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Abstract

Bayesian model averaging, obtained as the expectation of a likelihood function by a
posterior distribution, has been widely used for prediction, evaluation of uncertainty,
and model selection. Various approaches have been developed to efficiently capture
the information in the posterior distribution; one such approach is the optimization
of a set of models simultaneously with interaction to ensure the diversity of the
individual models in the same way as ensemble learning. A representative approach
is particle variational inference (PVI), which uses an ensemble of models as an
empirical approximation for the posterior distribution. PVI iteratively updates
each model with a repulsion force to ensure the diversity of the optimized models.
However, despite its promising performance, a theoretical understanding of this
repulsion and its association with the generalization ability remains unclear. In this
paper, we tackle this problem in light of PAC-Bayesian analysis. First, we provide
a new second-order Jensen inequality, which has the repulsion term based on the
loss function. Thanks to the repulsion term, it is tighter than the standard Jensen
inequality. Then, we derive a novel generalization error bound and show that it
can be reduced by enhancing the diversity of models. Finally, we derive a new
PVI that optimizes the generalization error bound directly. Numerical experiments
demonstrate that the performance of the proposed PVI compares favorably with
existing methods in the experiment.

1 Introduction

Bayesian model averaging (BMA) has been widely employed for prediction, evaluation of uncertainty,
and model selection in Bayesian inference. BMA is obtained as the expectation of a likelihood
function by a posterior distribution and thus it contains information of each model drawn from the
posterior distribution [21]. Since estimating the posterior distribution is computationally difficult
in practice, various approximations have been developed to efficiently capture the diversity in the
posterior distribution [21, 1, 2].

One of these recently proposed approaches involves optimizing a set of models simultaneously with
interaction to ensure the diversity of the individual models, similar to ensemble learning. One notable
example is particle variational inference (PVI) [17, 28], which uses an ensemble as an empirical
approximation for the posterior distribution. Such PVI methods have been widely employed in
variational inference owing to their high computational efficiency and flexibility. They iteratively
update the individual models and the update equations contain the gradient of the likelihood function
and the repulsion force that disperses the individual models. Thanks to this repulsion term, the
obtained ensemble can appropriately approximate the posterior distribution. When only one model is
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used in PVI, the update equation is equivalent to that of the maximum a posteriori (MAP) estimation.
Other methods have been developed apart from PVI, especially for latent variable models, which
have introduced regularization to the MAP objective function to enforce the diversity in the ensemble.
A notable example of such methods is the determinantal point process (DPP) [29].

Despite successful performances of these methods in practice [22, 18, 17, 28, 5, 27], a theoretical
understanding of the repulsion forces remains unclear. Some previous studies considered PVI as a
gradient flow in Wasserstein space with an infinite ensemble size [16, 12] and derived the convergence
theory. However, an infinite ensemble size is not a practical assumption and no research has been
conducted to analyze the repulsion force related to the generalization.

BMA can be regarded as a special type of ensemble learning [26], and recent work has analyzed the
diversity of models in ensemble learning in light of the PAC-Bayesian theory [19]. They reported that
the generalization error is reduced by increasing the variance of the predictive distribution. However,
the existing posterior approximation methods, such as PVI and DPPs, enhance the diversity with the
repulsion of the parameters or models rather than the repulsion of the predictive distribution. We
also found that the analysis in a previous work [19] cannot be directly extended to the repulsion
of parameters or loss functions (see Appendix F). In addition, when the variance of the predictive
distribution is included in the objective function in the variational inference, the obtained model
shows large epistemic uncertainty, which hampers the fitting of each model to the data (see Section 5).

Based on these findings, this study aims to develop a theory that explains the repulsion forces in PVI
and DPPs and elucidates the association of the repulsion forces with the generalization error. To
address this, we derive the novel second-order Jensen inequality and connect it to the PAC-Bayesian
generalization error analysis. Our second-order Jensen inequality includes the information of the
variance of loss functions. Thanks to the variance term, our bound is tighter than the standard Jensen
inequality. Then, we derive a generalization error bound that includes the repulsion term, which
means that enhancing the diversity is necessary to reduce the generalization error. We also show
that PVI and DPPs can be derived from our second-order Jensen inequality, and indicate that these
methods work well from the perspective of the generalization error. However, since these existing
methods do not minimize the generalization error upper bound, there is still room for improvement.
In this paper, we propose a new PVI that directly minimize the generalization error upper bound and
empirically demonstrate its effectiveness.

Our contributions are summarized as follows:

1. We derive a novel second-order Jensen inequality that inherently includes the variance of
loss functions. Thanks to this variance term, our second-order Jensen inequality is tighter
than the standard Jensen inequality. We then show that enhancing the diversity is important
for reducing the generalization error bound in light of PAC-Bayesian analysis.

2. From our second-order Jensen inequality, we derive the existing PVI and DPPs. We
demonstrate that these methods work well even at a finite ensemble size, since their objective
functions includes valid diversity enhancing terms to reduce the generalization error.

3. We propose a new PVI that minimizes the generalization error bound directly. We nu-
merically demonstrate that the performance of our PVI compares favorably with existing
methods.

2 Background

In this section, we briefly review PVI, DPPs, and PAC-Bayesian analysis.

2.1 Particle variational inference

Assume that training dataset D = (x1, . . . , xD) is drawn independently from unknown data gener-
ating distribution ν(x). Our goal is to model ν(x) by using a parametrized model ln p(x|θ), where
θ ∈ Θ ⊂ Rd. We express p(D|θ) =

∑D
d=1 ln p(xd|θ) and assume a probability distribution over

parameters. In Bayesian inference, we incorporate our prior knowledge or assumptions into a prior
distribution π(θ). This is updated to a posterior distribution p(θ|D)∝p(D|θ)π(θ), which incorpo-
rates the observation D. Let us consider the approximation of p(θ|D) with q(θ). We predict a new
data point by a predictive distribution p(x) =Eq(θ)p(x|θ), where E denotes the expectation. This
expectation over the posterior is often called BMA [21].
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Table 1: Particle variational inference methods. I is an N ×N identity matrix and Ki,j := K(θi, θj).

Methods v(θ)

SVGD[17] 1
N

∑N
j=1 Kij∂θj log p(D|θj)π(θj) + ∂θjKij

w-SGLD[3] ∂θi log p(D|θi)π(θi) +
∑N
j=1

∂θj
Kij∑N

k=1
Kjk

+

∑N
j=1 ∂θj

Kji∑N
k=1

Kik

GFSD[15] Without the second term in w-SGLD
GFSF[15] ∂θi log p(D|θi)π(θi) + 1

N

∑N
j=1((K + cI)−1)ij∂θjKij

Assume that we draw N models from the posterior distribution and calculate BMA. We denote
those drawn models as an empirical distribution ρE(θ) = 1

N

∑N
i=1 δθi(θ), where δθi(θ) is the Dirac

distribution that has a mass at θi. We also refer to these N models as particles. The simplest approach
to obtain these N particles is MAP estimate that updates parameters independently with gradient
descent (GD) as follows [28]:

θnew
i ←− θold

i + η∂θ ln p(D|θold
i )π(θold

i ), (1)

where η ∈ R+ is a step size. In BMA, we are often interested in the multi-modal information
of the posterior distribution. In such a case, MAP estimate is not sufficient because N optimized
particles do not necessarily capture the appropriate diversity of the posterior distribution. Instead,
particle variational inference (PVI) [17, 28] approximates the posterior through iteratively updating
the empirical distribution by interacting them with each other:

θnew
i ←− θold

i + ηv({θold
i′ }Ni′=1), (2)

where v({θ}) is the update direction and explicit expressions are summarized in Table 1. Basically, v
is composed of the gradient term and the repulsion term. In Table 1, the repulsion terms contain the
derivative of the kernel function K, and the Gaussian kernel [23] is commonly used. When the band-
width of K is h, the repulsion term is expressed as ∂θiK(θi, θj)=−h−2(θi−θj)e−(2h2)−1‖θi−θj‖2 ,
where ‖ · ‖ denotes the Euclidean norm. We refer to this as a parameter repulsion. Note that the
repulsion term depends on the distance between particles, and the closer they are, the stronger force
is applied. This moves θi away from θj , and thus particles tend not to collapse to a single mode.

For over-parametrized models such as neural networks, since the repulsion in the parameter space
is not enough for enhancing the diversity, function space repulsion force for supervised tasks was
developed [28]. We call it function space PVI (f-PVI). Pairs of input-output data are expressed
as D = {(xd, yd)}Dd=1. We consider the model p(y|x, θ) = p(y|f(x; θ)) where f(x; θ) is a c-
dimensional output function parametrized by θ and x is an input. Furthermore, we consider the
distribution over f and approximate it by a size-N ensemble of f , which means that we prepare N
parameters (particles) {θi}Ni=1. We define fi(x) := f(x; θi). When we input the minibatch with size
b into the model, we express it as fi(x1:b) = (fi(x1), . . . , fi(xb)) ∈ Rcb. Then the update equation
is given as

θnew
i ←− θold

i + η
∂fi(x1:b)

∂θi

∣∣∣
θi=θoldi

v({fi(x1:b)}Ni=1), (3)

where v({fi}) is obtained by replacing ln p(D|θ)π(θ) with (D/b)
∑b
d=1 ln p(yd|fi(xd))π(fi),

where π(f) is a prior distribution over f and the Gram matrix K(θi, θj) is replaced with K(f bi , f
b
j )

in Table 1. See appendix C.1 for details. Then, f-PVI modifies the loss signal so that models are
diverse. We refer to the repulsion term of f-PVI as a model repulsion. We express f bi := fi(x1:b) for
simplicity. When we use the Gaussian kernel, the model repulsion is expressed as

∂θiK(f bi , f
b
j ) = −h−2(f bi − f bj )e−‖f

b
i−f

b
j ‖

2/(2h2)∂θif
b
i . (4)

Thus, the model repulsion pushes model fi away from fj .

2.2 Regularization based methods and determinantal point processes

Another common approach for enhancing the diversity for latent variable models is based on regular-
ization. A famous example is the determinantal point process (DPP) [29], in which we maximize

EρE ln p(D|θ)π(θ) + ln detK, (5)

where K is the kernel Gram matrix defined by Ki,j = K(θi, θj). This log-determinant term is
essentially a repulsion term that enhances the diversity in the parameter space.
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2.3 PAC-Bayesian theory

Here, we introduce PAC-Bayesian theory [7]. We define the generalization error as the cross-entropy:

CE := Eν(x)[− lnEq(θ)p(x|θ)], (6)

which corresponds to the Kullback-Leibler (KL) divergence. Our goal is to find q(θ) that minimizes
the above CE. In many Bayesian settings, we often minimize not CE but a surrogate loss [19] that is
obtained by the Jensen inequality:

Eν(x)[− lnEq(θ)p(x|θ)] ≤ Eν(x),q(θ)[− ln p(x|θ)]. (7)

Since the data generating distribution is unknown, we approximate it with a training dataset as
Eν(x),q(θ)[− ln p(x|θ)] ≈ Eq(θ) 1

D

∑D
d=1[− ln p(xd|θ)]. The PAC-Bayesian generalization error anal-

ysis provides the probabilistic relation for this approximation as follows:
Theorem 1 (Germain [7]). For any prior distribution π over Θ independent of D and for any
ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over the choice of training data D ∼ ν⊗D(x),
for all probability distributions q over Θ, we have

Eν(x),q(θ)[− ln p(x|θ)] ≤ Eq(θ)
1

D

D∑
d=1

[− ln p(xd|θ)] +
KL(q, π) + ln ξ−1 + Ψπ,ν(c,D)

cD
, (8)

where Ψπ,ν(c,D) := lnEπED∼ν⊗D(x)exp[cD(−Eν(x) ln p(x|θ) +D−1
∑D
d=1 ln p(xd|θ))].

The Bayesian posterior is the minimizer of the right-hand side of the PAC-Bayesian bound when
c = 1. Recently, the PAC-Bayesian bound has been extended so that it includes the diversity term
[19]. Under the same assumptions as Theorem 1 and for all x, θ, p(x|θ) <∞, we have

CE≤−Eν,q[ln p(x|θ) + V (x)] ≤ −Eq
1

D

D∑
d=1

[ln p(xd|θ) + V (xd)] +
KL(q, π) +

ln ξ−1+Ψ′π,ν(c,D)

2

cD
, (9)

where V (x) := (2 maxθ p(x|θ)2)−1Eq(θ)
[
(p(x|θ)− Eq(θ)p(x|θ))2

]
is the variance of the predictive

distribution and Ψ′π,ν(c,D) is the modified constant of Ψπ,ν(c,D) (see Appendix C.2 for details). A
similar bound for ensemble learning, that is, q(θ) as an empirical distribution, was also previously
proposed [19] (see Appendix C.3). This bound was derived directly from the second-order Jensen
inequality derived in another work [14]. Furthermore, the diversity comes from the variance of
the predictive distribution, which is different from PVI and DPPs because their repulsion is in
the parameter or model space. Note that we cannot directly change the variance of the predictive
distribution to that of PVI or DPPs because it requires an inequality that is contrary to the Jensen
inequality. We also found that directly optimizing the upper bound of Eq.(9), referred to as PAC2

E,
results in a too large variance of the predictive distribution which is too pessimistic for supervised
learning tasks (see Section 5).

3 Method

Here, we derive our novel second-order Jensen inequality based on the variance of loss functions and
then derive a generalization error bound. Then, we connect our theory with existing PVI and DPPs.

3.1 A novel second-order Jensen inequality

First, we show the second-order equality, from which we derive our second-order Jensen inequality.

Theorem 2. Let ψ be a twice differentiable monotonically increasing concave function on R+, Z be
a random variable on R+ that satisfies E[Z2] <∞, and its probability density be pZ(z). Define a
constant µ := ψ−1(E[ψ(Z)]). Then, we have

E[Z] = µ−
(

2
dψ(µ)

dz

)−1 ∫
R+

[
d2ψ(c(z))

dz2
(z − µ)2

]
pZ(z)dz, (10)

where c(z) is a constant between z and µ that is defined from the Taylor expansion (see Appendix D.1
for details).
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Proof sketch: There exists a constantc(z)betweenz andµs.t. ψ(z)=ψ(µ)+ dψ(µ)
dz (z−µ)+ 1

2
d2ψ(c(z))

dz2 (z−µ)2

from the Taylor expansion. Then we take the expectation. Full proof is given in Appendix D.1. �

This theorem states the deviation of EZ from µ when ψ is applied to Z. By setting ψ(·)= ln(·) and
Z=p(x|θ) and applying ln to both hand sides of Eq.(10), we have the following equality:
Corollary 1. If for all x and θ, p(x|θ) <∞, we have

Eq(θ) ln p(x|θ)=lnEq(θ)p(x|θ)− ln
(

1 + Eq(θ)(2g(θ, x)2)−1(eln p(x|θ)−eEq(θ) ln p(x|θ))2
)
, (11)

where g(θ, x) is a constant between p(x|θ) and eEq(θ) ln p(x|θ)that is defined from the Taylor expansion
(see Appendix D.2 for details).
Remark 1. Recall that the standard Jensen inequality is Eq ln p(x|θ)≤ lnEqp(x|θ), and its gap is
called the Jensen gap. In Eq.(11), the second term of the right-hand side is always positive. Thus,
this term corresponds to the Jensen gap. Remarkably when we use the standard Jensen inequality,
this information is lost. We clarify the meaning of this term below. Also note that our second-order
equality is different from those of the previous works [19, 14] (see Appendix F for details).

Next, we show our first main result, loss function based second-order Jensen inequality:
Theorem 3. Under the same assumption as Corollary 1,

Eq(θ) ln p(x|θ) ≤ lnEq(θ)p(x|θ)− Eq(θ)
(

ln p(x|θ)− Eq(θ) ln p(x|θ)
2h(x, θ)

)2

︸ ︷︷ ︸
:= R(x, h)

, (12)

where
h(x, θ)−2 = exp

(
ln p(x|θ) + Eq(θ) ln p(x|θ)− 2 max

θ
ln p(x|θ)

)
. (13)

Proof sketch: Apply
√
αβ≤ α−β

lnα−ln β for any α, β> 0 to Eq.(11). Full proof is given in Appendix D.3. �

Remark 2. R is the weighted variance of loss functions, and it is always positive. Thus, this
inequality is always tighter than the Jensen inequality, and the equality holds if the weighted variance
is zero. Compared to the results of the previous works [19, 14] that used the predictive variance in
the inequality, our bound focuses on the variance of loss functions. We refer to our repulsion term R
as a loss repulsion.

Then, by rearranging Eq.(12) and taking the expectation, we have the following inequality:

CE ≤ −Eq(θ),ν(x)[ln p(x|θ)]− Eν(x)R(x, h) ≤ −Eq(θ),ν(x)[ln p(x|θ)]. (14)

Using this inequality, we obtain the second-order PAC-Bayesian generalization error bound:
Theorem 4. (See Appendix D.4 for the complete statement) Under the same notation and assumptions
as Theorems 1 and 3, with probability at least 1− ξ, we have

CE≤−Eν,q[ln p(x|θ)+R(x,h)]≤−Eq
1

D

D∑
d=1

[ln p(xd|θ)+R(xd,hm)]+
KL(q, π)+

ln ξ−1+Ψ′′π,ν(c,D)

3

cD
, (15)

where Ψ′′π,ν(c,D) is the modified constant of Ψπ,ν(c,D) andR(x,hm) isR(x,h) in Eq.(12) replacing
h(x, θ)−2 of Eq.(13) with hm(x, θ)−2 =exp(ln p(x|θ)+minθln p(x|θ)−2 maxθln p(x|θ)).

Proof sketch. We express Eq(θ)[ln p(x|θ) + R(x,hm)] as Eq(θ)q(θ′)q(θ′′)L(x,θ,θ′,θ′′) where
L(x,θ,θ′,θ′′) :=ln p(x|θ)+(2hm(x,θ))−2(ln p(x|θ)2−2 ln p(x|θ) ln p(x|θ′)+ln p(x|θ′) ln p(x|θ′′)).
Then, we apply the same proof technique as Theorem 1 [7] to the loss function L(x,θ,θ′,θ′′) with
λ = 3cD. Full proof is given in Appendix D.4. �
Remark 3. To reduce the upper bound of the generalization error, Eq.(15), we need to control the
trade-off between the data fitting term of the negative log-likelihood and enhancing the diversity of
the models based on the loss repulsion term R.
Remark 4. In the definition of hm, minθln p(x|θ) is too pessimistic in some cases. If we additionally
assume that there exists a positive constant M s.t. Eq(θ)[ln p(x|θ)]2 < M < ∞, we can replace
minθln p(x|θ) with Medianθ(ln p(x|θ))−M1/2 in hm in Theorem 4 (see Appendix D.4.1).
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Compared to Eq.(9), our bound focuses on the variance of loss functions, which has a direct connection
to the repulsion of PVI and DPPs (see Section 3.2). Furthermore, we show that optimizing the upper
bound in Eq.(15) shows competitive performance with the existing state-of-the-art PVI (see Section 5).
Note that this inequality is not restricted to the case where q(θ) is an empirical distribution. We can
also use this for parametric variational inference [21].

3.2 Diversity in ensemble learning and connection to existing methods

In the following, we focus on the ensemble setting and use a finite set of parameters as ρE(θ) :=
1
N

∑N
i=1 δθi(θ) and discuss the relationship of our theory and existing methods. We show the

summary of the relationships in Appendix J.

3.2.1 Covariance form of the loss repulsion

To emphasize the repulsion between models, we upper-bound Eq.(12) using the covariance:

Theorem 5. Under the same assumption as Corollary 1, we have

EρE(θ) ln p(x|θ) ≤ lnEρE(θ)p(x|θ)−
1

2(2hw(x, θ))2N2

N∑
i,j=1

(ln p(x|θi)− ln p(x|θj))2
, (16)

where hw(x, θ)−2 = exp
(
mini ln p(x|θi) + 1

N

∑
i=1 ln p(x|θi)− 2 maxj ln p(x|θj)

)
.

See Appendix D.5 for the proof. We can also show a generalization error bound like Theorem 4 for
the ensemble learning setting (see Appendix E.1). In existing PVI and DPPs, the repulsion is based
not on the loss function but the parameters or models, as seen in Section 2. We derive the direct
connection between our loss repulsion and the model and parameter repulsion below.

3.2.2 Relation to w-SGLD and model repulsion

First, from Eq.(16), we derive the direct connection to w-SGLD, which is an instance of PVI
introduced in Section 2. Let us define an N × N kernel Gram matrix G whose (i, j) element is
defined as

Gij := exp
(
−(8h2

w)−1 (ln p(x|θi)− ln p(x|θj))2
)
. (17)

Applying the Jensen inequality to Eq.(16), we obtain

lnEρE(θ)p(x|θ) ≥ EρE(θ) ln p(x|θ)− 1

N

N∑
i=1

ln

N∑
j=1

Gij
N
≥ EρE(θ) ln p(x|θ). (18)

This is tighter than the standard Jensen inequality. To derive the relation to w-SGLD, we optimize the
middle part of Eq.(18) by gradient descent. We express L(θi) := ln p(x|θi) and do not consider the
dependency of hw on θ for simplicity. By taking the partial derivative with respect to θi, we have

∂θi ln p(x|θi) +

 N∑
j=1

∂L(θj)Gij∑N
k=1Gjk

+

∑N
j=1 ∂L(θj)Gji∑N

k=1Gik

 ∂θiL(θi). (19)

The second term corresponds to the repulsion term, which is equivalent to that of w-SGLD shown in
Table 1. The difference is that our Gram matrix G in Eq.(19) depends on the loss function rather than
the parameter or model. Using the mean value theorem, it is easy to verify that there exists a constant
C such that ‖ ln p(x|θi)− ln p(x|θj)‖2 = ‖C(θi − θj)‖2 (see Appendix G for details), thus we can
easily transform the loss repulsion to the parameter or model repulsion.

However, since we cannot obtain the explicit expression of the constant C, it is difficult to understand
the intuitive relation between our loss repulsion and the parameter or model repulsion. Instead,
here we directly calculate ∂θiGi,j and discuss the relation. Due to the space limitation, we only
show the relation to the model repulsion in the regression task of f-PVI. See Appendix G for the
complete statement including the classification setting of f-PVI and the parameter repulsion of PVI.
Following the setting in Section 2.1, for a regression problem, we assume that p(y|f(x; θ)) is the
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Gaussian distribution with unit variance for simplicity. We define L(fi) := ln p(y|f(x; θi)) and
dLij := ∂fiL(fi) + ∂fjL(fj). The derivative of the Gram matrix G is expressed as

∂θiGij = −((fi − fj)‖dLij‖2︸ ︷︷ ︸
i)

+ ∂fiL(fi)dLij‖fi − fj‖2︸ ︷︷ ︸
ii)

)(4hw)−2Gij∂θifi. (20)

The first term i) corresponds to the model repulsion of f-PVI shown in Eq.(30) and the second term
ii) is the correction term based on the loss function. Thus, our loss repulsion can be translated to the
model repulsion of f-PVI plus the correction term using the loss function.

In conclusion, we have confirmed that w-SGLD is directly related to our theory. For Eq.(18), we
can also derive a generalization error bound like Theorem 4 (see Appendix E.2 for details). This
means that w-SGLD controls the trade-off between the model fitting and enhancing the diversity by
optimizing the generalization error bound. This explains the reason why w-SGLD still works well
even with a finite ensemble size.

3.2.3 Relation to other PVIs

Here, we derive other PVI and DPPs from our theory. First, we derive GFSF shown in Table 1. We
express the identity matrix with size N as I . We obtain the following upper bound from Eq.(16):
Theorem 6. Under the same assumption as Corollary 1, for any real value ε ∈ (1, N − 1) and for
any positive constant h̃, we have

lnEρE(θ)p(x|θ) ≥ EρE(θ) ln p(x|θ)− 2

h̃N
ln det(εI +K) +

2 lnN

h̃N
≥ EρE(θ) ln p(x|θ), (21)

where K is an N ×N kernel Gram matrix of which (i, j) element is defined as

Kij := exp
(
−h̃ lnN(4hw)−2 (ln p(x|θi)− ln p(x|θj))2

)
. (22)

The proof is shown in Appendix D.6. This is tighter than the standard Jensen inequality.

Remark 5. Eq.(21) holds for any positive bandwidth h̃. h̃ defines the tightness Eq.(21).
Remark 6. In Eq.(22), we used the scaling of lnN to define K. This is motivated by the median trick
of the existing PVI, which tunes the bandwidth as lnN/median2. This scaling implies that, for each
i,
∑
jKij≈1+ 1

N holds. We found that using this scaling is necessary to obtain the bound Eq.(21).
We conjecture that this is the reason why scaling the bandwidth is important for PVI in practice.

In the same way as Eq.(19) for w-SGLD, we also optimize the middle term in Eq.(21) by GD. By
taking the partial derivative, we have the following update equation:

∂θiEρE(θ) log p(x|θi) +
2

h̃N

∑
j

(K + εI)−1
ij ∇L(θj)Kij∂θiL(θi). (23)

See appendix D.7 for the proof. The second term is the repulsion force, which is the same as that in
the update equation of GFSF in Table 1.

Next we consider the relation to DPPs. Using the trace inequality [8] to Eq.(16) and using a Gram
matrix G̃ whose (i, j) element is G

1
2
ij in Eq.(17), we obtain

lnEρEp(x|θ) ≥ EρE ln p(x|θ) +
2

N
ln detG̃−lnN (24)

The proof is shown in Appendix D.8. The lower bound term of Eq.(24) is equivalent to the objective
function of the DPP introduced in Eq.(5).

For Eqs.(21) and (24), we can derive a PAC-Bayesian generalization error bound like Theorem 4
(see Appendix E.2 for details). Moreover, we can connect our loss repulsion in Eqs.(21) and (24)
to model and parameter repulsions in the same way as w-SGLD. Accordingly, GFSF and DPP are
closely related to the second-order generalization error bound.

In conclusion, we derived PVI and DPPs from our theory based on the second-order Jensen inequality.
On the other hand, we found it difficult to show its relation to SVGD, since it has the kernel smoothing
coefficient in the derivative of the log-likelihood function. We leave it for future work.
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4 Discussion and Related work

In this section, we discuss the relationship between our theory and existing work.

4.1 Theoretical analysis of PVI

Originally, PVI was derived as an approximation of the gradient flow in Wasserstein space and its
theoretical analysis has been done with an infinite ensemble size [16, 12]. In practice, however, an
infinite ensemble size is not realistic and various numerical experiments showed that PVI still works
well even with a finite ensemble size [17, 28]. Accordingly, our analysis aimed to clarify why PVI
works well with such a finite-size ensembles. On the other hand, as discussed in Section 3.2.2, there
is a difference between our loss repulsion and the parameter and model repulsion used in the existing
works, and thus it would be an interesting direction to extend our theory to fill such a gap.

4.2 Relation to existing second-order Jensen inequality

Recently, some works derived tighter Jensen inequalities [14, 6]. Liao and Berg [14] derived a
second-order Jensen inequality, and Gao et al. [6] worked on a higher-order inequality. Masegosa
[19] combined the earlier result [14] with the PAC-Bayesian theory. Although our bound is also a
second-order Jensen inequality, its derivation and behavior are completely different from them. In
Liao [14], their second-order Jensen inequality includes the term of a variance of a random variable,
and Masagosa [19] considered p(x|θ) to be a corresponding random variable that depends on θ. Thus,
the second-order inequalities depend on the variance of the predictive distribution Ep(θ)[p(x|θ)].
On the other hand, our bound is based on our novel second-order equality shown in Theorem 2,
which leads to the variance of a loss function as shown in Theorem 3. By using the variance of loss
functions, we can directly connect our theory to existing PVI and DPPs as shown in Section 3.2.
Moreover, as shown in Section 5, including the predictive variance in the objective function results in
a large epistemic uncertainty, which means that individual models do not fit well. On the other hand,
ours does not show this phenomenon. Consequently, our result can be regarded as an extension of the
earlier work [14, 6, 19] that directly focuses on a loss function in machine learning.

Masagosa [19] showed that the second-order PAC-Bayesian generalization error is especially useful
under misspecified models, i.e., for any θ, p(x|θ) 6= ν(x). Our theories can also be extended to such
a setting (see Appendix H for further discussion).

Other closely related work is an analysis of the weighted majority vote in multiclass classification
[20], which uses a second-order PAC-Bayesian bound. While their analysis is specific to the majority
vote of multiclass classification, our analysis has been carried out in a more general setting based on
the second-order Jensen inequality derived from Theorem 2 and Theorem 3.

5 Numerical experiments

According to our Theorem 4, it is important to control the trade-off between the model fitting and
diversity enhancement in order to reduce the generalization error. Therefore, we minimize our
generalization error bound Eq.(15) directly and confirm that the trade-off is controlled appropriately.
Our objective function is

F({θi}Ni=1) := − 1

N

N∑
i=1

D∑
d=1

[ln p(xd|θi)+R(xd,h)] + KL(ρE, π), (25)

which is obtained setting q(θ) = ρE(θ) and c= 1 in Eq.(15). We call our approach as Variance
regularization, and express it as VAR. We compared the performances of our methods with MAP,
PAC2

E, and f-PVI(f-SVGD) on toy data and real data. Our experimental settings are almost same as
that of the previous work [28] and the detailed settings and additional results are shown in Appendix I.

As for the KL divergence, since ρE is an empirical measure, we need to carefully define a prior
distribution so that the KL divergence between ρE and π can be defined properly. We used a
certain prior distribution as introduced previously [19] (see Appendix C.3 for details). Moreover, to
eliminate such a limitation, we considered smoothing the gradient using SVGD. We call this approach
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Figure 1: Uncertainty of the regressions. Blue curve is the predictive mean, light shaded area is
the predictive cretible interval and dark shaded area is the credible intervals for the mean estimate
respectively.

VAR-SVGD, of which update equation is given as

θnew
j ←− θold

j + η
1

N

N∑
i=1

Kij∂θoldi

(
log p(D|θold

i )π(θold
i ) +R(D, h)

)
+ ∂θoldi Kij , (26)

where R(D, h) =
∑D
d=1R(xd, h) and Kij is the Gram matrix using the Gaussian kernel defined

similarly to the model repulsion in Section 2.1. We tuned its bandwidth by the median trick.

5.1 Toy data experiments

First, using toy data, we visualized the model fitting and diversity in various methods. We considered
a regression task and we randomly generated the 1-dimensional data points and fit them by using a
feed-forward neural network model with 2 hidden layers and ReLU activation, which has 50 units.
We used 50 ensembles for each method. The results are shown in Figure 1, which visualizes 95%
credible intervals for the prediction and mean estimate corresponding to aleatoric and epistemic
uncertainties.

Hamilton Monte Carlo (HMC)[21] is the baseline method used to express the Bayesian predictive
uncertainty properly. MAP and SVGD methods give an evaluation of the uncertainty that is too small.
Our method and f-SVGD showed very similar evaluations for uncertainty. PAC2

E [19] showed large
epistemic uncertainty, which is expressed as dark shaded area in Figure 1. We conjecture it is because
PAC2

E includes the predictive variance in the objective function and the enhanced diversity is too
large. Described below, PAC2

E shows slightly worse results in real data experiments than those of
other approaches. This might be because including the predictive variance in the objective function
does not result in a better trade-off of between model fitting and enhancing diversity in practice.

5.2 Regression task on UCI

We did regression tasks on the UCI dataset [4]. The model is a single-layer network with ReLU
activation and 50 hidden units except for Protein data, which has 100 units. We used 20 ensembles.
Results of 20 repetition are shown in Table 2. We found that our method compares favorably with
f-SVGD. We also found that PAC2

E shows worse performance than those of other methods. We
conjectured that this is because the predictive variance in the objective function enhances too large
diversity as shown in Figure 1, which hampers the fitting of each model to the data.

5.3 Classification task on MNIST and CIFAR 10

We conducted numerical experiments on MNIST and CIFAR 10 datasets. For MNIST, we used a feed-
forward network having two hidden layers with 400 units and a ReLU activation function and used 10
ensembles. For CIFAR 10, we used ResNet-32 [9], and we used 6 ensembles. The results are shown
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Table 2: Benchmark results on test RMSE and negative log likelihood for the regression task.

Dataset Avg. Test RMSE Avg. Test negative log likelihood
MAP PAC2

E f-SVGD VAR VAR-SVGD MAP PAC2
E f-SVGD VAR VAR-SVGD

Concrete 5.19±0.3 5.49±0.3 4.32±0.1 4.33±0.1 4.35±0.2 3.11±0.12 3.16±0.10 2.86±0.02 2.82±0.09 2.80±0.06
Boston 2.98±0.4 4.03±0.5 2.54±0.3 2.54±0.3 2.52±0.3 2.62±0.2 2.61±0.3 2.46±0.1 2.39±0.2 2.35±0.2
Wine 0.65±0.04 1.03±0.09 0.61±0.03 0.61±0.03 0.61±0.03 0.97±0.07 1.26±0.03 0.90±0.05 0.89±0.04 0.89±0.06
Power 3.94±0.03 5.04±0.21 3.77±0.03 3.76±0.03 3.40±0.05 2.79±0.05 3.17±0.01 2.76±0.05 2.79±0.03 2.79±0.03
Yacht 0.86±0.05 0.70±0.21 0.59±0.09 0.59±0.09 0.58±0.12 1.23±0.05 0.80±0.4 0.96±0.3 0.87±0.3 0.81±0.2

Protein 4.25±0.07 4.17±0.05 3.98±0.03 3.95±0.05 3.93±0.07 2.95±0.00 2.84±0.01 2.80±0.01 2.81±0.01 2.80±0.01

Table 3: Benchmark results on test accuracy and negative log likelihood for the classification task.

Dataset Test Accuracy Test log likelihood
MAP PAC2

E f-SVGD VAR VAR-SVGD MAP PAC2
E f-SVGD VAR VAR-SVGD

MNIST 0.981 0.986 0.987 0.988 0.988 0.057 0.042 0.043 0.040 0.041
CIFAR 10 0.935 0.919 0.927 0.928 0.928 0.215 0.270 0.241 0.238 0.240

Table 4: Cumulative regret relative to that of the uniform sampling.
Dataset MAP PAC2

E f-SVGD VAR VAR-SVGD
Mushroom 0.129±0.098 0.037±0.012 0.043±0.009 0.029±0.010 0.037±0.012
Financial 0.791±0.219 0.189±0.025 0.154±0.017 0.155±0.024 0.176±0.023
Statlog 0.675 ±0.287 0.032±0.0025 0.010±0.0003 0.006±0.0003 0.007±0.0004

CoverType 0.610±0.051 0.396±0.006 0.372±0.007 0.289±0.003 0.320±0.005

in Table 3. For both datasets, our methods show competitive performance compared to f-SVGD. For
CIFAR 10, as reported previously [28], f-SVGD is worse than the simple ensemble approach. We
also evaluated the diversity enhancing property by using the out of distribution performance test. It is
hypothesized that Bayesian models are more robust against adversarial examples due to their ability
to capture uncertainty. Thus, we generated attack samples and measured the vulnerability to those
samples. We found that, as shown in Figure 4 in Appendix I, our method and f-SVGD showed more
robustness compared to MAP estimation in each experiment.

5.4 Contextual bandit by neural networks on the real data set

Finally, we evaluated the uncertainty of the obtained models using contextual bandit problems [24].
This problem requires the algorithm to balance the trade-off between the exploitation and exploration,
and poorly evaluated uncertainty results in larger cumulative regret. We consider the Thompson
sampling algorithm with Bayesian neural networks having 2 hidden layers and 100 ReLU units, and
we used 20 particles for each experiment. Results of 10 repetition are shown in Table 4. We can see
that our approach outperform other methods.

6 Conclusion

In this work, we derived a novel second-order Jensen inequality that includes the variance of loss
functions. We also derived a PAC-Bayesian generalization error bound. Our error bound shows that
both model fitting and enhancing diversity are important for reducing the generalization error. Then,
we derived the existing PVI and DPPs from our new Jensen inequality. Finally, we proposed a new
PVI that directly minimizes our PAC-Bayesian bound. It shows competitive performance with the
current state-of-the-art PVI. In future work, it would be interesting to apply our second-order Jensen
inequality to general variational inference or optimal control problems.

Other interesting direction is to derive an upper-bound of the Jensen gap. Gao et al. [6] derived
lnEp(x|θ) − E ln p(x|θ) ≤ Variance(p(x|θ)), which uses the predictive distribution. This means
that the larger the predictive variance is, the larger upper bound of the Jensen gap we have. We leave
it for future work to upper-bound the Jensen gap with the variance of loss function using our theory.
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Symbolslist

Sign Description
ν(x) Unknown data generating distribution
D = (x1, . . . , xD) Training data drawn from ν(x)
p(x|θ) A model, also called as a likelihood function
π(θ) A prior distribution
p(θ|D) Bayesian posteriror distribution, p(θ|D) ∝ p(D|θ)π(θ)
q(θ) An approximate posteriror distribution
ρE(θ) An empirical distribution defined as ρE(θ) := 1

N

∑N
i=1 δθi(θ)

N A number of particles in PVI
F The objective function of our new PVI
h The bandwidth in the repulsion forces

A Limitation of this work

Here, we discuss the limitation of this work.

Theoretically, the major theoretical limitation is that for all x and θ, p(x|θ) <∞. This is the exactly
same assumption with the previous work [19]. This assumption is always satisfied in classification
tasks. However, if p(x|θ) is a Gaussian distribution, we need to restrict the parameter space such
that its variance is larger than 0. Although there were no problems in our numerical experiments, it
cannot be completely denied that in some cases it is possible that the numerical instability of the
distribution p(x|θ) may prevent us from obtaining results consistent with the theory.

B Negative societal impacts of this work

Our method uses the ensemble of models, which requires the larger computational cost than the
single models.

C Further preliminary of existing methods

In this section, we review existing methods.

C.1 Function space PVI

Here we review the Function space PVI (f-PVI) [28]. Pairs of input-output data are expressed as D =
{(x, y)} where x ∈ X and y ∈ Y . We consider the model p(y|x, θ) = p(y|f(x; θ)) where f(x; θ) is
a c-dimensional output function parametrized by θ and x is an input. For example, for regression tasks,
if Y = R, then c = 1 and we often assume that p(y|x, θ) = N(y|f(x; θ), σ2). For classification
tasks, c corresponds to the class number and p(y|x, θ) = Multinomial(y|softmax(f(x; θ)).

In previous work [28], they considered that there exists a mapping from the parameters θ to a function
f(·, θ), and a prior distribution on θ implicitly defines a prior distribution on the space of the function,
π(f). Then, the model p(y|x, θ) corresponds to the distribution of p(y|x, f). Thus, it is possible to
obtain the posterior distribution for function f from the inference of the parameters.

Then, we approximate the distribution on f by a size-N ensemble set {fi(·)}Ni=1. That is, we directly
update each fi(·). Then, the update of f-PVI is given as

f inew(X )←− f iold(X ) + ηv({fi(X )}Ni=1), (27)

where v is the update direction.
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However, if the input space X is very large or infinite, it is impossible to directly update fi(·)
efficiently. Instead, in the previous work [28], we approximate fi(·) by a parametrized neural
network. In principle, it is possible to use any flexible network to approximate it, and it was proposed
to use the original network, f(·; θ) for that approximation since it can express any function on the
support of the prior π(f) which is implicitly defined by the prior π(θ). Thus, the update direction is
mapped to the parameter space

θnew
i ←− θold

i + η
∂fi(X )

∂θi

∣∣∣
θi=θoldi

v({fi(X )}Ni=1). (28)

Furthermore, it was proposed to replace X in Eq.(28) by a finite set of samples x1:b = (x1, . . . , xb)
with size b, which are drawn from X⊗b. When we input the minibatch with size b into the model, we
express it as fi(x1:b) = (fi(x1), . . . , fi(xb)) ∈ Rcb. Then the update equation is given as

θnew
i ←− θold

i + η
∂fi(x1:b)

∂θi

∣∣∣
θi=θ

old
i

v({fi(x1:b)}Ni=1), (29)

where v({fi}) is obtained by replacing ln p(D|θ)π(θ) with (D/b)
∑b
d=1 ln p(xd|θ)π(f), where π(f)

is a prior distribution over f and the Gram matrix K(θi, θj) is replaced with K(f bi , f
b
j ) in Table 1.

Thus, f-PVI modifies the loss signal so that models are diverse. We refer to the repulsion term of
f-PVI as a model repulsion. When we use the Gaussian kernel, the model repulsion is expressed as

∂θiK(f bi , f
b
j ) = −h−2(f bi − f bj )e−‖f

b
i−f

b
j ‖

2/(2h2)∂θif
b
i . (30)

Thus, the model repulsion pushes model fi away from fj .

Finally, the implicitly defined prior π(f) should be specified more explicitly to calculate ∂f lnπ(f).
Then it was proposed approximating the implicit prior by a Gaussian process. Given a minibatch
of data x, first, we draw parameters from a prior π(θ) and then construct a multivariate Gaussian
distribution whose mean and variance are defined by the mean and variance of drawn samples.

C.2 The second-order PAC-Bayesian generalization error bound [19]

We first present the second-order PAC-Baysian bound in previous work [19],

Theorem 7. [19] For all x, θ, p(x|θ) <∞ and for any prior distribution π over Θ independent of
D and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over the choice of training data
D ∼ ν⊗D(x), for all probability distributions q over Θ, we have

CE≤−Eν,q[ln p(x|θ) + V (x)] ≤ Eq
−1

D

D∑
d=1

[ln p(xd|θ) + V (xd)] +
KL(q, π) +

ln ξ−1+Ψ′π,ν(c,D)

2

cD
,

(31)

where

V (x) := (2 max
θ
p(x|θ)2)−1Eq(θ)

[
(p(x|θ)− Eq(θ)p(x|θ))2

]
, (32)

and

Ψ′′π,ν(c,D) := lnEπ(θ,θ′)ED∼ν⊗D(x)e
cD(−Eν(x)L(x,θ,θ′)+D−1∑D

d=1 L(xd,θ,θ
′)), (33)

and

L(x, θ, θ′) := ln p(x|θ) + (2 max
θ
p(x|θ)2)−1(p(x|θ)2 − p(x|θ)p(x|θ′)). (34)

C.3 Ensemble setting of the second-order PAC-Bayesian generalization error bound [19]

Here we introduce the ensemble setting, that is,

ρE(θ) =
1

N

N∑
i=1

δθi(θ). (35)
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C.3.1 Prior distribution for ensemble learning

We need to properly define a prior distribution for ensemble learning so that KL divergence between
ρE and π can be defined properly. Following the previous work [19], we define the prior distribution
as the mixture of discrete dirac mass distribution as

πE(θ) =
∑
θ′∈ΘE

wθ′δθ′(θ), (36)

where wθ′ ≥ 0 and
∑
θ′∈ΘE

wθ′ = 1.

If

{θi}Ni=1 ⊂ ΘE ⊂ Rd, (37)

holds, we can define the KL divergence properly. From the definition of Radon–Nikodym derivative
of the discrete measure, we have

KL(ρE, πE) =
1

N

N∑
i=1

ln
1
N

wθi
= − 1

N

N∑
i=1

lnπE(θi) +
1

N

N∑
i=1

ln
1

N
. (38)

Thus, we need to properly define ΘE so that Eq.(35) holds.

Following the idea of [19], we define ΘE as the set of d-dimensional real vectors that can be
represented under a finite-precision scheme using p-bits to encode each element of the vector. Thus
this set is countable and can define the mixture of dirac mass distribution and satisfies Eq.(35)
properly.

Note that as discussed in the previous work [19], the KL divergence of Eq.(38) is not continuous
and differentiable and not suitable for the gradient descent based optimization. Fortunately, when
we implement any statistical distribution on a computer, they are expressed under a finite-precision
scheme, thus, we can regard them as an approximation of πE. Thus, we can use any statistical
distribution as a proxy of a precise πE when we implement algorithms on a computer.

C.3.2 Generalization error bound

Using the prior distribution πE introduced in Appendix C.3.1, we have the PAC-Bayesian generaliza-
tion error bound for the ensemble setting,
Theorem 8. [19] For all x, θ, p(x|θ) <∞ and for any prior distribution πE over ΘE independent
of D and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over the choice of training data
D ∼ ν⊗D(x), for all probability distributions ρE with supp(ρE) ⊂ ΘE, we have

CE≤−Eν,ρE [ln p(x|θ) + V (x)] ≤ EρE
−1

D

D∑
d=1

[ln p(xd|θ) + V (xd)] +
KL(ρE, πE) +

ln ξ−1+Ψ′πE,ν
(c,D)

2

cD
,

(39)

where

V (x) := (2 max
θ
p(x|θ)2)−1EρE

[
(p(x|θ)− EρEp(x|θ))2

]
, (40)

and

Ψ′′πE,ν(c,D) := lnEπ(θ,θ′)ED∼ν⊗D(x)e
cD(−Eν(x)L(x,θ,θ′)+D−1∑D

d=1 L(xd,θ,θ
′)), (41)

and

L(x, θ, θ′) := ln p(x|θ) + (2 max
θ
p(x|θ)2)−1(p(x|θ)2 − p(x|θ)p(x|θ′)). (42)

D Proofs of Section 3

D.1 Proof of Theorem 2

Since ψ is a monotonically increasing concave function on R, an inverse function ψ−1 is convex
function.
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Let us consider the Taylor expansion of ψ up to the second order around a constant µ. There exists a
constant c(z) between µ and z that satisfies

ψ(z) = ψ(µ) + ψ′(µ)(z − µ) +
ψ′′(c(z))

2
(z − µ)2. (43)

Above equation holds for all realizable values of a random variable Z.

Then, we substitute a random variable Z to z and µ = ψ−1(EpZ [ψ(Z)]) in the above equation, and
then taking the expectation with respect to pZ(z), we obtain

0 = ψ′(µ)

∫
R+

(z − µ)pZ(z)dz +

∫
R+

ψ′′(c(z))

2
(z − µ)2pZ(z)dz. (44)

By rearranging the above, and ψ′ > 0 since ψ′ is a monotonically increasing function, we have

EpZZ = µ−
∫
R+

ψ′′(c(z))

2ψ′(µ)
(z − µ)2pZ(z)dz (45)

Since EpZZ ∈ R+ from the assumption and since ψ is a monotonically increasing function, ψ′ is
always positive and ψ′′ is always negative. Thus µ− EpZ

ψ′′(c)
2ψ′(µ) (Z − µ)2 ∈ R+. Then we apply the

ψ on both hand side, we obtain the theorem.

D.2 Proof of Corollary 1

Remark 7. This corollary holds for all probability distributions q over Θ, like Theorem 1.

Proof. We substitute ψ = log and Z = p(x|θ) in Theorem 2, we obtain the result. Here we also
show the more intuitive proof.

Let us consider the Taylor expansion of log function up to the second order around a constant
µ =Eq ln p(x|θ). We obtain

ln eln p(x|θ) = ln eEq ln p(x|θ) +
1

eEq ln p(x|θ) (eln p(x|θ) − eEq ln p(x|θ))− 1

2g(x, θ)2
(eln p(x|θ) − eEq ln p(x|θ))2

(46)

where g(x, θ) is the constant between p(x|θ) and µ, and it is defined as the reminder of the Taylor
expansion. Taking the expectation, we have

0 = Eq
1

eEq ln p(x|θ) (eln p(x|θ) − eEq ln p(x|θ))− Eq
1

2g(x, θ)2
(eln p(x|θ) − eEq ln p(x|θ))2 (47)

We rearrange the equality as follows

eEq ln p(x|θ)
(

1 + Eq
1

2g(x, θ)2
(eln p(x|θ) − eEq ln p(x|θ))2

)
= Eqeln p(x|θ). (48)

Then taking the logarithm in both hand side, we obtain the result.

D.3 Proof of Theorem 3

Remark 8. This theorem holds for all probability distributions q over Θ, like Theorem 1.

Proof. First, recall that g(x, θ) is the constant between p(x|θ) and µ is defined as the reminder
of the second order Taylor expansion. Thus if we define g(x) := maxθ∈supp(q(θ)) p(x|θ), then
g(x) ≥ g(x, θ) holds. Moreover, following relation holds:

1

2

(
eln p(x|θ) − eEq ln p(x|θ)

g(x)

)2

≤ 1. (49)

Using the following lemma (its proof is shown in the below)
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Lemma 1. For any constant α ∈ (0, 1], we have

− ln(1 + α) ≤ ln(1− α

2
). (50)

Then we obtain

Eq ln p(x|θ) ≤ lnEqp(x|θ) + ln

(
1− Eq

1

4g(x)2
(eln p(x|θ) − eEq ln p(x|θ))2

)
. (51)

Then using the relation

1− α

2
≤ e−α2 , (52)

we get

Eq ln p(x|θ) ≤ lnEqp(x|θ) + ln e
−Eq

(
eln p(x|θ)−eEq ln p(x|θ)

2g

)2

. (53)

Finally, we use the following lemma (the proof is shown in the below),

Lemma 2. For any positive constants α, β > 0, we have√
αβ ≤ α− β

lnα− lnβ
, (54)

and when α = β, the equality holds.

Above lemma is equivalent to

(lnα− lnβ)2αβ ≤ (α− β)2. (55)

Setting α := eln p(x|θ) and β := eEq ln p(x|θ) and substituting them into Eq.(55), we obtain

(ln p(x|θ)− Eq ln p(x|θ))2p(x|θ)eEq ln p(x|θ) ≤ (eln p(x|θ) − eEq ln p(x|θ))2. (56)

Then we obtain

Eq ln p(x|θ) ≤ lnEqp(x|θ) + ln e−Eqp(x|θ)e
Eq ln p(x|θ)( (ln p(x|θ)−E_qlnp(x|θ))

2g(x) )
2

. (57)

We define the bandwidth as

p(x|θ)eEq ln p(x|θ)/g(x)2 := h(x, θ)−2, (58)

then, we have

Eq ln p(x|θ) ≤ lnEqp(x|θ) + ln e
−Eq

(
ln p(x|θ)−Eq ln p(x|θ)

2h(x,θ)

)2

. (59)

D.3.1 Proof of lemma 1

Proof. Define f(α) := ln(1−α
2 )+ln(1+α). Since f ′(α) > 0 for 0 ≤ α < 1, thus 0 = f(0) ≤ f(α).

This concludes the proof.

D.3.2 Proof of lemma 2

Proof. Since

α− β
lnα− lnβ

≥ 0, (60)

we only need to show

lnα− lnβ

α− β ≤ 1√
αβ

. (61)
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Since this inequality is symmetric with respect to α and β, we can assume that α ≥ β. If α = β, it
is clear by setting β = α + ε where ε > 0 and take the limit to ε → 0+. When α > β, we define
α = t2β where t2 > 1 and t > 1. Substituting this assumption in the above, we need to show that

2 ln t

t2 − 1
≤ 1

t
. (62)

Since t2 − 1 > 0, by rearranging the above inequality, we only need to show that

t− 1

t
− 2 ln t ≥ 0. (63)

Thus, we define f(t) := t2 − 1 − 2t ln t. Then f ′(t) = 2(t − 1 − ln t) ≥ 0 for all t, thus
0 = f(1) ≤ f(t) for all t ≥ 1. Then, t− 1

t −2 ln t = 1
t f(t), we have shown Eq.(63). This concludes

the proof.

D.4 Proof of Theorem 4

We first present the complete statement:
Theorem 9. For all x and θ, p(x|θ) < ∞ and for any prior distribution π over Θ independent of
D and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over the choice of training data
D ∼ ν⊗D(x), for all probability distribution q over Θ, we have

CE≤−Eν,q[ln p(x|θ)+R(x,h)]≤Eq
−1

D

D∑
d=1

[ln p(xd|θ)+R(xd,hm)]+
KL(q, π)+

ln ξ−1+Ψ′′π,ν(c,D)

3

cD
,

(64)
where

Ψ′′π,ν(c,D) := lnEπ(θ,θ′,θ′′)ED∼ν⊗D(x)e
cD(−Eν(x)L(x,θ,θ′,θ′′)+D−1∑D

d=1 L(xd,θ,θ
′,θ′′)), (65)

and
L(x, θ, θ′, θ′′) := ln p(x|θ) + (2hm(x, θ))−2((ln p(x|θ))2 − 2 ln p(x|θ) ln p(x|θ′) + ln p(x|θ′) ln p(x|θ′′)).

(66)

Proof. From the definition of the band width, we have
CE≤−Eν,q[ln p(x|θ)+R(x,h)]≤ −Eν,q[ln p(x|θ)+R(x,hm)]. (67)

Thus, our goal is to derive the probabilistic relationship

−Eν,q[ln p(x|θ)+R(x,hm)] ≈ Eq
−1

D

D∑
d=1

[ln p(xd|θ)+R(xd,hm)] . (68)

We expressEq(θ)[ln p(x|θ)+R(x,hm)] as

Eq(θ)q(θ′)q(θ′′)L(x, θ, θ′, θ′′), (69)
where
L(x, θ, θ′, θ′′) := ln p(x|θ) + (2hm(x, θ))−2((ln p(x|θ))2 − 2 ln p(x|θ) ln p(x|θ′) + ln p(x|θ′) ln p(x|θ′′)).

(70)
Then, we consider the same proof as Pac-Bayesian bound of Theorem 1 [7] to this loss function.
Applying Theorem 3 in [7] with a prior π(θ, θ′, θ′′) := π(θ)π(θ′)π(θ′′), we have

Eν(x),q(θ)q(θ′)q(θ′′)L(x, θ, θ′, (θ′′) ≤ − 1

D

D∑
d

Eq(θ)q(θ′)q(θ′′)L(xd, θ, θ
′, θ′′)

+
KL(q(θ)q(θ′)q(θ′′)|π(θ, θ′, θ′′)) + ln ξ−1 + Ψ′′π,ν(λ,D)

λ
,

(71)
where

Ψ′′π,ν(c,D) := lnEπ(θ,θ′,θ′′)ED∼ν⊗D(x)e
cD(−Eν(x)L(x,θ,θ′,θ′′)+D−1∑D

d=1 L(xd,θ,θ
′,θ′′)). (72)

Noting that KL(q(θ)q(θ′)q(θ′′)|π(θ, θ′, θ′′)) = 3KL(q(θ)|π(θ)), reparametrizing λ = 3cD, we
obtain the main result.

19



D.4.1 Median lower bound

The goal of this section is to show that if Eq[ln p(x|θ)]2 < M <∞, then we have

Med[eln p(x|θ)]e−M
1/2 ≤ eEq ln p(x|θ), (73)

where Med is the median of the random variable. We relax the condition of the bandwidth hm in
Theorem 4. To derive Theorem 4, we lower-bound eEq ln p(x|θ) by eminθ p(x|θ) and introduced hm.
This eminθ p(x|θ) can be a small value for many practical models. If we can use Eq.(73), we can
replace eminθ p(x|θ) in hm with Med[eln p(x|θ)]e−M

1/2

, which results in a much tighter bound.

Proof. We use the following lemma in the previous work [11],

Lemma 3. Given a random variable EX2 <∞, we have

|E[X]−Med[X]| ≤
√
E(X − EX)2. (74)

For the completeness, we show its proof.

Proof. Since the median minimizes the mean absolute value error, we have

|E[X]−Med[X]| = |E[X −Med[X]]| ≤ E|X −Med[X]| ≤ E|X − EX| ≤
√

E(X − EX)2.
(75)

From this lemma, we have

Med[X]−
√
E(X − EX)2 ≤ EX, (76)

and taking the exponential, we have

eMed[X]e−
√

E(X−EX)2 ≤ eEX . (77)

From the definition of the median and the monotonically increasing property of the exponential
function, we have

eMed[X] = Med[eX ]. (78)

Thus, we have

Med[eX ]e−
√

E(X−EX)2 ≤ eEX . (79)

Finally, by setting X = ln p(x|θ), and assume that Eq[ln p(x|θ)]2 < M <∞, we have

Med[eln p(x|θ)]e−
√

Eq(ln p(x|θ)−Eq ln p(x|θ))2 ≤ eEq ln p(x|θ), (80)

thus, we have

Med[eln p(x|θ)]e−M
1/2 ≤ eEq ln p(x|θ). (81)

D.5 Proof of Theorem 5

Remark 9. This theorem and the results of Section 3.2 holds for all probability distributions ρE over
Θ that is expressed as the mixture of the dirac distribution, that is, ρE(θ) = 1

N

∑N
i=1 δθi(θ).

Proof. First note that, from Theorem 3, by substituting the definition of ρE, we have

EρE ln p(x|θ) ≤ lnEρEp(x|θ)−
1

N

N∑
i=1

(
ln p(x|θi)− 1

N

∑N
j=1 ln p(x|θj)

2h(x, θ)

)2

. (82)
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Here the bandwidth h(x, θ) is

h(x, θ)−2 =
eln p(x|θi)+ 1

N

∑
i=1 ln p(x|θi)

e2 maxj∈{1,...,N} ln p(x|θj)
. (83)

and we simply express the maxj∈{1,...,N} ln p(x|θj) as maxj ln p(x|θj). This is because that the
bandwidth h(x, θ) is derived by the relation g(x) ≥ g(x, θ) in Appendix D.3 and g(x, θ) is the
constant between p(x|θ) and eEq ln p(x|θ). Thus, we can upper bound g(x, θ) by maxj ln p(x|θj)
since ρE takes values only on θ1, . . . , θN .

For that purpose, we first eliminate the dependence of θ from the bandwidth. From the definition, Let
us define

hw(x, θ)−2 :=
emini ln p(x|θi)+ 1

N

∑
i=1 ln p(x|θi)

e2 maxj ln p(x|θj)
, (84)

then we have

hw(x, θ)−2 ≤ h(x, θ)−2. (85)

Thus, we have

EρE ln p(x|θ) ≤ lnEρEp(x|θ)−
1

4hw(x, θ)2N

N∑
i=1

ln p(x|θi)−
1

N

N∑
j=1

ln p(x|θj)

2

. (86)

Next we focus on the following relation for the variance. For simplicity, we express Li := ln p(x|θi).
Then by rearranging the definition,

1

N

N∑
i=1

(Li −
N∑
j=1

1

N
Lj)

2

=
1

N3

N∑
i=1

N2L2
i − 2NLi(

N∑
j=1

Lj) + (

N∑
j=1

Lj)
2


=

1

N3

N∑
i=1

N2L2
i − 2NLi(

N∑
j=1

Lj) +

N∑
j=1

L2
j + 2

N−1∑
j=1

LjLj+1


=

1

N3

N∑
i=1

 N∑
j=1

(Lj − Li)2 + (N2 −N)L2
i − 2(N − 1)Li

∑
j=1

Lj + 2

N−1∑
j=1

LjLj+1


=

1

N3

 N∑
i,j=1

(Lj − Li)2 + (N2 −N)

N∑
i=1

L2
i − 2(N − 1)(

N∑
i=1

Li)
2 + 2N

N−1∑
i=1

LiLi+1


=

1

N3

 N∑
i,j=1

(Lj − Li)2 + (N2 − 3N + 2)

N∑
i=1

L2
i + (−2N + 4)

N−1∑
i=1

LiLi+1


=

1

N3

 N∑
i,j=1

(Lj − Li)2 + (N2 − 2N)

N∑
i=1

L2
i + (−N + 2)

(∑
i=1

Li

)2


=
1

N3

N∑
i,j=1

(Lj − Li)2 +
(N − 2)

N

 1

N

N∑
i=1

(Li)
2 −

(
N∑
i=1

Li
N

)2


=
1

N3

N∑
i,j=1

(Lj − Li)2 +
(N − 2)

N

 1

N

N∑
i=1

(Li −
N∑
j=1

1

N
Lj)

2

 . (87)
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Thus, we have

2

N

1

N

N∑
i=1

(Li −
N∑
j=1

1

N
Lj)

2 =
1

N3

N∑
i,j=1

(Lj − Li)2, (88)

which means

1

N

N∑
i=1

(Li −
N∑
j=1

1

N
Lj)

2 =
1

2N2

N∑
i,j=1

(Lj − Li)2. (89)

This concludes the proof.

D.6 Proof of Theorem 6

Proof. Inspired by the rescaling in the main paper, we use the rescaling h̃ lnN and define the N ×N
kernel matrix K of which the (i, j) element is defined as

Kij := exp
(
−h̃ lnN(8h2

w)−1 (ln p(x|θi)− ln p(x|θj))2
)
. (90)

Here, we introduced the additional bandwidth h̃ lnN to rescale the kernel. As we will see in the
proof below, any positive h̃ can be used for the bandwidth. However, using large h̃ makes the bound
loose. For simplicity, define −R1 := 1

N2h̃ lnN

∑N
i,j=1 lnKij .

By applying the Jensen inequality, we have

−R1 =
1

N2h̃ lnN

N∑
i,j=1

lnKij ≤
1

h̃ lnN
ln

N∑
i,j=1

Kij

N2
. (91)

Then note that from the definition of K, we have

N∑
i,j=1

Kij

N2
≤ 1. (92)

We also have

−h̃R1 ≤
1

lnN
ln

N∑
i,j=1

Kij

N2
≤ 1

N
ln

N∑
i,j=1

Kij

N2
= − 1

N
lnN2 +

1

N
ln

N∑
i,j=1

Kij . (93)

Then we define the new kernel function as

K̃ij = K
1/2
ij . (94)

We use the relation of the Frobenius norm and the trace,

N∑
i,j=1

Kij =
∑
i,j

K̃2
i,j = Tr(K̃>K̃), (95)

thus we have

−h̃R1 ≤ −
1

N
lnN2 +

1

N
ln Tr[K̃K̃>]

≤ − 1

N
lnN2 +

1

N
ln(Tr[K̃K̃>] + ε)

≤ − 1

N
lnN2 − N − 1

N
ln ε+

1

N
ln(det[εI + K̃K̃>])

≤ − 2

N
lnN − N − 1

N
ln ε+

2

N
ln(det[ε1/2I + K̃]). (96)
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From the second line to the third line, we used the following relation. We express the eigenvalues of
K̃K̃> as ρis. Then since ρi ≥ 0, we have

det(εI + K̃K̃>)

=
∏
i

(ε+ ρi)

≥ εN +
∏
i

ρi + εN−1
∑
i

ρi

≥ εN + det[K̃K̃>] + εN−1Tr[K̃K̃>] ≥ εN−1Tr[K̃K̃>], (97)

and thus we have

ln Tr[K̃K̃>] ≤ ln det(εI + K̃K̃>)− (N − 1) ln ε. (98)

Then apply this to the second line in Eq.(103). In the last inequality in Eq.(103), we used the relation

ln(det[ε1/2I + K̃)] =
1

2
ln(det[(ε1/2I + K̃)(ε1/2I + K̃)>]

=
1

2
ln(det[(εI + ε1/2(K̃ + K̃>) + K̃K̃>]

≥ 1

2
ln(det[(εI + K̃K̃>)]. (99)

Thus, we have

−h̃R1 ≤ −
2

N
lnN − N − 1

N
ln ε+

2

N
ln(det[ε1/2I + K̃])

≤ − 2

N
lnN − N − 1

N
ln ε+

2

N

N∑
i

ln(ε1/2 + λi)

≤ −N − 1

N
ln ε+

2

N

N∑
i

ln
(ε1/2 + λi)

N
, (100)

where λi is the i-th eigenvalue of K̃.

Note that from the definition of the gram matrix, for all i, K̃ii = K
1/2
ii = 1 holds and this means that

TrK̃ =
∑
i ρi = N . From the relation of lnx ≤ x− 1 and

∑
i ρi = N , we obtain

−h̃R1 ≤ −
N − 1

N
ln ε+

2

N

N∑
i

ln
(ε1/2 + λi)

N

≤ −N − 1

N
ln ε+

2

N

N∑
i

(
(ε1/2 + λi)

N
− 1

)
≤ −N − 1

N
ln ε+

2

N

(
ε1/2 + 1−N

)
. (101)

Thus, if we set 1 ≤ ε ≤ (N − 1)2, the right-hand side of the above is smaller than 0. In conclusion,
we have

−h̃R1 ≤ 0 (102)

if we set 1 ≤ ε ≤ (N − 1)2. Finally, we set ε1/2 as ε to make the notation the same as in the theorem
statement. This means that for any 1 ≤ ε ≤ (N − 1), we have

−R1 ≤ −
2

h̃N
lnN +

2

h̃N
ln(det[ε1/2I +K]), (103)

where

Kij = exp
(
−h̃ lnN(4hw)−2 (ln p(x|θi)− ln p(x|θj))2

)
. (104)
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Next, we discuss the effect of h̃. h̃ influences the eigenvalues ρi in the following way. By using the
Gershgorin circle theorem [8] and the definition of K̃ for each i,

λi ≤
∑
j

Kij . (105)

Each element Kij depends on h̃, so by choosing the h̃ appropriately, we can make R1 small and the
bound becomes tighter.

D.7 Proof of Eq.(23)

Our gram matrix K is symmetric stationary kernel function, and thus it satisfies

∂θiKi,j = −∂θjKi,j . (106)

Then from the log determinant property, we have

∂θi ln det(εI +K) = Tr
[
(εI +K)−1∂θK

]
. (107)

Then we have

∂θi ln det(εI +K) = Tr
[
(εI +K)−1∂θK

]
=

N∑
i=1

(εI +K)−1
ij ∂θiKij = −

N∑
i=1

(εI +K)−1
ij ∂θjKij ,

(108)

and in the second equality, we used the definition of the trace. Then we get

∂θiObj({θi}) =
1

N
∂θi log p(x|θi) +

2

h̃N

∑
j

(K + εI)−1
ij ∇θiKij . (109)

Note that the small positive constant c of GFSF shown in Table 1 is introduced so that K + cI can
have a inverse matrix.

D.8 Proof of the repulsion to DPP

We define the new kernel function as

G̃ij = G
1/2
ij , (110)

where G is defined in Eq.(17).

We use the relation of the Frobenius norm and the trace,
N∑

i,j=1

Gij =
∑
i,j

G̃2
i,j = Tr(G̃>G̃). (111)

From the definition of G and G̃, we have Gij ≤ 1 and G̃ij ≤ 1. Thus, we have

Tr(G̃>G̃) ≤ N2. (112)

This means that Tr( G̃N
>
G̃
N ) ≤ 1. Since G is the positive definite matrix, and from the above trace

inequality, all the eigenvalues of G̃
N is smaller than 1. Thus, from the trace inequality, we have

1 ≥ Tr(G̃>G̃)/N2 ≥ det(G̃>G̃)1/N/N, (113)

by taking the log, we have

0 ≥ ln Tr(G̃>G̃)/N2 ≥ 1

N
ln det(G̃>G̃)− lnN. (114)

Thus we have

lnEρE(θ)p(x|θ) ≥ EρE(θ) ln p(x|θ) ≥ EρE(θ) ln p(x|θ) +
1

N
ln det(G̃>G̃)− lnN. (115)
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We can derive different form of the lower bound from Eq.(18):

lnEρE(θ)p(x|θ) ≥ EρE(θ) ln p(x|θ)− 1

N

N∑
i=1

ln

N∑
j=1

Gij
N

≥ EρE(θ) ln p(x|θ)− ln

N∑
i,j=1

Gij
N2

≥ EρE(θ) ln p(x|θ)− ln
Tr(G̃>G̃)

N2
. (116)

Then applying Eq.(114), we have

lnEρE(θ)p(x|θ) ≥ EρE(θ) ln p(x|θ)− ln
Tr(G̃>G̃)

N2
. (117)

Then we use the following trace inequality. For a positive definite matrix A, we have

Tr(I −A−1) ≤ detA. (118)

This inequality come from the fact that for a positive value ρ, we have

1− 1

ρ
≤ ln ρ. (119)

Since the eigenvalues of G̃
>G̃
N2 is smaller than 1, (I − G̃>G̃

N2 ) is the positive definite matrix. Thus from
the above inequality, we consider that I −A−1 = G̃>G̃

N2 , we have

− ln Tr(
G̃>G̃

N2
) ≥ − ln det((I − G̃>G̃

N2
)−1)

≥ ln det(I − G̃>G̃

N2
)

≥ ln det(I − G̃

N
) + ln det(I +

G̃

N
)

≥ ln det(I − G̃

N
). (120)

In the above inequality, we first applied Eq.(118) and used detA−1 = 1
detA in the second line.

lnEρE(θ)p(x|θ) ≥ EρE(θ) ln p(x|θ) + ln det(I − G̃

N
). (121)

E Additional PAC-Bayesian generalization error bounds

Here, we present the PAC-Bayesian bounds, which are related to w-SGLD, GFSF, and DPP. We can
derive those bounds from the results in Appendix C.3 and the second-order Jensen inequalities.

E.1 Ensemble PAC-Bayesian bound

Using the prior distribution introduced in Appendix C.3, we get the generalization error bound for
the ensemble setting. For simplicity, we define

Rc(x, hw) =
1

2(2hw)2

1

N2

N∑
i,j=1

(ln p(x|θi)− ln p(x|θj))2
, (122)

where

h−2
w = exp

(
2 min

i
ln p(x|θi)− 2 max

j
ln p(x|θj)

)
. (123)

25



Theorem 10. For all x, θ, p(x|θ) < ∞ and for any prior distribution πE over ΘE independent of
D and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over the choice of training data
D ∼ ν⊗D(x), for all probability distributions ρE with supp(ρE) ⊂ ΘE, we have

CE ≤ −Eν [EρE ln p(x|θ) +Rc(x, hw)]

≤ − 1

D

D∑
d=1

[EρE ln p(xd|θ) +Rc(xd, hw)] +
KL(ρE , πE) +

ln ξ−1+Ψ′′′π,ν(c,D)

2

cD
, (124)

where
Ψ′′′π,ν(c,D) := lnEπ(θ,θ′)ED∼ν⊗D(x)e

cD(−Eν(x)L(x,θ,θ′)+D−1∑D
d=1 L(xd,θ,θ

′)), (125)
and

L(x, θ, θ′) := ln p(x|θ) + 2−1(2hw)−2((ln p(x|θ))2 − ln p(x|θ) ln p(x|θ′)). (126)

E.2 Relation to w-SGLD

We define

Rw(x,G) := − 1

N

N∑
i=1

ln

N∑
j=1

Gij
N

, (127)

where

Gij := exp
(
−8−1h−2

w (ln p(x|θi)− ln p(x|θj))2
)
. (128)

Then, from the second-order Jensen inequality, we have
lnEρE(θ)p(x|θ)
≥ EρE(θ) ln p(x|θ) +Rc(x, hw)

≥ EρE(θ) ln p(x|θ) +Rw(x,G)

≥ EρE(θ) ln p(x|θ). (129)

Finally, we apply this to the result in Appendix E.1. Then we upper-bound Eq.(124) with the above
inequality, and we obtain
Theorem 11. For all x, θ, p(x|θ) < ∞ and for any prior distribution πE over ΘE independent of
D and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over the choice of training data
D ∼ ν⊗D(x), for all probability distributions ρE with supp(ρE) ⊂ ΘE, we have

CE ≤ −Eν [EρE ln p(x|θ) +Rc(x, hw)]

≤ − 1

D

D∑
d=1

[EρE ln p(xd|θ) +Rw(xd, G)] +
KL(ρE , πE) +

ln ξ−1+Ψ′′′π,ν(c,D)

2

cD
, (130)

where Ψ′′′ is the same as Eq.(125).

E.3 Relation to DPP

We define

RD(x, G̃) :=
2

N
ln detG̃− lnN, (131)

where

G̃ij := exp
(
−(4hw)−2 (ln p(x|θi)− ln p(x|θj))2

)
. (132)

Then, from the second-order Jensen inequality, we have
lnEρE(θ)p(x|θ)
≥ EρE(θ) ln p(x|θ) +Rc(x, hw)

≥ EρE(θ) ln p(x|θ) +RD(x, G̃). (133)

Finally, we apply this to the result in Appendix E.1. Then we upper-bound Eq.(124) with the above
inequality, and we obtain
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Theorem 12. For all x, θ, p(x|θ) < ∞ and for any prior distribution πE over ΘE independent of
D and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over the choice of training data
D ∼ ν⊗D(x), for all probability distributions ρE with supp(ρE) ⊂ ΘE, we have

CE ≤ −Eν [EρE ln p(x|θ) +Rc(x, hw)]

≤ − 1

D

D∑
d=1

[
EρE ln p(xd|θ) +RD(xd, G̃)

]
+

KL(ρE , πE) +
ln ξ−1+Ψ′′′π,ν(c,D)

2

cD
, (134)

where Ψ′′′ is the same as Eq.(125).

E.4 Relation to GFSF

We define

Rg(x,K) := − 2

h̃N
ln det(εI +K) +

2 lnN

h̃N
, (135)

where

Kij := exp
(
−2−1h̃ lnN(4hw)−2 (ln p(x|θi)− ln p(x|θj))2

)
. (136)

Then, from the second-order Jensen inequality, we have

lnEρE(θ)p(x|θ)
≥ EρE(θ) ln p(x|θ) +Rc(x, hw)

≥ EρE(θ) ln p(x|θ) +Rg(x,K)

≥ EρE(θ) ln p(x|θ). (137)

Finally, we apply this to the result in Appendix E.1. Then we upper-bound Eq.(124) with the above
inequality, and we obtain
Theorem 13. For all x, θ, p(x|θ) < ∞ and for any prior distribution πE over ΘE independent of
D and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over the choice of training data
D ∼ ν⊗D(x), for all probability distributions ρE with supp(ρE) ⊂ ΘE, we have

CE ≤ −Eν [EρE ln p(x|θ) +Rc(x, hw)]

≤ − 1

D

D∑
d=1

[EρE ln p(xd|θ) +Rg(xd,K)] +
KL(ρE , πE) +

ln ξ−1+Ψ′′′π,ν(c,D)

2

cD
, (138)

where Ψ′′′ is the same as Eq.(125).

F Comparison of our second-order Jensen inequality in Theorem 3 and that
of the previous work [19, 14]

First, we discuss the difference of our loss function based second-order Jensen inequality and those
of the previous work [19, 14] in terms of the derivation. Although both Our approach and previous
work use the Taylor expansion up to a second order, the usage of the mean µ is different. First, let us
consider the Taylor expansion of log up to a second-order around a constant µ, then there exists a
constant g between y and µ s.t.,

ln y = lnµ+
1

µ
(y − µ)− 1

2g2
(y − µ)2. (139)

In the previous work [19, 14], given a random variable Z, they define µ := EZ, and y := Z. Then
take the expectation. Then we have

E lnZ = lnEZ −
∫
R+

1

2g(z)2
(z − µ)2pZ(z)dz. (140)
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Note that the constant term and the second-order reminder term remain in the equation. Then by
setting Z := p(x|θ), we get the second-order Jensen inequality of the previous work [19, 14]. We can
see that the variance of the predictive distribution naturally appears since we define µ := Ep(x|θ).

On the other hand, as we had seen in Appendix D.2, to derive our second-order inequality, we define
µ = eE lnZ . Then from the Taylor expansion, we obtain

0 =
1

µ
E[Z − eE lnZ ]−

∫
R+

1

2g(z)2
(z − µ)2pZ(z)dz. (141)

Compared to Eq.(140), in our Taylor expansion Eq.(141), the first-order term and reminder term
remain in the equation. This results in the difference between our second-order Jensen inequalities
and those of previous works.

Next, we discuss the difference of the second-order Jensen inequalities in terms of the meaning of the
repulsions. In previous work [19], the second-order Jensen inequality was proved

Eq ln p(x|θ) ≤ lnEqp(x|θ)− V (x), (142)

where

V (x) := (2 max
θ
p(x|θ)2)−1Eq

[
(p(x|θ)− Eqp(x|θ))2

]
. (143)

Then by using Lemma 2, assuming that x := eln p(x|θi) and y := elnEqp(x|θ) and we get

(ln p(x|θi)− lnEqp(x|θ))2p(x|θi)Ep(x|θ) ≤ (eln p(x|θi) − elnEqp(x|θ))2. (144)

Then we get

Eq ln p(x|θ)
≤ lnEqp(x|θ)− V (x)

≤ lnEqp(x|θ)−
1

2 maxθ p(x|θ)2
Eq(ln p(x|θi)− lnEqp(x|θ))2p(x|θi)Eqp(x|θ). (145)

This expression is very similar to our Theorem 3, but it is different in a sense that this is not the
weighted variance since lnEqp(x|θ) appears. We cannot transform this to the mean of the loss
function which is contrary to the Jensen inequality.

Thus our bound second order Jensen inequality in Theorem 3 and that of the previous work [19] is
different bound, that is, ours focuses on E ln p(x|θ) and the previous work focuses on Ep(x|θ). We
found that it is hard to claim that which is tighter. We believe it is interesting direction to study in
what problems which bound is appropriate.

We numerically found that for the regression tasks and bandit problems, our approach consistently
outperform the previous work. On the other hand, for classification tasks, it seems that both methods
show almost equivalent performances. See Section 5.

G Discussion about the repulsion force

G.1 Transformation by the mean value theorem

As shown in the main paper, our loss repulsion can be translated to the parameter or model repulsion
by using the mean value theorem. For example, there exist a parameter θ̃ between θi and θj that is
defined by a constant t ∈ [0, 1] s.t. θ̃ := tθi + (1− t)θj , which satisfied

ln p(x; θi)− ln p(x; θj) =
∂θ̃p(x; θ̃)

p(x; θ̃)
· (θi − θj), (146)

and similar relation also holds for ln p(y|f(x; θi))− ln p(y|f(x; θj)). Thus, we can transform our
loss repulsion to parameter or model repulsion. From

‖ ln p(x; θi)− ln p(x; θj)‖2 = ‖∂θ̃p(x; θ̃)

p(x; θ̃)
· (θi − θj)‖2, (147)
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and neglecting the bandwidth for simplicity, we define a Gram matrix

Kij := exp
(
−‖ ln p(x; θi)− ln p(x; θj)‖2

)
= exp

(
−‖∂θ̃p(x; θ̃)

p(x; θ̃)
· (θi − θj)‖2

)
. (148)

Then by taking the partial derivative with respect to θi,

∂
θ
(d)
i
Kij = −2(θ

(d)
i − θ

(d)
j )

∂θ̃(d)p(x; θ̃)

p(x; θ̃)
Kij + Corr, (149)

where θ(d)
i corresponds to the d-th dimension of the parameter θi. The first term in the above

corresponds to the parameter repulsion and the second term is the correction term. We can get the

similar relation to the model repulsion. However, it is difficult to obtain the explicit form of ∂θ̃p(x;θ̃)

p(x;θ̃
.

G.2 Model repulsion

Regression

We first discuss the relation to model repulsion. For a regression problem, we assume that p(y|f(x; θ))
is the Gaussian distribution with unit variance for simplicity,

ln p(y|f(x; θ) = −1

2
(y − f(x; θ))2 + const. (150)

For f-PVIs, assume that Kij = exp(− 1
2h2 ‖fi − fj‖2) where the bandwidth is h. Then the model

repulsion is expressed as

∂θiK(fi, fj) = − 1

h2
(fi − fj)Ki,j∂θifi. (151)

On the other hand, the kernel function of our loss repulsion is from Eq.(17)

Gij := exp
(
−(8h2

w)−1‖ ln p(y|f(x; θi))− ln p(y|f(x; θj)‖2
)

= exp

(
−(8h2

w)−1 1

4
‖f(x; θi)− f(x; θj)‖2‖f(x; θi) + f(x; θj)− 2y‖2

)
. (152)

We define L(fi) := ln p(y|f(x; θi)) and dLij := ∂fiL(fi) + ∂fjL(fj). The derivative of the Gram
matrix G is expressed as

∂θiGij = −((fi − fj)‖dLij‖2︸ ︷︷ ︸
i)

+ ∂fiL(fi)dLij‖fi − fj‖2︸ ︷︷ ︸
ii)

)(4hw)−2Gij∂θifi. (153)

As we discussed in the main part, the first term corresponds to the model repulsion and the second
term corresponds to the correction term. Thus our loss repulsion is closely related to model repulsion.

We can further simplify the above relation as follows. We define l(fi, fj) := ‖fi + fj − 2y‖2. We
define a constant l0 as a constant that satisfies l0 ≤ min(i,j) l(fi, fj), we get

Gi,j ≤ exp

(
−(8h2

w)−1 l0
4
‖fi − fj)‖2

)
:= G0

i,j . (154)

Then by taking the partial derivative

∂θiG
0
i,j = −(4hw)−2l0(fi − fj)G0

i,j∂θifi, (155)

and thus, this repulsion force corresponds to the f-PVIs.

Classification

For classification task, if the class number is C, then, in standard models

p(x|θ) := Multinomial(y|softmax(f(x; θ))), (156)
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and f is a C-dimensional output neural network. We assume that there is N number of ensembles.
We express f ci := f c(x, θi) as the c-th output of the i-th neural network. We express the output of
the softmax function as {pc′i }cc′=1. Then if the true class label is y = t, we have

ln p(y|f(x; θi) = f ti − ln
∑
c

ef
c
i . (157)

First of all, we consider the model repulsion of f-PVI. Assume that Kij = exp(− 1
2h2 ‖fi − fj‖2)

and the model repulsion of f-SVGD is expressed as

− 1

h2

c∑
c′=1

(f c
′

i − f c
′

j )Kij∂θif
c′

i . (158)

Then, we directly calculate the derivative of the loss repulsion and connect it to the model repulsion.

We can write the (i, j)-th element of the gram matrix as

Gi,j := exp
(
−(8h2

w)−1(ln p(y|f(x; θi))− ln p(y|f(x; θj)))
2
)

= exp

(
−(8h2

w)−1‖(f ti − f tj − (ln
∑
c

ef
c
i − ln

∑
c

ef
c
j )‖2

)
. (159)

Then by calculating the derivative of the Gram matrix, we have

∂θiGij = −
c∑

c′=1

((f c
′

i − f c
′

j )︸ ︷︷ ︸
i)

− (Zc
′,t
i − Zc

′,t
j )︸ ︷︷ ︸

ii)

)(δc′,t − pc
′

i )(2hw)−2Gij∂θif
c′

i , (160)

where

δc′,t =

{
1 (c′ = t)
0 (c′ 6= t),

(161)

and

Zc
′,t
i = ln

c∑
c′′=1

ef
c′′
i −f

c′
i δc′′ 6=t , (162)

where

δc′′ 6=t =

{
1 (c′′ 6= t)
0 (c′′ = t).

(163)

Thus, in Eq.(160), similary to the regression setting, the first term i) corresponds to the model
repulsion and the second term is the correction term.

For simplicity, we define fi := f(x; θi). And we define d1(f ci , f
c
j ) := |f ci − f cj | and d2(fi, fj) :=

| ln∑c f
c
i − ln

∑
c f

c
j )|.

Gi,j ≤ exp
(
−(8h2

w)−1‖fi − fj‖2 + 2(8h2
w)−1d1(f ci , f

c
j )d2(fi, fj)

)
:= G̃i,j . (164)

Moreover, we define a constant d0
1 such that d0

1 ≤ max(c,i,j) |f ci − f cj | and define a constant d0
2 such

that d0
2 ≤ max(i,j) | ln

∑
c f

c
i − ln

∑
c f

c
j )|, we define

G0
i,j := c̃exp

(
−(8h2

w)−1‖fi − fj‖2
)
, (165)

where c̃ := exp
(
2(8h2

w)−1d0
1d

0
2

)
. These satisfies

Gi,j ≤ G̃i,j ≤ G0
i,j . (166)

Then by taking the partial derivative

∂θiG̃i,j = −(2hw)−2(f ti − f tj )Gi,j∂θif ti . (167)

Thus, our loss repulsion is closely related to model repulsion.
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G.3 Parameter repulsion

We found that it is difficult to derive the parameter repulsion without using the mean value theorem.
On the other hand, when we include the additional distribution into the second-order Jensen inequality,
we can derive the relation to the parameter repulsion. We use the following lemma:

Lemma 4. For any distribution p(θ) that is bounded below 0 ≤ π(θ) < M , under the same
assumptions with Collorary 1, we have

lnEp(x|θ) ≥ E ln[p(x|θ)p(θ)] +R(x, θ) +
1

8h2
ωN

2

N∑
i,j=1

(ln p(θi)− ln p(θj))
2 − lnM. (168)

where R is the same as Theorem 3.

Proof. From our second order Jensen inequality, we have

lnM ≥ lnEρE(θ)[p(θ)] ≥ EρE(θ)[ln p(θ)] +
1

8h2
ωN

2

N∑
i,j=1

(ln p(θi)− ln p(θj))
2. (169)

Then by combining this with Eq.(16), Lemma 4 is proved.

This lemma state that by introducing the distribution p(θ), we obtain the lower bound and repulsion
term based on p(θ). For example, we can use the prior distribution π(θ) for p(θ).

As we did in the main paper, we can lower bound the variance of ln p(θ) in various ways. And assume
that we lower bound it in gram matrix form

Ki,j := exp
(
−(8h2

ω)
−1

(ln p(θi)− ln p(θj))
2)
)
. (170)

Assume that p(θ) is a exponential family distribution,

ln p(θ) = ηu(θ) + Const, (171)

where η is a natural parameter and u(θ) is a sufficient statistics. Then we have

Ki,j := exp
(
−(8h2

ω)
−1
η2(u(θi)− u(θj))

2)
)
. (172)

Then by taking the partial derivative, we have

∂θiKi,j = −(8h2
ω)−1η2(u(θi)− u(θj))Ki,j∂θiu(θi). (173)

In standard PVIs, the parameter repulsion force is

∂θiKi,j = −(8h2
ω)
−1

(θi − θj)Ki,j . (174)

In order to discuss these repulsions, we assume that p(θ) is a standard Gaussian distribution. Then by
taking the partial derivative, we have

∂θiKi,j = −h2
ω(θi − θj)d4(i, j)Ki,j − h2

ω(θi − θj)2∂θid4(i, j)Ki,j . (175)

where d4(i, j) := |θi + θj |2.

On the other hand, and if there exists a constant d0
4 such that d0

4 ≤ mini,j d4(i, j). Then

Kij ≤ K0
i,j := exp

(
−h2d0

4(θi − θj)2)
)
. (176)

and by taking the partial derivative, we have

∂θiK
0
i,j = −h2

ω(θi − θj)d0
4(i, j)K0

i,j . (177)

Note that the prior repulsion force is the same as the repulsion force of PVIs of Eq.(174).
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G.4 Data summation inside the variance

In the existing model repulsion force, for example, regression tasks, the kernel function K is defined
as

Kij := exp(−‖fi(x)− fj(x)‖2) = exp(−(‖fi(x1)− fj(x1)‖2 + . . .+ ‖fi(xb)− fj(xb)‖2)),
(178)

where b is the minibatch size. Thus, we take the summation with respect to the data points.

Compared to this model repulsion, our loss repulsion is, for example, expressed as

− 1

D

D∑
d=1

1

2(2hω)2N2

∑
ij

‖ ln p(xd|θi)− ln p(xd|θj)‖2. (179)

As defined in Section 3.2, when we define our Gram matrixG, we can incorporate the data summation
term inside the Gram matrix as

Gij := exp

(
−(8h2

w)−1
D∑
d=1

(ln p(xd|θi)− ln p(xd|θj))2

)
. (180)

Applying the Jensen inequality, we obtain

1

D

D∑
d=1

lnEρE(θ)p(xd|θ) ≥
1

D

D∑
d=1

EρE(θ) ln p(xd|θ)−
1

DN

N∑
i=1

ln

N∑
j=1

Gij
N
≥ 1

D

D∑
d=1

EρE(θ) ln p(xd|θ).

(181)

H Relation to the misspecified model setting

In the previous work [19], the advantage of the second-order Jensen inequality was analyzed in the
case of the misspecified model setting, that is, for any θ, ν(x) 6= p(x|θ). They proved the following
theorems:
Theorem 14. [19] Let us denote θ∗ML := arg min

θ
KL(ν(x), p(x|θ)) and pML is the distri-

bution obtained by minimizing Ep(θ),ν(x)[− ln p(x|θ)]. Then pML also minimizes CE(p) :=
Eν(x)[− lnEp(θ)p(x|θ)] if and only if for any distribution p over Θ we have that

KL(ν(x), p(x|θ∗ML)) ≤ KL(ν(x),Epp(x|θ)). (182)

and pML can always be characterized as a Dirac distribution center around θ∗ML, tha is, pML =
δθ∗ML

(θ).

According to this theorem, the previous work [19] claimed that Bayesian posterior distribution is
an optimal strategy under perfect model speccification since KL(ν(x), p(x|θ∗ML)) = 0 and p∗ML
minimizes CE(p).

However, in many practical settings, we cannot expect the perfect model specification. Then under the
misspecified model settings, the previous work [19] clarified that the second order Jensen inequality
provides the better solution as follows:
Theorem 15. [19] Let us denote the p∗V as the distribution obtained by minimiz-
ing Ep,ν(x)[− ln p(x|θ)] − Eν(x)V(x) and pML is the distribution obtained by minimizing
Ep,ν(x)[− ln p(x|θ)]. Then following inequality holds,

KL(ν(x),Ep∗V p(x|θ)) ≤ KL(ν(x),EpML
p(x|θ)). (183)

Here the equality holds if we are under perfect model specification, that is, there exists a parameter
θ∗ that satisfies ν(x) = p(x|θ∗).

Thus, this theorem clarifies that under model misspecified setting, learning the second-order Jensen
inequality can be a better strategy than Bayesian inference.

Motivated these previous results, we can show the similar inequality for our loss function based
second-order Jensen inequality:
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Theorem 16. Let us denote the p∗R as the distribution obtained by minimizing Ep,ν(x)[− ln p(x|θ)]−
Eν(x)R(x) and pML is the distribution obtained by minimizing Ep,ν(x)[− ln p(x|θ)]. Then following
inequality holds,

KL(ν(x),Ep∗Rp(x|θ)) ≤ KL(ν(x),EpML
p(x|θ)). (184)

and the equality holds if we are under perfect model specification.

The proof of this theorem is exactly the same as that of Theorem 15[19]. Here, we show the outline
of the proof.

Proof. Define Ω as the space of distributions p over Θ that satisfies Eν(x)R(x) = 0. Then we have

min
p∈Ω

Ep,ν(x)[− ln p(x|θ)]− Eν(x)R(x) = min
p∈Ω

Ep,ν(x)[− ln p(x|θ)] = EpML,ν(x)[− ln p(x|θ)],
(185)

where the last equality comes from Lemma A.6 [19] (just replace V(x) with R(x)). Then we have

Ep∗R,ν(x)[− ln p(x|θ)]− Eν(x)R(x) ≤ EpML,ν(x)[− ln p(x|θ)]. (186)

Here the left-hand side is the minimum of the second order Jensen inequality for all the distributions
p over Θ and right-hand is the minimum within Ω. Then from the second-order Jensen inequality, we
have

CE(p∗R) ≤ EpML,ν(x)[− ln p(x|θ)]. (187)

From lemma A.6 [19],

EpML,ν(x)[− ln p(x|θ)] = CE(pML), (188)

thus we get

CE(p∗R) ≤ CE(pML). (189)

By adding the entropy of ν(x), we get the inequality of the Theorem.

Next we study when the equality holds. From Theorem 14[19], under the perfect model specification,
we have that for any p over Θ, we have

CE(pML) ≤ CE(p). (190)

Combining this with Eq.(189), we obtain

CE(p∗R) = CE(pML), (191)

under perfect model specification.

I Numerical experiments

In this section, we describe the detail settings of the experiments. We also present the additional
experimental results. We used two types of h, one is defined in Eq.(13) and the other is hm in
Theorem 4.

I.1 Toy data experiments

I.1.1 Detail settings of the main paper

The setting is the same as that of the previous work of f-PVI [28]. We generated the data by
y = x+ sin 4(x+ ε) + sin 13(x+ ε) + ε, ε ∼ N(0, 0.0009). We generated x as follows: 12 points
are drawn from Uniform(0, 0.6) and 8 points from Uniform(0, 0.8). We used the Adam optimizer
with a learning rate of 0.001. We fixed the observation variance N(y|f(x; θ)) during the optimization
with 0.2. In addition to the main paper, here, we also show the result of VAR-svgd and GFSF.
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Figure 2: Uncertainty of the regressions. Blue line is the predictive mean, dark shaded area is the
epistemic uncertainty fromρE(θ), and light shaded area is aleatory uncertainty that comes fromp(x|θ).

Table 6: Comparison of performances

Test Accuracy Test log likelihood
HMC MAP f-SVGD PAC2

E VAR(h) VAR-svgd(h) HMC MAP f-SVGD PAC2
E VAR(h) VAR-svgd(h)

5.089 5.079 5.079 5.220 5.075 5.070 3.290 3.171 3.171 3.310 3.180 3.190

I.1.2 Additional toy data experiments of the regression task

Here, we consider the linear regression problem for toy data experiment, mainly focusing on the
model misspecified setting discussed in Appendix H.

We generated the toy data following y = x+ 1 + ε where ε ∼ N(0, 5) and x ∼ Uniform(−10, 10)
and thus this is the one-dimensional regression task. As a model, we prepared y = θ1x+θ2 +ε′ where
ε ∼ N(0, 1). We used the standard Gaussian priors for each θs. Thus, this is a model misspecified
setting discussed in Appendix H. We used 10 particles and optimized them in the framework of MAP,
SVGD, PAC2

E and our proposed approach. We optimized each model by Adam with stepsize 0.001.
We also show the result of the HMC, which is the baseline method in Bayesian inference. The result
is shown in Figure 3, which visualizes 95% credible intervals for the prediction and mean estimate
corresponding to aleatoric and epistemic uncertainties. As shown in the figure, SVGD shows almost
similar uncertainty as HMC. Note that HMC visualizes the uncertainty of Bayesian inference. On
the other hand, the second-order method of ours and PAC2

E show larger epistemic uncertainty than
those of HMC and SVGD. Note that in the result of PAC2

E, most training data points are inside the
95% credible intervals. In Table 6, we compared the quality of fittings of the models. As we can
see, except for PAC2

E, the fitting qualities are almost equivalent. Thus, as we discussed in the main
paper, there is a trade-off between model fitting and enhancing diversity in ensemble learning in the
second-order Jensen inequality. The results of HMC, f-SVGD seem small diversity since they are
based on Bayesian inference, while PAC2

E shows sufficient diversity. On the other hand, the quality
of model fitting of Bayesian inference seems superior to that of PAC2

E. It seems that our proposed
VAR and VAR-SVGD seem the intermediate performance and diversity between Bayesian inference
and PAC2

E.

I.2 Regression

The setting is the same as that of the previous work of f-PVI [28]. We used the Adam optimizer with
learning rate 0.004. We used a batch size of 100 and ran 500 epochs for the dataset size D is smaller
than 1000. For a larger dataset, we used a batch size of 1000 and ran 3000 epochs. The result in the
table is the ten repetitions except for Protein data which is the result of 5 repetitions. In addition to
the main paper, here, we also show the results of VAR-SVGD in Table 7,8.
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Figure 3: Uncertainty of the regressions. Blue line is the predictive mean, dark shaded area is the
epistemic uncertainty fromρE(θ), and light shaded area is aleatory uncertainty that comes fromp(x|θ).

Table 7: Benchmark results on test RMSE for the regression task

Dataset Avg. Test RMSE
MAP SVGD PAC2

E f-SVGD VAR(h) VAR-svgd(h) VAR(hm) VAR-svgd(hm)
Concrete 5.19±0.3 5.21±0.4 5.49±0.3 4.32±0.1 4.33±0.1 4.35±0.2 4.36±0.2 4.27±0.4
Boston 2.98±0.4 2.71±0.6 4.03±0.5 2.54±0.3 2.54±0.3 2.52±0.3 2.52±0.3 2.53±0.4
Wine 0.65±0.04 0.63±0.03 1.03±0.09 0.61±0.03 0.61±0.03 0.61±0.03 0.61±0.03 0.61±0.03
Power 3.94±0.03 3.90±0.14 5.04±0.21 3.77±0.03 3.76±0.03 3.40±0.05 3.76±0.06 3.75±0.08
Yacht 0.86±0.05 0.83±0.10 0.70±0.21 0.59±0.09 0.59±0.09 0.58±0.12 0.59±0.09 0.59±0.10

Protein 4.61±0.02 4.22±0.09 4.17±0.05 3.98±0.03 3.95±0.05 3.93±0.07 3.96±0.06 3.93±0.04

Table 8: Benchmark results on test negative log likelihood for the regression task

Dataset Avg. Test negative log likelihood
MAP SVGD f-SVGD PAC2

E VAR(h) VAR-svgd(h) VAR(hm) VAR-svgd(hm)
Concrete 3.11±0.12 3.11±0.14 3.16±0.10 2.86±0.02 2.82±0.09 2.80±0.06 2.87±0.09 2.81±0.06
Boston 2.62±0.2 2.49±0.4 2.61±0.3 2.46±0.1 2.39±0.2 2.35±0.2 2.48±0.4 2.41±0.2
Wine 0.97±0.07 0.96±0.06 1.26±0.02 0.90±0.05 0.89±0.04 0.89±0.06 0.89±0.04 0.90±0.07
Power 2.79±0.05 2.78±0.03 3.17±0.01 2.76±0.05 2.79±0.03 2.79±0.03 2.76±0.02 2.76±0.03
Yacht 1.23±0.05 1.32±0.6 0.80±0.4 0.96±0.3 0.87±0.3 0.81±0.2 1.03±0.3 0.91±0.2

Protein 2.95±0.00 2.86±0.02 2.84±0.01 2.80±0.01 2.81±0.01 2.80±0.01 2.80±0.01 2.80±0.01

Table 9: Benchmark results on test accuracy and negative log likelihood for the classification task
Dataset Test Accuracy Test log likelihood

MAP PAC2
E f-SVGD VAR(h) VAR-svgd(h) VAR(hm) VAR-svgd(hm) MAP PAC2

E f-SVGD VAR(h) VAR-svgd(h) VAR(hm) VAR-svgd(hm)
MNIST 0.981 0.986 0.987 0.988 0.988 0.988 0.988 0.057 0.042 0.043 0.040 0.041 0.041 0.041

CIFAR 10 0.935 0.919 0.927 0.929 0.928 0.927 0.924 0.215 0.270 0.241 0.238 0.240 0.242 0.242

Table 10: Cumulative regret relative to that of the Uniform sampling.
Dataset MAP PAC2

E f-SVGD VAR(h) VAR-svgd(h) VAR(hm) VAR-svgd(hm)
Mushroom 0.129±0.098 0.037±0.012 0.043±0.009 0.029±0.010 0.037±0.012 0.036±0.012 0.038±0.010
Financial 0.791±0.299 0.189±0.025 0.154±0.017 0.155±0.024 0.176±0.023 0.128±0.017 0.153±0.020
Statlog 0.675 ±0.287 0.032±0.0025 0.010±0.0003 0.006±0.0003 0.007±0.0004 0.008±0.0005 0.011±0.004

CoverType 0.610±0.051 0.396±0.006 0.372±0.007 0.289±0.003 0.320±0.005 0.343±0.002 0.369±0.004

I.3 Classification

In addition to the main paper, we show the robustness to the adversarial samples in Figure 4. The
experimental settings are exactly the same as that of the previous work [28].

We optimized the parameters using Adam with stepsize 0.0005. We used a batch size of 1000 and
ran 1000 epochs. For MNIST adversarial experiments, we used a feed-forward network with ReLu
activation and three hidden layers with 1000 units. The hyperparameter settings are the same as the
result of the main paper. To generate attack samples, we used the iterative fast gradient sign method
(I-FGSM) to generate the attack samples. We restrict the update with l∞ norm of the perturbation
step 0.01.
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Figure 4: Out of distribution performances

For CIFAR 10 experiments, we used ResNet32 and optimized Momentum sgd with the stepsize 0.09.
We used a batch size of 128 and run 200 epochs. We generated attack samples using FGSM under
different stepsizes.

The result is shown in Figure 4. For both experiments, f-SVGD, PAC2
E, and our proposed methods

showed more robustness against adversarial samples than that of the MAP estimate.

In addition to the main paper, here, we also show the results of Var-svgd in Table 9.

I.4 Contextual bandit

First, we describe the problem setting. First we are given a context set S. For each time step,
t = 1, . . . , T , a context st ∈ S is provided to a agent from the environment. Then, the agent choose
the action at from the available set at ∈ {1, . . . , A} based on the context st and get a reward rat,t.
The goal of contextual bandit problem is to minimize the pseudo regret

RT = max
g:S→{1,...,A}

E

[
T∑
t=1

rg(st),t −
T∑
t=1

rat,t

]
, (192)

where g denotes a mapping from the context set to available actions. For contextual bandits with
non-adversarial rewards, Thompson sampling is a classical algorithm that achieves the state-of-the-art
performance in practice [28]. We express the true reward generating distribution of context s and
action at as νs,at . We place a prior µs,i,0 for a reward of context s and action i. Then, this prior is
updated to a posterior distribution. At each time step, Thompson sampling selects the action by

rt ∈ arg max
i={1,...,K}

r̂i,t, r̂i,t ∼ µs,i,t. (193)

Then corresponding posterior is updated by the observed reward.

Following the previous work [28, 24], we consider a neural network where the input is the context
and the output is the K-dimensional, and we consider a prior on parameters of the network. We
approximate the posterior of the neural network and express the uncertainty by the approximate
posterior distribution. All the hyperparameters are exactly the same as the previous work [28].

In addition to the main paper, here, we also show the results of VAR-SVGD in Table 10.

I.5 Unsupervised tasks

We trained variational autoencoders (VAEs) using our theory. We trained VAEs using two types
of objective functions. We express a latent variable as z. We use a multi-sample bound and
express zn as the n-th random variable drawn from a posterior distribution q(z). We define ln =
p(x|zn)π(zn)/q(zn). The standard objective function is a evidence lower bound (ELBO), given as
1
N

∑N
n=1 ln ln. To obtain ELBO, we use the Jensen inequality to the marginal likelihood. We applied

our second-order Jensen inequality and obtained the objective 1
N

∑N
n=1 ln ln + 1

N

∑N
n=1 hn(ln −

1
N

∑N
n=1 ln ln)2, where hn is the weights for ln. This is the first objective function and we call this

approach VAR.

36



Table 11: MNIST VAE results (N=10)

Method VAR-SVGD SVGD VAR ELBO
Test LL -88.7 -88.6 -89.7 -89.9
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Figure 5: FID score results of CelebA dataset

Next objective function is that we use the implicit distribution for the posterior distribution in the
same way as [25, 13]. We assume that zn are generated from zn ∼ f(x, ε;φ) where f is a deep neural
network parameterized by φ. A random noise ε is transformed to z based on the input x. We applied
the smoothing of the gradient by SVGD to approximate ∇φ ln q(zn). Thus, the gradient for the vari-
ational parameter x is (

∑
n k(z, zn)∇znwn +∇znk(z, zn))∇φf(x, ε;φ) where wn = ln p(x, zn)

and k is the kernel function. We used the Gaussian kernel. We then incorporated the variance term
as
(∑

n k(z, zn)∇zn
(
wn + 1

N

∑
n hn(wn −

∑
n wn)2

)
+∇znk(z, zn)

)
∇φf(x, ε;φ). We call this

approach VAR-SVGD.

Other experimental settings, including network architectures and hyperparameters, are the same as in
[25]. We used MNIST and the CelebA datasets. For MNIST, we evaluated the test log-likelihood,
and we used two hidden ReLU layers with 500 units, and the latent space dimension is 8. The test
likelihood was calculated by using the annealed importance sampling. The results are shown in
Table 11. ELBO indicates the result obtained by optimizing the ELBO. We found that compared to
ELBO, using the second-order Jensen inequality improves the performance. We found that SVGD
and VAR-SVGD show almost the same performances.

For the CelebA dataset, we evaluated the FID score [10] between the real data and the randomly
generated data from the models. A smaller FID score means that the distribution of the generated
images is closer to the data. We used DCGAN structure for the decoder, and the latent dimension is
32. As for the encoder, we used the symmetric structure to decoder except for the final layer, which
is flattened and added Gaussian noise. We used N = 10. The results are shown in Fig. 5. We found
that incorporating the variance term in the objective function consistently improves the performance.
We conjectured that since our approach can control the trade-off of the model fitting and diversity
enhancing, our method can produce more diverse samples than the existing methods, which improves
the performance in FID.
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J Summary of the loss function based second-order Jensen inequalities

Figure 6: Summary of the second-order Jensen inequalities presented in this work.
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