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Abstract

Understanding how explicit geometric and symmetry information complements
learned visual embeddings is important for advancing both 2D and 3D
recognition. We investigate this question using large-scale datasets, including
ScanNet [1] and MIT67 [2]. Each 3D mesh is represented through multi-view
CLIP [3] embeddings, symmetry features extracted with SymmetryNet [4], and
explicit geometric descriptors such as PCA statistics. These features are
evaluated individually and in combination with voxel embeddings from a pre-
trained 3D ResNet. In 2D, we compute contour-based shape maps capturing
separation, parallelism, taper, and mirror symmetry, and test all combinations
with VGG-16 and CLIP embeddings. In both 2D and 3D, explicit geometric
and symmetry features improve classification accuracy beyond foundation
model embeddings alone. In 3D, the fusion of CLIP, voxel, geometric, and
symmetry representations achieves the best performance. Our findings
demonstrate that shape features provide complementary information
beyond foundation model embeddings and raw voxel representations,
offering preliminary evidence that global symmetry-based features improve both
2D and 3D object recognition.

Background

- Shape-Based Measures Improve Scene Categorization [5]

Rezanejad et al. note that deep neural networks tend to rely on color and texture
features, whereas humans can categorize scenes from outlines, so they
introduce medial-axis-based algorithms to detect contour cues such as
separation, parallelism, taper, and mirror symmetry and score them using Gestalt
grouping rules . They show that weighting contours with these shape-based
measures boosts scene categorization accuracy for both human observers and
CNNs compared with unweighted contours, indicating that current CNNs do not
naturally extract these structural cues.

- SymmetryNet [4]

SymmetryNet is a deep neural network that identifies reflectional and rotational
symmetries of 3D objects from a single RGB-D image, using multi-task learning
to estimate symmetry axes and point-wise correspondences; this design allows it

to detect multiple symmetries per object and achieve strong generalization on a
new benchmark.

(preliminary) 2D Experiments and Results

- Validation and test performance across different VGG16 fusion experiments on
scene classification.

- Using the MIT67 dataset [2], which contains 67 Indoor categories, and a total of
15620 images. The number of images varies across categories, but there are
at least 100 images per category.
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Are shape features recoverable?

- Try predicting symmetry-based and geometric features using CLIP embeddings

- 2D: models do not converge

- 3D: trained a compact ViT-style 3D Transformer, cosine similarity is ~0.75
when predicting geometric features and ~0.68 when predicting symmetry-based
features, with MSE around 0.4

- These results indicate that geometric and symmetry-based descriptors are
partially recoverable from CLIP representations in 3D, although they are
derived from multi-view renderings

. 2D & 3D Experiments

CLIP Embeddings
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3D Experiments and Results

- Using the ScanNet [1], an RGB-D dataset con

.o\é
NEURAL INFORMATION
PROCESSING SYSTEMS

y

taining 2.5 million views in more

than 1500 scans, annotated with 3D camera poses, surface reconstructions,

and instance-level semantic segmentations.

- Instance-level classification accuracy on 45, 949 filtered ScanNet [1] instances
across 10 model architectures (rows) and 15 input features (columns).
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Input Feature Combinations

- Explicit geometric and/or symmetry-based features improve accuracy.
Incorporating geometric and/or symmetry-based descriptors consistently

improves classification over CLIP embeddings alone.

- Concatenated features dominate.

The strongest results are obtained when CLIP embeddings are combined with
voxel/voxel-derived, geometric and/or symmetry-based descriptors.

- Architectural sensitivity is modest.

While deeper MLPs (MLP2-MLP535) slightly outperform shallower ones, the
overall variance across architecture families is smaller than the variance across
input feature sets.

Table 1: Summary of input feature types used in our ScanNet experiments. Non-
voxel features are standardized to zero mean and unit variance. A pre-trained 3D
ResNet backbone is used for voxel-related inputs.

Input Dim. Constituents Source / Description

clip 512 CLIP embeddings Frozen CLIP ViT-B/32 on multi-view renders.

geometric 13 geometry descriptors Bounding-box ratios, surface/volume stats, PCA eigenvalue ratios, etc.
symmetrynet 86 SymmetryNet features Symmetry feature vector from SymmetryNet.

geo_clip_concat 13 4+ 512 = 525  geometric + CLIP Concatenation of geometric descriptors with CLIP embeddings.
sym_clip_concat 86 + 512 =598  symmetry + CLIP Concatenation of symmetrynet and CLIP embeddings.

sym_geo_concat 86+ 13 =99 symmetry + geometric Concatenation of symmetrynet and geometric features.

sym_geo_clip_concat 86 + 13 + 512 = 611 symmetry + geometric + CLIP Concatenation of symmetrynet, geometric descriptors, and CLIP.

voxel 323 grid raw voxel grid End-to-end 3D ResNet on raw occupancy volumes.
geometric_vox_direct_concat 134+ 512 =525  geometric + voxel emb Fusion: geometric + ResNet3D backbone embedding.
symmetrynet_vox_direct_concat 86 + 512 =598  symmetry + voxel emb Fusion: symmetry 4+ ResNet3D embedding.
clip_vox_direct_concat 512 4+ 512 =1024 CLIP + voxel emb Fusion: clip + ResNet3D embedding.
sym-_geo_vox_direct_concat 99 + 512 = 611 (sym+geo) 4+ voxel emb Fusion: sym_geo_concat + ResNet3D embedding.

598 + 512 = 1110  (sym+CLIP) 4 voxel emb Fusion: sym_clip_concat + ResNet3D embedding.
525 + 512 = 1037 (geo+CLIP) + voxel emb Fusion: geo_clip_concat + ResNet3D embedding.
611 + 512 = 1123  (sym+geo+CLIP) + voxel emb Fusion: sym.geo.clip.concat + ResNet3D embedding.

sym_clip_vox_direct_concat
geo_clip_vox_direct_concat
sym-_geo_clip_vox_direct_concat

Table 2: Model architectures used in our 3D experiments.

Model Architecture type Core design / depth Inputs
CLIPLinear Linear classifier Single fully connected layer (LinearHead) to logits; dropout 0.10 Tabular
CLIP Transformer TinyTransformer Project to d = 192; prepend learnable [CLS]; 2 encoder layers Tabular
(Nheaq = 6, FF=384); dropout 0.10
FT-Transformer Feature-token Transformer Tokenize to d = 256; [CLS| pooling; 2 encoder layers (nyp..q = 8, Tabular
FF=512); dropout 0.10
MLP1 Fully connected {(ReLU, Dropout) Depth = 1; hidden = 512; dropout 0.10 Tabular!
MLP2 Fully connected (ReLU, Dropout) Depth = 2; hidden = 640; dropout 0.10 Tabular!
MLP3 Fully connected (ReLU, Dropout) Depth = 3; hidden = 768; dropout 0.10 Tabular!
MLP4 Fully connected (ReLU, Dropout) Depth = 4; hidden = 768; dropout 0.10 Tabular!
MLP5 Fully connected (ReLU, Dropout) Depth = 5; hidden = T68; dropout 0.10 Tabular!
MultiModal MLP for tabular concatenations  Depth = 3; hidden = T68; dropout 0.10 Tabular!
ResNet3D 3D ResNet backbone Pretrained r3d_18 (default; or me3_18); input voxels 32% with depth as Voxel (raw)

time; 1—3 channel repeat; global avg pool — linear head

1 For any * vox direct concat column, the same heads (Linear/Transformer/MLP) are used but preceded by a ResNet3D backbone. The voxel grid is encoded to a 512-D
embedding (vox_emb_dim=512), concatenated with tabular features, and trained end-to-end.
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