the original 145

dataset. The number of added features is adaptively determined with an early-stopping mechanism. 146

When the model performance no longer increases, we stop adding features to the original dataset. 147

Case Study. we show the process of DIFER using the dataset PimaIndian as an example. DIFER 148

�rst initializes the population 〈�20=3 , (20=3〉 by random sampling and evaluating features from �)
:

. 149

Then, the feature optimizer is trained on the population. The detailed training process of feature 150

optimizer is introduced in Section 3.4. 151

In the feature optimization process, taking the feature
min_max(BloodPressure)

Insulin as an exam- 152

ple, we introduce how the input feature is optimized to get a better feature. As men- 153

tioned in Section 3.3, the feature is �rst parsed as a tree and traversed to the string <In- 154

sulin,Reciprocal,BloodPressure,MinMax,Multiply>. The feature optimizerk maps it into the con- 155

tinuous vector space as 4G via the encoder k4 , optimizes the embedding 4G along the gradient 156

direction induced by the predictor k? . The string <Insulin, Pregnancies, AbsRoot, Multiply, Re- 157

ciprocal,BloodPressure,MinMax,Multiply> is recovered from the optimized embedding 4G′ by the 158

decoderk3 . The recovered string is translated to
min_max(BloodPressure)√
|Pregnancies | ·Insulin

. 159

3.3 Feature Representation 160

As shown in Figure 2, we design a tree-like structure called parse tree to represent constructed 161

features. Compared with the sequence representation in NFS (Chen et al., 2019) and NAO (Luo et al., 162

2018), the parse tree is more �exible and expressive, which can represent complex =-ary feature 163

transformation operation like
�+�
�−� . The internal node in the parse tree indicates the transformation 164

and the leaf node indicates the raw feature. We employ reversible post-order traversal to convert the 165
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• < Insulin, Pregnancies, AbsRoot, Multiply,
Reciprocal, BloodPressure, MinMax, Multiply>

• < Pregnancies, AbsRoot, Insulin, Multiply,
Reciprocal, BloodPressure, MinMax, Multiply>

• < BloodPressure, MinMax, Insulin, Pregnancies,
AbsRoot, Multiply, Reciprocal, Multiply>

• < BloodPressure, MinMax, Pregnancies,
AbsRoot, Insulin, Multiply, Reciprocal, Multiply>

Original Feature 

Multiply

MinMax Reciprocal

MultiplyBloodPressure

AbsRoot Insulin

Pregnancies

Parse Tree

--‘’---‘’-

Parse

Unparse

Post-order
traversal

Recover

Equivalent Traversal String

Figure 2: Parse tree and post-order traversal strings of the feature
min_max(BloodPressure)√
|Pregnancies | ·Insulin

in PimaIndian.
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(b) Jointly-training of feature optimizer.

Figure 3: Feature Optimizer of DIFER.

parse tree into equivalent traversal string G as input to the encoder. The traversal string in Figure 2 166

shows an example where each word-based token (i.e., the original feature and the transformation) 167

is separated by a comma. Let GA denote each token in the traversal string, where A ∈ {1 · · · |G |}. 168

Note that the relationship between the parse tree and the traversal string is one-to-many. When 169

there are transformations where the input order is meaningless (e.g. mul(0, 1) == mul(1, 0)), the 170

same parse tree can be converted into multiple equivalent strings. This nature can be viewed as 171

a way of data augmentation when training the feature optimizer. Due to the �xed arity of each 172

transformation, the optimized traversal string can be recovered to a parse tree with no ambiguity. 173

The translation process can be found in Appendix A. 174

3.4 Feature Optimizer 175

DIFER employs a feature optimizer to construct new features based on the existing features. The 176

feature optimization process is shown in Figure 3a. Speci�cally, the feature optimizerk consists 177

of an encoderk4 , a performance predictork? , and a decoderk3 . After jointly-training the feature 178

optimizer for convergence, k maps features into the continuous vector space via k4 , optimizes 179

the embedding along the gradient direction induced byk? , and recovers better features from the 180

optimized embedding byk3 . 181

Encoder. The encoderk4 maps the post-order traversal string G ∈ X to a continuous embedding 182

4G ∈ E ⊂ R4<1_38<
. Since the traversal string G is a variable-length sequence, we use LSTM 183

(Long Short-Term Memory) (Hochreiter and Schmidhuber, 1997) as the encoder. By the sum- 184

pooling technique, the sum of all hidden states �G = {ℎ1, ℎ2, · · · , ℎ |G |} of the LSTM as the feature’s 185

continuous representation 4G . 186
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Predictor. The predictor k? ∈ E → R maps the continuous representation 4G into its score BG 187

measured by !" (� ∪ { ˆ5G }, ~). We employ a 5-layer fully-connected MLP ask? . 188

Decoder. The decoder k3 maps the embedding to the discrete feature space, i.e., the post-order 189

traversal string of the optimized feature. According to the classical sequence-to-sequence method, 190

we employ an LSTM with the attention mechanism (Bahdanau et al., 2015) as the decoder k3 ∈ 191

E → X , which takes 4G as the initial hidden state and all hidden states �G in the encoder as the 192

input of each timestamp. 193

Jointly-Training. To train the optimizer e�ciently, we propose a jointly-training method based 194

on a joint loss. The training dataset is the initial evaluated population 〈�cand, (cand〉. As shown 195

in Figure 3b, we design a joint loss function that takes both the performance prediction loss L?? 196

and the structure reconstruction loss LA42 into account. The value of the hyperparameter _ that 197

balances L?? and LA42 is determined adaptively (see Appendix C). 198

L = _L?? +LA42 , where L?? =
∑
G

(
BG −k? (k4 (G))

)
2

and LA42 = −
∑
G

|G |∑
A=1

log %k3 (GA |k4 (G)) (3)

3.5 Feature Optimization 199

After the convergence of the feature optimizer, we directly optimize the feature embedding 4G in 200

the continuous space by performing gradient ascent and then decode the optimized embedding 201

into a new feature G
′
. 202

Starting from the constructed feature G , we optimize its embedding 4G to get a better embedding 203

along the gradient direction induced by the predictork? : 204

4G′ =
∑
ℎA ∈�G

(
ℎA + [

mk?

mℎA

)
(4)

However, due to the nature that the corresponding parse tree of a feature
ˆ5G may have several 205

equivalent post-order traversal strings - = {G (1) , G (2) , · · · G (=) }, the strings in - are highly similar 206

in the continuous space. After one step of gradient ascent, the decoded string of 4G′ may still be in 207

- . Thus, we may get the same parse tree. We call [ in Equation (4) the evolution rate. Increasing 208

the evolution rate [ can solve this problem to some extent (Luo et al., 2018). However, a large 209

evolution rate would violate the preconditions of gradient ascent, resulting in no guarantee that 210

k? (G + ΔG) > k? (G). 211

Multi-step gradient ascent. To address this problem, we propose a straightforward but e�ective 212

strategy. Speci�cally, we apply the optimization process in Equation (4) multiple times with a small 213

evolution rate [ until we get new parse trees. As a result, the number of times the optimization 214

process (i.e., steps of gradient ascent) is adaptively determined. We refer to the overall process as 215

feature optimization. 216

4 Experiments 217

4.1 Experimental Setting 218

As with the SOTA method NFS (Chen et al., 2019), we use 25 public datasets from OpenML (Van- 219

schoren et al., 2014), UCI repository (Dua and Gra�, 2017), and Kaggle (2021). There are 15 220

classi�cation (C) datasets and 10 regression (R) datasets that have various numbers of features (5 to 221

10936) and instances (100 to 30000). In all experiments, we set the max order : to 5 except in RQ3 222

and utilize 9 transformation functions totally. Moreover, to ensure the fairness, all methods except 223

LFE (Nargesian et al., 2017) have the same feature transformation space. 224
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• Unary transformation: logarithm, square root, min-max normalization, and reciprocal 225

• Binary transformation: addition, subtraction, multiplication, division, and modulo 226

All experiments are run using Tesla K80 (GPU) and Intel(R) Xeon(R) CPU E5-2630 v2 instances. 227

To evaluate the AutoFE method, we use the performance metric (1 − (relative absolute error)) 228

(Shcherbakov et al., 2013) for the regression task and f1-score for the classi�cation task. 5-fold 229

cross validation using random strati�ed sampling is employed and the average result is reported. 230

Except that di�erent ML algorithms are used in RQ4, we utilize Random Forest as default. We 231

use scikit-learn as the machine learning algorithm library and employ PyTorch to implement the 232

feature optimizer, including LSTM-based encoder and decoder, MLP-based predictor. 233

In the initialization step of DIFER, we randomly select 512 features as the initial population. 234

Both the encoder and decoder of the feature optimizer are implemented as a one-layer LSTM. We 235

empirically set the embedding size of each token in the traversal string and the size of the hidden 236

state to 512. The predictor is a 5-layer MLP where the number of hidden units in each layer is 237

1024. To train the feature optimizer, we choose the Adam optimizer (Kingma and Ba, 2014) with a 238

learning rate of 0.001 and a weight decay of 0.0001. The number of epochs is 400, and the batch 239

size is 128. Early stopping is employed with a patience of 10. 240

In each feature evolution iteration, the value of 3 is empirically set to be the minimum between 241

top 20% of the initial population size and the total number of original features. The feature evolution 242

runs until the number of feature evaluations reaches the upper limit of 4096. When optimizing the 243

feature embedding in Equation (4), we perform gradient ascent with an evolution rate [ of 0.0001. 244

Moreover, we use the same hyperparameters for all datasets. The robustness experiments with 245

di�erent hyperparameters can be found in Appendix D. 246

Table 1: Comparison between DIFER and the existing AutoFE methods (The datasets are sorted based on

the evaluation time.
†

the results obtained using the open-sourced code, ∗ denotes statistically

signi�cant improvement measured by Friedman test and Nemenyi post-hoc test with ?-value

< 0.05. T indicates the total runtime. Inst. is short for Instance, Feat. is short for Feature, Err.
indicates failure due to out of memory when running the open-source code).

Dataset C/R Inst.\Feat. Raw Random DFS
†

AutoFeat
†

NFS
†

DIFER
∗ T#�( T����'

Housing Boston R 506\13 0.4336 0.4446 0.3412 0.4688 0.5013 0.4944 566.42 982.15

Bikeshare DC R 10886\11 0.8200 0.8436 0.8214 0.8498 0.9746 0.9813 595.57 1040.96

Airfoil R 1503\5 0.4962 0.5733 0.4346 0.5955 0.6163 0.6242 603.80 1066.93

Openml_586 R 1000\25 0.6617 0.6511 0.6501 0.7278 0.7401 0.7683 1722.49 1013.57
Openml_589 R 1000\25 0.6484 0.6422 0.6356 0.6864 0.7141 0.7727 1726.04 1005.18
Openml_637 R 1000\25 0.5136 0.5268 0.5191 0.5763 0.5693 0.6343 1411.79 1028.14
Openml_618 R 1000\50 0.6267 0.6167 0.6343 0.6324 0.6400 0.6603 3159.47 1020.72
Openml_607 R 1000\50 0.6344 0.6285 0.6388 0.6699 0.6870 0.6918 2990.91 1032.40
Openml_616 R 500\ 50 0.5747 0.5714 0.5717 0.6027 0.5915 0.6554 1511.58 1030.57
Openml_620 R 1000\25 0.6336 0.6178 0.6263 0.6874 0.6749 0.7442 1686.78 1047.37

Hepatitis C 155\6 0.7860 0.8300 0.8258 0.7677 0.8774 0.8839 355.76 1045.77

Fertility C 100\9 0.8530 0.8300 0.7500 0.7900 0.8700 0.9098 362.38 1054.51

SpectF C 267\44 0.7750 0.8277 0.7906 0.8161 0.8501 0.8612 386.39 933.45

Megawatt1 C 253\37 0.8890 0.8973 0.8773 0.8893 0.9130 0.9171 404.33 1024.95

Ionosphere C 351\34 0.9233 0.9344 0.9175 0.9117 0.9516 0.9770 421.50 1036.01

German Credit C 1001\24 0.7410 0.7550 0.7490 0.7600 0.7818 0.7770 433.39 1043.06

Credit-a C 690\6 0.8377 0.8449 0.8188 0.8391 0.8652 0.8826 435.14 992.91

PimaIndian C 768\8 0.7566 0.7566 0.7501 0.7631 0.7839 0.7865 435.10 1007.30

Messidor_features C 1150\19 0.6584 0.6878 0.6724 0.7359 0.7461 0.7576 555.62 1069.04

Wine Quality Red C 999\12 0.5317 0.5641 0.5478 0.5241 0.5841 0.5824 587.77 1033.29

Wine Quality White C 4900\12 0.4941 0.4930 0.4882 0.5023 0.5150 0.5155 1278.61 1016.35
SpamBase C 4601\57 0.9102 0.9237 0.9102 0.9237 0.9296 0.9339 993.92 959.03

AP-omentum-ovary C 275\10936 0.7636 0.7100 0.7250 Err. 0.8640 0.8726 4183.75 1441.01
Credit Default C 30000\25 0.8037 0.8060 0.8059 0.8060 0.8049 0.8096 9253.70 1204.99

gisette C 2100\5000 0.9261 0.8710 0.7410 Err. 0.9590 0.9635 18877.07 1646.19

Upper Limit of Eval. Num. 160,000 4,096
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4.2 E�ectiveness of DIFER (RQ1) 247

In this subsection, we demonstrate the e�ectiveness of DIFER. We compare DIFER on 25 datasets 248

with the SOTA and baseline methods, including: (a) Raw: raw dataset without any transformation; 249

(b) Random: randomly applying transformations to each raw feature; (c) DFS (Kanter and Veera- 250

machaneni, 2015): a well-known expansion-reduction method; (d) AutoFeat (Horn et al., 2019): a 251

popular Python library for automated feature engineering and selection; (e) LFE (Nargesian et al., 252

2017): recommend the most promising transformation for each feature using MLP; (f) NFS (Chen 253

et al., 2019): the SOTA AutoFE method that achieves better performance than other existing ap- 254

proaches (e.g., Khurana et al. (2018)). The experimental settings of these methods, such as the set 255

of transformations, the max feature order, and the evaluation metrics are the same as DIFER. 256

Table 1 shows the comparison results between DIFER and the existing methods. Moreover, 257

since LEF can only deal with the classi�cation task and the source code is not available, we directly 258

use the best results reported in the original paper (Nargesian et al., 2017). The comparison results 259

between DIFER and LEF are shown in Table 2. From Table 1 and Table 2, we can observe that: 260

• DIFER achieves the best performance in all but four cases. Although NFS greatly outperforms the 261

baseline methods, DIFER still achieves an average improvement of 2.57% over NFS. For regression 262

tasks, DIFER can even achieve a maximum improvement of 11.42%. 263

• DIFER can handle datasets with various numbers of instances and features for both regression 264

and classi�cation tasks and achieve performance improvement on all datasets with an average of 265

10.72% over Raw and an average of 9.55% over Random. 266

• With the bene�t of searching in the continuous vector space, DIFER addresses the feature explo- 267

sion problem while preserving the entire space, and achieves highly competitive performance 268

even on large datasets such as Credit Default (30000 × 25) and AP-omentum-ovary (275 × 10936). 269

E�ectiveness of the predictor k? . Since the accuracy of the predictor determines the quality of 270

the optimized features, here we demonstrate the e�ectiveness ofk? . We train the feature optimizer 271

using the data augmentation technique mentioned in Section 3.3 on an initialized population of 272

512 features. After convergence, the loss L?? (i.e., Mean-Squared Error) of the predictor in the 273

training set is 0.00106. To test the predictor, we randomly sample 256 features from the feature 274

space as the test set, which is di�erent from the training set. The test loss ofk? is 0.00132. Both the 275

training loss and the test loss are small and close, demonstrating the e�ectiveness of the predictor. 276

Furthermore, we employ the pairwise accuracy metric to evaluate k? . Let - denote the test set. 277

5 (G) and ~ denote the predicted performance ofk? and the real performance of the feature. The 278

pairwise accuracy is de�ned as follows: 279

?08AF8B4 022DA02~ =

∑
G1∈-,G2∈- I5 (G1) ≥5 (G2)I~1≥~2

|- | ( |- | − 1)/2 (5)

where I represents the 0-1 indicator function. The pairwise accuracy ofk? is 0.918, which is close 280

to the ideal value (i.e., 1) and much better than random guess (i.e., 0.5). 281

4.3 E�ciency of DIFER (RQ2) 282

The overhead of AutoFE can be divided into two parts: the process of feature evaluation and the 283

training overhead of the controller (i.e., the feature optimizer). To verify the e�ciency of DIFER, 284

we conduct experiments in terms of the total runtime and the number of feature evaluations, 285

respectively. Table 1, where the datasets are sorted in ascending order of model evaluation time, 286

shows the total runtime T and the average number of feature evaluations for AutoFE, and Figure 287

4 shows the comparison results between NFS and DIFER with a restricted number of feature 288

evaluations. From Table 1 and Figure 4, we can observe that: 289
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Dataset LFE
∗

NFS
†

DIFER

Credit-a 0.771 0.8652 0.8826
Feritility 0.873 0.8700 0.9098
Hepatitis 0.831 0.8774 0.8839

Ionosphere 0.932 0.95160 0.9770
Megawatt1 0.894 0.9130 0.9171
SpamBase 0.947 0.9296 0.9339

Table 2: Comparison between DIFER, LFE, and NFS (
∗

the

results reported in the paper).
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Figure 4: Comparison between NFS and DIFER. The num-

ber of feature evaluations is restricted to 3500.
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Figure 5: E�ectiveness of high-order features.

• In Table 1, DIFER achieves better performance than NFS by using 40 times fewer feature evalua- 290

tions while still achieving signi�cant performance improvement. 291

• From the perspective of runtime, the overhead of DIFER is mainly in the training and inference of 292

the feature optimizer compared to NFS which is dominated by feature evaluation. Therefore, the 293

e�ciency advantage of DIFER is more obvious on larger datasets that requires more evaluation 294

time. For example, compared with NFS, DIFER can achieve 2.9×, 7.7×, 11.5× speedup on AP- 295

omentum-ovary, Credit Default, gisette, respectively. 296

• The advantage of DIFER is more signi�cant with a restricted number of feature evaluations mea- 297

sured by Wilcoxon signed-rank test with ?-value < 0.05. DIFER achieves an average performance 298

improvement of 6.89%, doubling that in RQ1. 299

4.4 E�ectiveness of High-Order Features (RQ3) 300

To evaluate the ability of exploring the high-order feature space, we conduct two experiments: 301

1. Analyze the features generated by DIFER during the search process and investigate whether 302

DIFER can indeed search for the high-order features. 303
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Table 3: Statistics on the performance of DIFER with di�erent ML algorithms.

Task Algorithm Avg Impr±Std (%) Min/Max Impr (%)

Classi�cation RandomForest 6.59±4.23 0.73 / 15.06

LogisticRegression 5.95±4.12 1.01 / 15.94

LinearSVC 13.98±9.23 3.17 / 22.32

XGBoost 6.90±6.92 0.30 / 27.98

LightGBM 7.69±8.09 0.16 / 32.63

Regression RandomForest 16.42±6.19 5.36 / 25.80

LassoRegression 14.61±8.92 1.22 / 66.66

LinearSVR 32.72±19.79 13.21 / 96.98

XGBoost 13.47±9.35 3.20 / 67.06

LightGBM 15.46±10.48 4.75 / 71.92

2. Choose the max order : from 0 to 6, where : = 0 means the raw dataset without any feature 304

transformation. Then, we analyze the performance curve by varying : . 305

Figure 5a shows the number of each order features generated by DIFER with : = 5 for each 306

dataset. High-order features take a considerable average proportion of 80.9%, con�rming that 307

DIFER exploits the entire feature space �)
:

instead of its subspace �)8 where 8 < : . 308

Besides, we randomly choose 8 datasets, normalize the performance of DIFER, plot the perfor- 309

mance curve with the increasing max order in Figure 5b, and draw the following conclusions: 310

• The overall performance of DIFER stably increases with the max order : . However, when : 311

increases to 5, performance improvement become insigni�cant. 312

• For most datasets, su�cient performance improvement can be already achieved with : = 2. There 313

is no need to set an excessively large max order in practice. 314

4.5 Di�erent Machine Learning Algorithms (RQ4) 315

To further investigate whether DIFER is general for di�erent machine learning algorithms, we 316

utilize the commonly-used algorithms, including: 317

• LogisticRegression (Hosmer Jr et al., 2013), LinearSVC (Cortes and Vapnik, 1995), XGBoost (Chen 318

and Guestrin, 2016), and LightGBM (Ke et al., 2017) for classi�cation. 319

• LassoRegression (Tibshirani, 1996), LinearSVR (Smola and Schölkopf, 2004), XGBoost (Chen and 320

Guestrin, 2016), and LightGBM (Ke et al., 2017) for regression. 321

We conduct experiments on all datasets and the performance statistics are shown in Table 3. 322

Compared to the Raw method, DIFER achieves signi�cant improvement under di�erent algorithms. 323

For instance, LinearSVR with DIFER even achieves an average improvement of 32.72% across 25 324

datasets and a max improvement of 96.98% in Airfoil. 325

5 Conclusion and Future Work 326

In this work, we proposed DIFER, to the best of our knowledge, the �rst di�erentiable AutoFE 327

method. DIFER leverages an encoder-predictor-decoder-based feature optimizer, which maps 328

features into the continuous vector space via the encoder, optimizes the embedding along the 329

gradient direction induced by the predictor, and recovers better features from the optimized 330

embedding by the decoder. Moreover, based on the feature optimizer, we proposed a feature 331

evolution framework to search for better features iteratively. Experimental results show that DIFER 332

is e�ective on both classi�cation and regression tasks and can outperform the existing AutoFE 333

methods in terms of both prediction performance and computational e�ciency. 334

The transformation operations in DIFER are for numerical features. For future work, we plan to 335

automatically search for transformations for di�erent feature types (i.e., numerical and categorical). 336
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6 Reproducibility Checklist 337

All authors must include a section with the AutoML-Conf Reproducibility Checklist in their 338

manuscripts, both at submission and camera-ready time. The reproducibility checklist is a 339

combination of the NeurIPS ’21 checklist and the nas checklist. For each question, change 340

the default \answerTODO{} (typeset [TODO]) to \answerYes{[justification]} (typeset [Yes]), 341

\answerNo{[justification]} (typeset [No]), or \answerNA{[justification]} (typeset [N/A]). 342

Youmust include a brief justi�cation to your answer, either by referencing the appropriate section 343

of your paper or providing a brief inline description. For example: 344

• Did you include the license of the code and datasets? [Yes] See Section ??. 345

• Did you include all the code for running experiments? [No] We include the code we wrote, but 346

it depends on proprietary libraries for executing on a compute cluster and as such will not be 347

runnable without modi�cations. We also include a runnable sequential version of the code that 348

we also report experiments in the paper with. 349

• Did you include the license of the datasets? [N/A] Our experiments were conducted on publicly 350

available datasets and we have not introduced new datasets. 351

Please note that if you answer a question with \answerNo{}, we expect that you compensate for it 352

(e.g., if you cannot provide the full evaluation code, you should at least provide code for a minimal 353

reproduction of the main insights of your paper). 354

Please do not modify the questions and only use the provided macros for your answers. Note 355

that this section does not count towards the page limit. In your paper, please delete this instructions 356

block and only keep the Checklist section heading above along with the questions/answers below. 357

1. For all authors. . . 358

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s 359

contributions and scope? [Yes] 360

(b) Did you describe the limitations of your work? [Yes] We discuss its limitations in Section 5 361

for further work. 362

(c) Did you discuss any potential negative societal impacts of your work? [No] 363

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? 364

[Yes] 365

2. If you are including theoretical results. . . 366

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 367

(b) Did you include complete proofs of all theoretical results? [N/A] 368

3. If you ran experiments. . . 369

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 370

results, including all requirements (e.g., requirements.txt with explicit version), an instruc- 371

tive README with installation, and execution commands (either in the supplemental material 372

or as a url)? [Yes] We use open-source datasets and provide source code to reproduce the 373

results in supplemental material. 374

(b) Did you include the raw results of running the given instructions on the given code and 375

data? [Yes] 376
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(c) Did you include scripts and commands that can be used to generate the �gures and tables 377

in your paper based on the raw results of the code, data, and instructions given? [Yes] 378

(d) Did you ensure su�cient code quality such that your code can be safely executed and the 379

code is properly documented? [Yes] 380

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, �xed 381

hyperparameter settings, and how they were chosen)? [Yes] 382

(f) Did you ensure that you compared di�erent methods (including your own) exactly on 383

the same benchmarks, including the same datasets, search space, code for training and 384

hyperparameters for that code? [Yes] See Section 4.1. 385

(g) Did you run ablation studies to assess the impact of di�erent components of your approach? 386

[Yes] 387

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] 388

(i) Did you compare performance over time? [No] 389

(j) Did you perform multiple runs of your experiments and report random seeds? [No] We use 390

5-fold cross-validation to reduce randomness. 391

(k) Did you report error bars (e.g., with respect to the random seed after running experiments 392

multiple times)? [No] We use 5-fold cross-validation to reduce randomness. 393

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] 394

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 395

gpus, internal cluster, or cloud provider)? [Yes] Also see Section 4.1. 396

(n) Did you report how you tuned hyperparameters, and what time and resources this required 397

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 398

also hyperparameters of your own method)? [Yes] 399

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 400

(a) If your work uses existing assets, did you cite the creators? [Yes] We use open-source data 401

with citations. 402

(b) Did you mention the license of the assets? [No] 403

(c) Did you include any new assets either in the supplemental material or as a url? [No] 404

(d) Did you discuss whether and how consent was obtained from people whose data you’re 405

using/curating? [No] We use open-source data and follow protocols. 406

(e) Did you discuss whether the data you are using/curating contains personally identi�able 407

information or o�ensive content? [No] 408

5. If you used crowdsourcing or conducted research with human subjects. . . 409

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 410

cable? [N/A] 411

(b) Did you describe any potential participant risks, with links to Institutional Review Board 412

(irb) approvals, if applicable? [N/A] 413

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 414

on participant compensation? [N/A] 415
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A Translation Between Three Forms of Features 473

As mentioned in Section 3.3, there are three forms of features (i.e., original form, parse tree form and 474

traversal string form). To generate parse trees from the original features, we design the following 475

context-free grammar in BNF (Backus Normal Form): 476

• ParseTree B 51,...,3 | UnaryOp ParseTree | BinaryOp ParseTree ParseTree 477

• UnaryOp B logarithm | abs | root | min-max | normalization | reciprocal 478

• BinaryOp B addition | subtraction | multiplication | division | modulo 479

Through such syntax parser, the features are parsed into the form of parse tree, and then the 480

corresponding strings is derived through post-order traversal. Similarly, due to the many-to-one 481

relationship between traversing strings and parse trees, strings can be reduced to parse trees. With 482

features as leaf nodes, the constructed features are �nally obtained from the bottom up at the root 483

node through the internal nodes with the operators. 484

B Neighborhood of Constructed Features 485

The duplicated post-order traversal strings - = {G (1) , G (2) , · · · G (=) } of the feature
ˆ5G are highly 486

similar in the continuous space: 487

∃n, ∀G (8) ∈ -, ‖4G (8 ) −
1

=

∑
G ( 9 ) ∈-

4G ( 9 ) ‖2 ≤ n (6)

where n is just a variable used to inscribe the property, not a hyperparameter. The neighborhood of 488

- in the continuous space can be represented as X- = {4G′ |‖4G′ − 1

=

∑
G ( 9 ) ∈- 4G ( 9 ) ‖2 ≤ n}. After one 489

step of gradient ascent, the decoded string of 4G′ ∈ XG may still be in - . Thus, the same parse tree 490

is got. To escape the neighborhood., we use multi-step gradient ascent as mentioned in Section 3.5. 491

C Adaptive Loss Weight Setting 492

We use the parameter _ ∈ R+ to balance L?? and LA42 and _ is determined adaptively. Inspired 493

by (Goyal et al., 2017), the �rst : epochs are used to warm up the jointly-training of the feature 494

optimizer with _ = 1. After the �rst : epochs, we assign _ =
∑:
8=1 LA42/

∑:
8=1 L?? according to the 495

sum of losses. This is mainly to make the two losses in the same order of magnitude. In practice, : 496

is empirically set to 5. 497

D Robustness 498

We further evaluate whether DIFER is sensitive to di�erent hyperparameters, including evolution 499

rate [ and population size ? . Figure 6a and Figure 6b show the experimental results on 5 randomly- 500

selected datasets that represent both classi�cation and regression tasks. Figure 6a demonstrates that 501

DIFER is robust to di�erent settings of [. Empirically, [ should not be too large in gradient ascent. 502

A small [ can get the same or even better results than the large [ by performing multiple times of 503

gradient ascent. Moreover, a larger ? allows the feature optimizer to be fully trained, and a smaller 504

? allows more features to be optimized in the case of a limited number of feature evaluations. As 505

shown in Figure 6b, the performance of DIFER remains stable across di�erent settings of ? . 506

E Statistics Comparison 507

To further statistically evaluate the di�erence between the AutoFE methods in Table 1, we perform 508

the Friedman test Demšar (2006), which is a non-parametric equivalent of the repeated-measures 509

ANOVA. It is used to determine whether or not there is a statistically signi�cant di�erence. 510
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Figure 6: Robustness of DIFER.

Table 4: ?-values for each pairwise comparison using the Nemenyi post-hoc test for the AutoFE

methods (Con�dence level ? = 0.05).

DFS AutoFeat NFS DIFER

DFS 1.0000 0.2967 0.0010 0.0010
AutoFeat 0.2967 1.0000 0.0313 0.0010
NFS 0.0010 0.0313 1.0000 0.0046
DIFER 0.0010 0.0010 0.0046 1.0000

For the comparison results in Table 1, we �rst calculate the Friedman statistic. Let A
9

8
be the 511

rank of the 9-th of : AutoFE methods (: = 4, i.e., DFS, AutoFeat, NFS, and DIFER) on the 8-th of 512

# datasets. The Friedman test compares the average ranks of models, ' 9 =
1

#

∑
8 A
9

8
. The null- 513

hypothesis states that all the tree models are equivalent and so their ranks ' 9 should be equal. We 514

employ the scipy tool
1

to calculate the Friedman statistic. The corresponding Friedman ?-value is 515

1.17e-10. Since the ?-value is less than 0.05, we can reject the null hypothesis that the performance 516

is the same for all four types of AutoFE methods. In other words, we have su�cient evidence to 517

conclude that the AutoFE method lead to statistically signi�cant di�erences in terms of performance. 518

Since the ?-value of the Friedman test is statistically signi�cant, we perform the Nemenyi post-hoc 519

test Nemenyi (1963) to further determine exactly which AutoFE method has di�erent means. Table 4 520

shows the ?-values for each pairwise comparison. We can conclude that DIFER is signi�cantly 521

di�erent from other trees for a con�dence level of ? = 0.05 and show the result by ’*’ in Table1. 522

1
https://github.com/scipy/scipy
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Table 5: The number of features |� ∗ | added into the original dataset by AutoFE method (Err. indicates

failure due to out of memory when running the open-source code).

Dataset C/R Inst.\Feat. |� ∗ |�DC>�40C |� ∗ |#�( |� ∗ |����'
Housing Boston R 506\13 21 13 1

Bikeshare DC R 10886\11 17 11 6

Airfoil R 1503\5 4 5 4

Openml_586 R 1000\25 37 25 20

Openml_589 R 1000\25 21 25 20

Openml_637 R 1000\25 30 25 13

Openml_618 R 1000\50 49 50 32

Openml_607 R 1000\50 51 50 38

Openml_616 R 1000\50 41 50 8

Openml_620 R 1000\50 32 50 12

Hepatitis C 155\6 7 6 6

Fertility C 100\9 12 9 3

SpectF C 267\44 37 44 9

Megawatt1 C 253\37 48 37 29

Ionosphere C 351\34 52 34 1

German Credit C 1001\24 22 24 1

Credit-a C 690\6 4 6 5

PimaIndian C 768\8 12 8 1

Messidor_features C 1150\19 29 19 10

Wine Quality Red C 999\12 8 12 6

Wine Quality White C 4900\12 11 12 9

SpamBase C 4601\57 46 57 1

AP-omentum-ovary C 275\10936 Err. 10936 491

Credit Default C 30000\25 30 25 5

gisette C 2100\5000 Err. 5000 19
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