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Abstract

We consider the estimation of treatment effects in settings when multiple treatments
are assigned over time and treatments can have a causal effect on future outcomes.
We propose an extension of the double/debiased machine learning framework
to estimate the dynamic effects of treatments and apply it to a concrete linear
Markovian high-dimensional state space model and to general structural nested
mean models. Our method allows the use of arbitrary machine learning methods to
control for the high dimensional state, subject to a mean square error guarantee,
while still allowing parametric estimation and construction of confidence intervals
for the dynamic treatment effect parameters of interest. Our method is based
on a sequential regression peeling process, which we show can be equivalently
interpreted as a Neyman orthogonal moment estimator. This allows us to show
root-n asymptotic normality of the estimated causal effects.

1 Introduction

Improving outcomes often requires multiple treatments: patients may need a course of drugs to
manage or cure a disease, soil may need multiple additives to improve fertility, companies may need
multiple marketing efforts to close the sale. To make data-driven decisions, policy-makers need
precise estimates of what will happen when a new policy is pursued. Because of its importance, this
topic has been studied by many communities and under multiple regimes and formulations; examples
include the field of reinforcement learning [34]], longitudinal analysis in biostatistics [2], the dynamic
treatment regime in causal inference and adaptive clinical trials [[19]].

This paper offers a new method for estimating and making inferences about the counterfactual effect
of a new treatment policy. Our method is designed to work with observational data, in an environment
with multiple treatments (either discrete or continuous), and a high-dimensional state. Valid causal
inference is necessary to correctly attribute changes in outcomes to the different treatments applied.
But it is more challenging than in a static context, since there are multiple causal pathways from
treatments to subsequent outcomes (e.g. directly, or by changing future states, or by affecting
intermediate outcomes, or by influencing future treatments).

Our work bridges many distinct literatures. The first is the econometrics literature on semi-parametric
inference [22}[33L[21}|1,[7,16]. We extend this literature, which has typically focused on static treatment
regimes, to consider a semi-parametric Markovian model with flexible high-dimensional state and
more broadly dynamic treatment regimes. We propose an estimation algorithm that estimates the
dynamic effects of interest, from observational data, at parametric root-n rates. We prove asymptotic
normality of the estimates, even when the state is high-dimensional and machine learning algorithms
are used to control for indirect effects of the state, as opposed to effects stemming from the treatments.
Our formulation can be viewed as a dynamic version of Robinson’s classic partial linear model
in semi-parametric inference [33l], where the controls evolve over time and are affected by prior

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



treatments. Our estimation algorithm builds upon and generalizes the recent work of [6, (8] to estimate
not only contemporaneous effects, but also dynamic effects over time. In particular, we propose a
sequential residualization approach, where the effects at every period are estimated in a Neyman
orthogonal manner and then peeled-off from the outcome, so as to define a new “calibrated” outcome,
which will be used to estimate the effect of the treatment in the previous period.

In doing this, we build on results in the semi-parametric inference literature in bio-statistics [3} |37, [36]]
on estimating causal effects in structural nested models (see [39} 29, |16, 4] for recent overviews). In
particular, our identification strategy for dynamic treatment effects is a variant of the well-studied g-
formula and g-estimation for structural nested mean models (SNMMs) [27,[30} 12811321131} 29} 20, 138]].
The works cited above have provided doubly robust estimators for this setting. One practical challenge
faced by these estimation approaches is that the nuisance functions required are hard to estimate
when there are many treatments or treatments are continuous.

Our approach addresses these challenges by providing a Neyman orthogonal g-estimation algorithm
for linear structural nested mean models [28l 29], that allows for both continuous and discrete
treatments in each time period. We use a two stage algorithm, where in the first stage a sequence
of regression and classification models are fitted and in the second stage a simple linear system of
equations is solved. This approach also allows for an easy sample-splitting/cross-fitting approach,
which allows the use of arbitrary machine learning approaches in the first stage.

While Neyman orthogonality is a weaker condition than double robustness, it is sufficient to achieve
robustness to bias introduced by using machine learning to estimate the nuisance parameters. This
approach thus permits machine learning for the nuisance model estimation, which is practically
important in high-dimensional state space/control variable settings. We view this as the main
contribution of this paper to the biostatistics literature. Other contributions are 1) we provide formal
guarantees for the case of a single time-series dataset, as opposed to cross-sectional time-series; and
2) we extend to linear structural nested models with heterogeneous coefficients, thus allowing for
infinite dimensional target functions. Using the recent framework of orthogonal statistical learning
[12]], these can also be estimated via machine learning techniques. The resulting algorithm is an
extension of the popular in practice RLearner algorithm [24] for heterogeneous treatment effects, but
in the dynamic treatment regime.

Our work is also closely related to the work on doubly robust estimation in longitudinal data analysis
and in offline policy evaluation in reinforcement learning [23} 35} 26} [18|[17] from the causal machine
learning community. However, one crucial point of departure from all of these works is that we
formulate minimal parametric assumptions that allow us to avoid non-parametric rates or high-
variance estimation. Typical fully non-parametric approaches in off-policy evaluation in dynamic
settings, requires the repeated estimation of inverse propensity weights at each step, which leads to
a dependence on quantities that can be very ill-posed in practice, such as the product of the ratios
of states under the observational and the target policy. Moreover, these approaches are typically
restricted to discrete states and actions. Our goal is to capture settings where the treatment can also
be continuous (investment level, price discount level, drug dosage), and the state contains many
continuous variables and is potentially high dimensional. Inverse propensity weighting approaches,
though more robust in terms of the assumptions that they make on the model, can be quite prohibitive
in these settings even in moderately large data sets.

Our work is also somewhat related to the online debiasing literature [11}[10L42}|14], since we perform
inference from adaptively collected data. But our work is different in two main ways. First, the
inferential target in this paper is more general, since that literature restricts itself to inference on
contemporaneous effects (i.e. effect of treatment on same period outcome) or on policy values in the
absence of a dynamic endogenous state (i.e. assuming no dynamic effects through a Markovian state
variable). Further, our results extend to the more general structural nested mean model setting. The
second important difference is that, in our main setting, we assume multiple independent small chains
of samples (each from a separate treated unit). This sidesteps one of the key technical difficulties
in the literature above, which is performing inference from a single chain of serially correlated and
adaptively collected samples. With multiple short independent chains, the main technical difficulty
tackled by these works, namely the potential non-convergence of the covariance matrices that are
used in the effect estimate, vanishes. In that respect, that literature is closer to our results on a single
adaptive chain (see Section @ However, for our results in this setting, we make a homoskedastic
noise assumption in the treatment choice policy (i.e. that the noise term in the treatment policy
enters additively and is drawn i.i.d.), which allows us to easily show convergence of the associated



covariance matrices of our Neyman orthogonal estimator and hence again sidestep a key technical
difficulty. It is an interesting avenue for future research if this i.i.d. additive noise assumption can
be dropped from our results on a single adaptive chain by utilizing ideas from this literature (e.g.
adaptive re-weighted variants of our Neyman orthogonal estimator; as for instance described in [[L1]).

2 Model and Preliminaries

We state our main results in a stylized partially linear state space Markov decision process and
in Section [/| we show that our results generalize to more complex Markovian models, known in
the biostatistics and causal inference literature as Structural Nested Mean Models (SNMMs). For
simplicity of exposition we focus on this simplified version, as it captures all the complexities needed
to highlight our main contributions. We consider a sequence { Xy, T3, Y; } 7%, where X; € RP? is the
state at time ¢, T; € R< is the action or treatment at time ¢ and Y; € R is an observed outcome of
interest at time ¢t. We assume that these variables are related via a linear Markovian process:

VtE{L,m} Xt: A'Tt,1+B'Xt,1+T]t
Ty = p(Ti—1, X¢) + G (1)
}/t = %Tt =+ ‘U,/Xt + €t

where 7, (¢ and €; are exogenous mean-zero random shocks, independent of all contemporaneous
and lagged treatments and states, that for simplicity we assume are each drawn i.i.d. across time with
Ty = Xo = 0. The function p could be any propensity function.

Our goal is to estimate the effect of a change in the treatment policy on the final outcome Y,,,. More
concretely, suppose that were to make an intervention and set each of the treatments to some sequence
of values: {71,...,Tm}, then what would be the expected difference in the final outcome Y, as
compared to some baseline policy? For simplicity and without loss of generality, we will consider
the baseline policy to be setting all treatments to zero. We will denote this expected difference
as: V(11,...,7m). Equivalently, we can express the quantity we are interested in do-calculus:
if we denote with R(7) = E[Y,, | do(Ty = 71,...,Tsn = Tm)], then V(7) = R(7) — R(0). In
Appendix [A] we will also analyze the estimation of the effect of adaptive counterfactual treatment
policies, where the treatment at each step can be a function of the state.

3 Identification via Dynamic Effects

Our first observation is that we can decompose the quantity V'(7) into the estimation of the dynamic
treatment effects: if we were to make an intervention and increase the treatment at period m — x by 1
unit, then what is the change 6,; in the outcome Y,,, for x € {0,...,m}; assuming that we set all
subsequent treatments to zero (or equivalently to some constant value). This quantity is the effect
in the final outcome, that does not go through the changes in the subsequent treatments, due to our
observational Markovian treatment policy, but only the part of the effect that goes through changes in
the state space Xy, that is not part of our decision process. This effect can also be expressed in terms
of the constants in our Markov process as:

Vee{l,...om—1}:0,=u' B" 1 A
Lemma 1. The counterfactual value function V. : R*™ — R, can be expressed in terms of the
dynamic treatment effects as: V(T1,...,Tm) = Z:L;Ol 01 Tin—ss

Thus to estimate the function V, it suffices to estimate the dynamic treatment effects: 6y, ..., 0,,.
We first start by showing that the parameters 6y, ..., 0,, are identifiable from the observational
data. Identification is not immediately obvious. Write the final outcome as a linear function of all
the treatments and the initial state: Y,, = Z;nz_ol 0! T + /0, + €m. The shock 4., contains
components that are heavily correlated with the treatments, since the shocks at period ¢ affect the
state at period ¢ + 1, which in turn affect the observed treatment at period ¢ + 1. In other words, if
we view the problem as a simultaneous treatment problem, where the final outcome is the outcome,
then we essentially have a problem of unmeasured confounding (implicitly because we ignored the
intermediate states).

However, we show that these dynamic effects can be identified from the observational data via a
sequential peeling process, which as we show in the next section, leads to an estimation strategy that
achieves parametric rates. This is one of the main contributions of the paper.



Theorem 2. The dynamic treatment effects satisfy the following set of conditional moment restrictions:
Vg € {0,...,m}

E[Ymﬂn—q —04Tm—q — ' B Xm—q | Tin—qs Xm—g] =0

where: Ym,m,q =Y, — ZZ;}) 0Ty w. Moreover, if we let Tm,q =T—g —ETm—g | Xm—g]
and we have that the covariance matrix J = E[T,,_,T.} _ o) is invertible, then these conditional
moment restrictions uniquely identify 0.

Proof. Forany g € {0,...,m — 1}, by repeatedly unrolling the state X,,, ¢ — 1 times we have that:

q qg—1
Yo = 00T + > W B AT+ 1/ B X g+ > 1 B p + €m
k=0 k=0
q q
= o T + Z W T+ 1 B Xy + Z B e
k=0 k=0
m q
= U Tmgt > T+ p/B X g+ > B e + €m
j=m—q+1 k=0

Thus by re-arranging the equation, we have:

q
Ym,m—q = ¢:n_qu_q + M/Bqu—q + Z M/Bn_lnm—m + €m
k=0

Since for all t > m — g, 7, €; are subsequent random shocks to the variables 7T;,,_;, X,, 4, we have
that they are mean-zero conditional on 15, _4, X, 4. Thus:
E[Ym,qu — Vg —-q u' BY Xm—q | Tquvafq] =0

m—qg=-m
Thus we have concluded that for any ¢ € {1,...,m}:
E[an,t - — W B™ Xy | Ty, X4 ] =0
which concludes the proof of the first part of the theorem.

For the second part, consider any ¢ and let ¢ = m — q. Note that by taking an expectation of the
above condition for with respect to 73 conditional on X, we get that it implies

EYim—q | Xm—q) = Vi oTm—q — ' B Xp—g | Trn—q, Ximn—q)

m—q-m

4 Dynamic DML Estimation

We now address the estimation problem. We assume that we are given access to n i.i.d. samples
from the Markovian process, i.e. we are given n independent time-series, and we denote sample
i, with { X}, T{,Y;'}. Our goal is to develop an estimator of the function V' or equivalently of the
parameter vector = (6, ..., 0,,). We will consider the case of a high-dimensional state space,
i.e. p > n, but low dimensional treatment space and a low dimensional number of periods m, i.e.
d, m < n is a constant independent of n. We want to estimate the parameters 6 at /n-rates and
in a way that our estimator is asymptotically normal, so that we can construct asymptotically valid
confidence intervals around our dynamic treatment effects and our estimate of the function V. The
latter is a non-trivial task due to the high-dimensionality of the state space. For instance, the latter
would be statistically impossible if we were to take the direct route of estimating the whole Markov
process (i.e. the high-dimensional quantities A, B, p): if these quantities have a number of non-zero
coefficients that grows with n at any polynomial rate, then known results on sparse linear regression,
preclude their estimation at root-n rates (see e.g. [40]). However, we are not really interested in these
low-level parameters of the dynamic process, but solely on the low dimensional parameter vector 6.
We will treat this problem as a semi-parametric inference problem and develop a Neyman orthogonal
estimator for the parameter vector [22, 133} (1, 7, 6].



In particular, we consider a sequential version of the double machine learning algorithm proposed in
[6]. In the case of a single time-period, i.e. m = 0, then [6], recommends the following estimator for
6o: using half of your data, fit a model §o(Xo) of E[Yy | Xo], i.e. that predicts the outcome Yy from
the controls X and a model p(Xy) for E[Ty | Xo]. Then estimate 6, on the other half of the data,
based on the estimating equation:

m(0;po, Go) = E [(ffo —00To) To| =0

where Yy = Yy — Go(Xo) and Ty = Ty — Po(Xp) are the residual outcome and treatment.

We propose a sequential version of this process that we call Dynamic DML for sequential dou-
ble/debiased machine learning. Intuitively our algorithm proceeds as follows:

1. We can construct an estimate 6 of , in a robust (Neyman orthogonal) manner, by applying
the approach of [6] on the final step of the process, i.e. on time step T, ; this will estimate
all the contemporaneous effects of the treatments,

2. Subsequently we can remove the effect of the observed final step treatment from the observed
final step outcome, i.e. by re-defining the random variable Y, . _, = Y;}, — 6, 7% ; doing
this we have removed any effects on Y,i, caused by the final treatment 7, .

3. We can then estimate the one-step dynamic effect 61, by performing the residual-on-residual
estimation approach with target outcome the “calibrated” outcome V! treatment 7, _
and controls X!

m,m—1>
- Theorem tells us that the required conditional exogeneity moment
required to apply the residualization process is valid for these random variables. We can
continue in a similar manner, by removing the estimated effect of 7,,,_; from erz,m—l and
repeating the above process.

We provide a formal statement of the Dynamic DML process in Algorithm[I] which also describes
more formally the sample splitting and cross-fitting approach that we follow in order to estimate the
nuisance models p and g required for calculating the estimated residuals.

Algorithm 1 Dynamic DML

Randomly split the n samples in S, S’
for each sk € {0,...,m} do
Regress Y,,, on X,,,_, using S to learn estimate ¢, of model ¢, (x) = E[Y;, | X;n—x = ] and
calculate residuals Y, . =Y} — (X}, _,.) on other half; vice versa use S’ to learn model
and evaluate on S.
for each 7 € {0,...,x} do
Regress Ty,,—» on X,,,_,, using S to learn estimate p. , of model p, .(z) = E[T,,—, |

Xm—r = ] on the first half and calculate residuals 7%, __, . =T¢ __ —p, (X5 _,.)on
other half, and vice versa. '
end for
end for

Using all the data S U S’
forx =0tomdo _

Regress Y, » = Yoo m—x — 2 . O Tin—rm—r 00 Tpyy_ . m— g, 1.€. find a solution 6, to:

T<K T

n

1 i . y B
I ; (Ym,n — Qmefﬁ’m,K) Tmfn,mfn -0

end for

5 Estimation Rates and Normality

Our main theorems are to show that subject to the first stage models of the conditional expectations
achieving a small (but relatively slow) estimation error, then the recovered parameters are root-n-
consistent and asymptotically normal. Our asymptotic normality proof relies on showing that one can



re-interpret our Dynamic DML estimator as a Z -estimatmﬂ based on a set of moments that satisfy the
property of Neyman orthogonalityﬂ

Let p, g denote the vector of all nuisance functions and p*, ¢* their true values. Moreover, let 6 denote
the vector of dynamic effect parameters, with 6 its true value. We provide both finite sample rates
mean squared error rates and asymptotic normality of our estimates (proofs in Appendix [B.3]and
[B.4). Moreover, in the appendix we discuss how the required guarantees for the nuisance functions
can be easily satisfied using estimation algorithms such as the Lasso and under sparsity conditions.

Theorem 3 (Finite Sample). Suppose that E[(,¢}] = 2\ and that each coordinate h of each nuisance
model {qy, Dr x } r.x satisfy that wp. 1 — §:

lh = 1"z = \/Ex[(il(X) —h(X))?] < €ns

where expectation is with respect to the corresponding input of each model. Moreover, suppose thatﬂ

m ~
SOIE [T s |
7=0

<cm

oo

Then w.p. 1 — 26:

R I
max |6y — fo.||l2 < O (de ( log(dm/9) | » 5>)
te[m] n ’

m—+1 ~
where C,, := max {1, (W) } If each coordinate h of each nuisance model

satisfies: Eh[H}AL — h*||3]Y < e, then:

\/E |:maX ||ét - 00,t||%:| S 0 (d Cm ( M =+ 63)) .
te[m] n

Theorem 4 (Asymptotic Normality). Suppose that the nuisance models {q., Dr 1 } r.r Satisfy that:

VK;vT <k: ||qn - q,:||27 ||p7',n - pT,n||2 < 0(n_1/4)
Moreover, suppose that all random variables are bounded and that E[(; (] = AI. Then:

V(6 —6y) — N(0,V)

where V.= M~*S(M~Y) and M is a m x m block lower triangular matrix consisting of blocks of
size d x d, whose block entries are of the form:

Vr <k: MH,T = E[(Tm—'r - E[TH’L—T ‘ Xm—f-i]) gl }

and ¥ is a m X m block diagonal matrix whose diagonal block entries take the form: >, =
E[G?nft <mftC7/nft]'

Concrete Rates for Lasso Nuisance Estimates. Suppose that the observational policy p is also
linear, i.e. p(X) = AX. Then all the models ¢, and p, ,, are high-dimensional linear functions of
their input arguments, i.e. ¢, () = ¢’z and p; . ;(x) = 7 . ;x. If these linear functions satisfy a
sparsity constraint then under standard regularity assumptions we can guarantee if we use the Lasso

regression to estimate each of these functions that w.p. 1 — 4, the estimation error of all nuisance
models is O <s\/ 1og(7;:/5)> , where s is an upper bound on the number of non-zero coefficients.

One sufficient regularity condition is that the expected co-variance matrix of every period’s state
has full rank, i.e. E[X;X]] = AI. Thus the requirements of the main theorems of this section
would be satisfied as long as the sparsity grows as s = o(n'/4). These conditions are for instance
satisfied if s coordinates of the high-dimensional state have any effect on the final outcome (i.e. are
outcome-relevant) and if s coordinates of the high-dimensional state enter the observational policy.

'A Z-estimator is a solution to an empirical analogue of a vector of moment equations E[m(W;0,v)] = 0,
where W are all random variables, m is a vector valued function and # € R< is a vector parameter of
interest and ¥ € V is a potentially infinite dimensional nuisance parameter. The true parameters satisfy
E[m(W;6o,10)] = 0.

2A vector of moments satisfies Neyman orthogonality if Vv € V: %E[m(W; Oo,v0+t (v —10))] |t=0=0

3Where by absolute value we denote coordinate-wise



6 Dependent Single Time-Series Samples

Thus far we have assumed that we are working with n independent time series, each of duration m.
Though this is applicable to many settings where we have panel data with many units over time, in
some other settings it is unreasonable to assume that we have many units over time, but rather that we
have the same unit over a long period. In this case, we would want to do asymptotics as the number of
periods grows. Our goal is still to estimate the dynamic treatment effects (i.e. the effect of a treatment
at period ¢ on an outcome in period ¢ + k, for x € {0, ..., m}) for some fixed look-ahead horizon m.

These quantities can allow us to evaluate the effect of counterfactual treatment policies on the
discounted sum of the outcomes, i.e. Y ,-,7"Y; for v < 1. We can write the counterfactual value
function for any non-adaptive policy as: V(1) = > =7 > <t Ot—qTq. Assuming outcomes are
bounded, the effect ), 147 on any period ¢ can be at most some constant. Thus taking m to
be roughly log., (), suffices to achieve a good approximation of the effect function V'(7), since the
rewards vanish after that many periods, i.e. if we let: V,,,(7) = >3\ (7" 3=, 0447, then observe
that: [|V,,,(7) — V(7)[| < O(y™). Thus after m = log, ,.,(n), we have that the approximation error
is smaller than 1//n. Thus it suffices to learn the dynamic treatment effect parameters for a small

number of steps. To account for this logarithmic growth, we will make the dependence on m explicit
in our theorems below.

For any m, we will estimate these parameters by splitting the time-series into sequential B = n/m
blocks of size m. Then we will treat each of these blocks roughly as independent observations and
we denote the resulting estimate as 6. The main challenge in our proofs is dealing with the fact that
these blocks are not independent but serially correlated. However, we can still apply techniques, such
as martingale Bernstein concentration inequalities and martingale Central Limit Theorems to achieve
the desired estimation rates.

The other important change that we need to make is in the way that we fit our nuisance estimates. To
avoid using future samples to train models that will be used in prior samples (which would ruin the
martingale structure), we instead propose a progressive nuisance estimation fitting approach, where at
every period, all prior blocks are used to train the nuisance models and then they are evaluated on the
next block. We present the normality theorem and defer the finite sample MSE result to the appendix.

Theorem 5. Let Fy, denote the filtration up until block b. Suppose that E[(;C} | Fp] = 2MI and that
each coordinate h of each nuisance model {qy;, Dr . }r. Satisfies: ¥b > B /2

E;lllh — n*[l52)Y < o(B714)

m—T,m—k

Moreover; suppose that: HZT:O |E [T* ¢l | fb] \H < ¢, and that m satisfies that mC,,, =
o0

m+1
o(v/B), where C,, := max {1, (m) } m. Then:

VBETY2M(0 - 0y) — N(0,1)

where M, Y are the same as in Theorem[4)

7 Generalization to Structural Nested Mean Models (SNMMs)

We now generalize our results by drawing a connection between our algorithm and g-estimation
of structural nested models in biostatistics [27]] and show how our DynamicDML algorithm can be
applied almost verbatim with a small change of variables and estimate dynamic effects in a much
more general setting. Consider an arbitrary time-series process {X;, T; }7~,, with X; € X; and
T; € T;. Let Y denote some final outcome of interest. For any time ¢, let X; = {X3,...,X;}
and T; = {T1,...,T;}, denote the sequence of the variables up until time ¢ and similarly, let
X, ={X¢,...., Xpn}tand T, = {T3,...,T,,}. We will also denote with z,, 7, z,, 7,, corresponding
realizations of the latter random sequences. Let m = (71, ..., 7, ) denote any dynamic policy, such
that for each ¢, 7, maps a history Z;, 7.1 into a next period action 7;. For any such dynamic policy,
let Y(™) denote the counterfactual outcome under policy d. For any static policy 7 € x, T, we will
overload notation and let Y (") denote the counterfactual outcome under this static treatment policy.



Moreover, for any two policies (static or dynamic) we will be denoting with (77, 7, ; ), the policy
that follows 7’ up until time ¢ and then continues with policy 7. We let 0 € 7; denote a baseline
policy value, which could be appropriately instantiated based on the context.

We assume that the data generating process satisfies the sequential conditional exogeneity condition:
{Y(T)7 T € X?;lﬂ} HiR Tt | Tt—l; Xt

Identification of mean counterfactual outcomes E[Y (™)] for a target policy of interest 7 can be
expressed in terms of the following conditional expectation functions:

’Yt(j:ta%t) =E [Y(‘T't,ﬂﬂ_l) _ Y(‘T’t—l,oyﬂﬂ_l) | Tt — TtaXt = T

which corresponds to the mean change in outcome if we go to all units which received treatment
7; up until time ¢ and had observed state history Z; and we remove their last treatment, while we
subsequently always continue with the target policy m. These functions are known as the blip
functions [4} 29]. Theorem 3.1 of [29] shows that via a telescoping sum argument and invoking the
sequential randomization condition that:

B[y Um0 | X, T = 7] = E[Y + £, (5. 7)) | X Ty = 7

where p;(X;,T;) = (X, (Tj—1,7(X;,Tj-1))) — v;(X;,T;) and hence also: E[Y(™] =
E [Y + Z?;l pt(X¢, Tt)]. Importantly, the conditioning set contains the observed ¢ periods treat-
ment. Intuitively, each term p;, removes from the outcome the blip effect of the observed action T}
and adds the blip effect of the target action 7(X s Tj,l). Thus for any parameterization of the blip
functions v, (Z¢, 7¢; 9 ), if we let Hy(¢) := Y + 327", pj(X;, T;), then the true parameter vector
must satisfy the moment restrictions:

YVt € [m],Vf : E[Ht(’lb) (f(Xt7Tt) - E[f(Xt,Tt) ‘ Xtathl])] =0
If the blip functions admit a linear parametric form:
Ve @es T 0t) = V(T Tt)

for some known feature vector ¢, satisfying ¢(Z;, (7:—1,0)) = 0, then we can consider the subset of
the moment restrictions of the form:

vt € [m] : E[H,(¢) (6(Xe, Ty) — E[p(Xy, Ty) | X, Ti-1])] =0

Moreover, we can also subtract from Hy (1)), its conditional expectation E[H,(v)) | X;, T;_1] while
maintaining the moment condition:

vt € [m] : E[(H(¢) — E[Hy(¥) | Xy, Ti-1]) (6(Xe, Ty) — E[p(Xy, Th) | Xy, Ty—1])] =0

This is the doubly robust moment condition proposed by [28, [29], where it is shown that an estimator
of 1 based on this moment is correct if either the estimate of E[H,(v) | X, T;_1] or the estimate
of E[p(X,,T;) | Xy, Ti—1] is correct. However, estimating E[H,(¢) | X, T;—1], itself requires
seamingly knowledge of v, which is cumbersome and can be im-practical (e.g. by constructing poor
preliminary estimates of ). [[16] (see Technical Point 21.5) note that for a binary treatment and
when the target policy is the all-zero policy, then E[H(v) | X;,T;] can be estimated by regressing
the outcome of the population that received zero subsequent treatment on the history. However, such
a population can be quite small in practice and can have severe co-variate imbalances compared to
the overall population. Moreover, this approach only applies to the case of a binary treatment and a
static target policy.

Here, we can achieve a Neyman orthogonal moment for identifying v, which is sufficient for
robustness to biases stemming from machine learning models used to train the nuisance components,
while avoiding the cumbersome part of estimating the nuisance E[H (¢)) | X;, T;—1]. Moreover, our
approach leads to a strongly convex loss for the parameters at each step of the recursive process,
which is beneficial for finite sample guarantees and subsequently for generalizing it to linear models
with parameter heterogeneity with respect to exogenous covariates.

In particular, let Q; = ¢(X;,Tj) — ¢(X;, (Tj_1,7(X;,Tj_1)) and for any t < j, let T}, =
Q; —E[Q; | Xi,Ti—1) and Y, ; :=Y — E[Y | Xy, T;_1]. Then, note that:

Ht(,(/)) - E[Ht(w) ‘ XhTt—l} - ?m,t - Z¢3T7t
j=t



Moreover, note that since the second term in J; only depends on the conditioning set X, T,_1, then

Tot = ¢(Xy, Ty) — E[p(X,, Ty) | Xy, Ty_1]. Thus we conclude that the true parameters must be
satisfying the moment restrictions:

Vte [m]:E [(Yt T — w;fu) Tw} —0

These are exactly of the same form as the moment restrictions considered in the definition of the
Dynamic DML algorithm and its analysis. Thus the results we presented so far directly extend to
the estimation of structural nested mean models, with a linear parameterization of the blip functions,
simply by using the different definition of the residual variables Y; and T} ; and letting v; = 0, in
the definition of Algorithm E] and in Theorems E] and E} Moreover, note that the nuisance models that
are trained in the first stage have a larger conditioning set which includes all past history of states and
treatments X;, 7;_1. If we made further restrictions that there was a "funnel state" S; at each period
that summarizes the history and such that any dependence of the future to the past is going through
that funnel state, then conditioning only on that state would have been sufficient. This is what we
essentially did in the linear Markovian model. Moreover, the linear Markovian model with a static
policy 7, is a special case where the blip functions take the simple form: ~;(Z, 7¢) = 0,,,_,7+ and are
target policy independent.

Thus our Dynamic DML algorithm extends to the estimation of the structural parameters in a structural
nested mean model for any target dynamic policy d and any user defined baseline policy 0 (referred
to as a double regime structural nested mean model). It allows for the estimation of the nuisance
functions with arbitrary machine learning algorithms, subject to a relatively slow mean-squared-error
condition and reduces estimation to simple regression and classification oracles in the first stage, with
only a simple linear system of equations in the second phase, which can also be solved in linear time
in a recursive manner.

Dynamic effect heterogeneity Finally, we note that our moment condition that identifies each
parameter 1, is the derivative of a square loss and can be written as the solution to the following

- . N2
square loss minimization problem: min,, E [(Yt — Zth 41 7/};'Tj,t — wéTt,t> } , fixing the solution

1; for any j > t, from previous iterations. This allows us to generalize the Dynamic DML to the case
where we allow non-parametric heterogeneity in the parameters vy, with respect to an exogenous
fixed covariate vector of each sample, denoted as Xy, i.e. (T, 7¢) = ¥ (x0) &(Z¢, Tt ), for a known
feature map ¢ and unknown heterogeneous parameters . Thus we can essentially generalize the
g-estimation approach to SNMMs to allow for infinite dimensional parameters of the blip functions,
as long as the input to these infinite dimensional parameters is fixed and not changing endogenously
by the treatments (e.g. fixed characteristics of a unit). This can be achieved by simply minimizing
recursively the square loss:

- - RN
win 8 | (7 = S 05 (X0 Ty — 0e(X0) Tur) |
(-
over arbitrary function spaces v;(-). Using techniques from the recently introduced orthogonal
statistical learning framework [12], we show in the appendix that this estimation method provides
mean-squared-error guarantees on the recovered heterogeneous parameters v;, that are robust to
errors in the nuisance functions. This heterogeneous extension can also be viewed as an analogue of
the RLearner meta-learner algorithm [24]], generalized to the dynamic treatment regime setting.

8 Experimental Results

We consider data drawn from the DGP presented in Equation (I)), with a linear observational policy:
p(Ti—1,Xt) := CTi—1 + D - Xy, with Xo,Tp = 0 and ¢, (¢, 1 standard normal r.v.’s. (recall
that d is the number of treatments and p the number of state variables). We consider the instance
where: A;; = .5, foralli € [p], j € [d], B= .51,,C =214, D[:,1:2]|=4,D[;,3:p] =0,
p[1: 2] = .8. We consider settings where the effect is constant, i.e. §y € R? or heterogeneous, where
0o(X) = 0o + (Bo, X[S]) for some known low dimensional subset .S of the states. We compare
the dynamic DML to several benchmarks. The results are presented in Figures[I] comparing the
estimates of the dynamic DML algorithm to a number of other alternatives on a single instance.



They fall into two categories. In the “static” set of approaches, each of the contemporaneous and
lag effects is estimated one at a time, either by direct regression or (static) DML. So for example, to
estimate the one period lag effect 61, we would regress Y; on 7;_1, with controls X. We consider
direct regression with no controls (“no-ctrls”), direct and DML with controls from the inital period
(i.e X;_1, “init-ctrls” and “init-ctrls-dml”’) and direct and DML with controls from the same period
as the outcome (i.e X;, “fin-ctrls” and “fin-ctrls-dml”). As an alternative to all of these, we try a
“direct” dynamic approach, where initially we estimate 6, using a lasso regression of Y; with all the
controls and past treatments, and return the coefficient on 7}, and then “peel” off the estimated effect
as in the main text before running another Lasso regression of Y; — 6y7}; on T;_; to get the first lag
effect etc. So this approach incorporates the peeling effect but doesn’t do any orthogonalization.
The point estimate for 6, 1 and 6- are depicted in the three panels of Figureand the error bars
correspond to the constructed confidence interval. For all three, the dynamic DML is relatively close
to the truth and the confidence interval contains the truth. The remaining approaches are not, although
for the contemporaneous effect the approaches with final period controls have similar performance
- it is really in the lagged effects that the differences become most apparent. Subsequently we run
multiple experiments to evaluate the performance of DynamicDML. In each setting, we run 1000
Monte Carlo experiments, where each experiment draws N = 500 samples from the above DGP and
then estimated the effects and lag effects based on our Dynamic DML algorithm. Figure 2] considers
the case of two treatments, and shows that the algorithm performs well in terms of giving reasonable
coverage guarantees - for a nominal 95% coverage, actual coverage varies from 91% to 94.5%. The
right panel shows that the average estimates are close to the truth. In Figure [5]in Appendix [E] we
repeat the experiments with N = 2000, and actual coverage is now tightly in the range 94% to 95%,
and the average estimates remain relatively unbiased. Finally, in the appendix we explore a scenario
with heterogeneous effects and find qualitatively similar performance.

Figure 1: Comparison of DynamicDML (with confidence intervals) with benchmarks on a single
instance. n = 400, n; = 2, n, = 100, s = 10, o(¢e;) = .5, 0((¢) = .5, 0(n) = .5,C =0

.
+

X 0.0

-0.5 +

0.92 .

6o 61 6, 6o 61 6

(a) Coverage (b) Point estimates

Figure 2: n = 500, ny = 2, n, = 450,s =2,0(et) =1, 0(¢) = .5, 0(m) =1
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A Technical Exposition of Extension to Structural Nested Models (Section [7)

We present a more formal treatment of the extension of our main algorithm to g-estimation of
structural nested models in biostatistics [27]. Consider an arbitrary time-series process { X;, Ty} 4,
with X; € A, and T; € T;. Let Y denote some final outcome of interest. For any time ¢, let
X ={Xq,...,Xs}and Ty = {T1,...,T;}, denote the sequence of the variables up until time ¢ and
similarly, let X, = {X,,..., X, } and T, = {1}, ..., T,,,}. We will also denote with Z;, 7, z,, 7,,
corresponding realizations of the latter random sequences. Let d = (ds, . .., d,,) denote any dynamic
policy, such that for each ¢, d; maps a history Z;, 7;—; into a next period action 7y. For any such
dynamic policy, let Y(9) denote the counterfactual outcome under policy d. For any static policy
T € x™,T;, we will overload notation and let Y (") denote the counterfactual outcome under this
static treatment policy. Moreover, for any two policies (static or dynamic) we will be denoting with
(d},d, 1), the policy that follows d’ up until time ¢ and then continues with policy d. We let 0 € T;
denote a baseline policy value, which could be appropriately instantiated based on the context.

We assume that the data generating process satisfies the following sequential conditional randomiza-
tion condition:

ASSUMPTION 1 (Sequential Conditional Exogeneity). The data generating process satisfies the
following conditional independence conditions:

Viem): {YD, rex™ T}y LT, | T,1, X,
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Identification of mean counterfactual outcomes E[Y (9] for a target policy of interest d can be
expressed in terms of the following conditional expectation functions:

Ye(Zy, 7)) = E Y Fedip) — y (Feon0dig) | T, =7, Xy = T4

which corresponds to the mean change in outcome if we go to all units which received treatment
7¢ up until time ¢ and had observed state history Z; and we remove their last treatment, while we
subsequently always continue with the target policy d. These functions are known as the blip functions
[4} 29] and can be shown to be non-parametrically identifiable, assuming sequential conditional
exogeneity and a sequential analogue of the positivity (aka overlap) assumption [29].

Theorem 3.1 of [29] shows that via a telescoping sum argument and invoking the sequential random-
ization condition the following lemma, which we adapt here to our notation and provide a proof for
completeness:

Lemma 6. For any dynamic policy d and under the sequential conditional exogeneity assumption,
the following identity holds about the counterfactual outcomes:

ElY(T-1d) | X, T, = 7] = E [YJF S pi(X5 1) | Xe, T = 7 2)

where:

pi (X5, Ty) = vi(X5, (Tj—1,d(X;5, Tj1))) — 7 (X5, Tj).

Hence also:

EY @D =E Y+ p(Xi, Th)

t=1

Importantly, the conditioning set in Equation (2)) contains the observed ¢ periods treatment. Intuitively,
each term p;, removes from the outcome the blip effect of the observed action T and adds the blip
effect of the target action d(X i Tj_l). Lemma@ together with conditional sequential exogeneity
also implies that the following set of moment restrictions must be satisfied (the following is an
adaptation of Theorem 3.2 of [29] to our notation and we include its proof for completeness).

Lemma 7. For any parameterization of the blip functions (T, Ty; Y1), if we let the random variable
H:(Y) =Y + Z;n:t p;(X;,Tj;;), then the true parameter vector * must satisfy the moment
restrictions:

YVt € [mLVf e F:E I:Ht(w*) (f(Xt,Tt) - ]E[f(Xt,Tt) | Xt,thl])} =0
where F contains all functions mapping histories T, T; to R.

To achieve parametric estimation rates for the quantities of interest, we will need to further make a
semi-parametric assumption, i.e. that the blip functions take a low-dimensional parametric form:

ASSUMPTION 2 (Linear Blip Functions). The blip functions admit a linear parametric form:
Ve(@e, Tes e) = Ve (e, )

Sfor some known r-dimensional feature vector maps ¢y, satisfying ¢+(Zy, (T1—1,0)) = 0 and such that

for some true Oy, v (-, 5 ¥f) = Vel ).

Then we can identify ¢* by finding a parameter vector ¢ that satisfies the subset of the moment
restrictions of the form:

Vvt € [m] : E[Hy () (6¢(Xe, Ty) — Elge(Xs, Th) | Xi, Ty-1])] = 0

Moreover, we can also subtract from H; (1)), the conditional expectation E[H; (1*) | X, T;_1] while
maintaining the moment condition:
Vit € [m] : E[(Ht(w) - E[Ht(w*) | Xh thl]) (¢t(Xt7 Tt) - E[¢t(Xt7 Tt) | Xta thl])] =0

This is the doubly robust moment condition proposed by [28,[29], where it is shown that an estimator
of 1) based on this moment is correct if either the estimate of E[H,(¢*) | Xy, T;_1] or the estimate
of E[¢(Xy, Ty) | X¢, Ty—1] is correct. However, estimating E[H;(v™*) | X, Ti—1], itself requires
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seemingly knowledge of ¢)*, which is cuambersome and can be impractical (e.g. by constructing poor
preliminary estimates of 1*). This issue has also been discussed as one of the main points of not
using the doubly robust correction in practice in g-estimation of structural nested models (see e.g.
the discussion at the end of Section 6.1 of [38]]). For a binary treatment and when the target policy
is the all-zero policy [16] (see Technical Point 21.5) note that E[H;(¢)*) | X¢, T¢] can be estimated
by regressing the outcome of the population that received zero subsequent treatment on the history.
However, such a population can be quite small in practice and can have severe co-variate imbalances
compared to the overall population. Moreover, this approach only applies to the case of a binary
treatment and a static target policy.

Our approach In this work, we show that we can achieve a Neyman orthogonal moment for
identifying 1*, which is sufficient for robustness to biases stemming from machine learning models
used to train the nuisance components, while avoiding the cumbersome part of estimating the nuisance
E[H(¢*) | X, Ti—1]. Moreover, our approach leads to a strongly convex loss for the parameters at
each step of the recursive process, which is beneficial for finite sample guarantees and subsequently for
generalizing it to linear models with parameter heterogeneity with respect to exogenous co-variates.

In particular, instead of subtracting E[H;(¢*) | X, Ty_1], we subtract E[H;(v)) | X;, T;—1], i.e. the
function that we subtract is dynamically dependent on the estimate of 7). Even though this moment
is not doubly robust, we will show that it remains locally robust [3l], aka Neyman orthogonal [6]].
To define our moment restrictions and connect them to the main results of the paper we first define
several convenient random variables: for any j € [m], let

Qj = ¢;(X;,Ty) — ¢5(X;, (Tj—1,d(X;,Tj-1))
and forany 1 <t < j, let

Tj+ = Q; — E[Qy | Xtaft—l]
Y=Y -E[Y | Xy, T-1]

Then, note that for any :
H(¢) —E[H(¢) | X, Tia] = Vi = Y ¥iT
j=t

Moreover, note that since the second term in (J; only depends on the conditioning set X ts T,_1, then:
Tyt = ¢e(Xe, Th) — Elpe( Xy, Ty) | Xe, To—1).

Thus we conclude that the true parameter ¢)* must be satisfying the moment restrictions:

Vie[m]:E||Y;— Z w}Tj,t - w;Tt,t Ti| =0
j=t+1

These are exactly of the same form as the moment restrictions considered in the definition of the
Dynamic DML algorithm and its analysis. Thus the results we presented so far directly extend to
the estimation of structural nested mean models, with a linear parameterization of the blip functions,
simply by using the different definition of the residual variables Y; and T} ; and letting v; = 0,,—; in
the definition of Algorithm[T]and in Theorems [3]and 4]

Moreover, note that the nuisance models that are trained in the first stage have a larger conditioning set
which includes all past history of states and treatments X;, 7} 1. If we made further restrictions that
there was a "funnel state" S; at each period that summarizes the history and such that any dependence
of the future to the past is going through that funnel state, then conditioning only on that state would
have been sufficient. This is what we essentially did in the linear Markovian model. Moreover, the
linear Markovian model with a static policy 7, is a special case where the blip functions take the
simple form: ~;(Z;, 7t) = 6/,,_,7+ and are target policy independent. When the blip functions are
target policy independent, then any target policy can be used to estimate the structural parameters ™.
In our main development, we essentially used the baseline zero policy as a target policy to estimate
the structural parameters.
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Thus our Dynamic DML algorithm extends to the estimation of the structural parameters in a structural
nested mean model for any target dynamic policy d and any user defined baseline policy 0 (referred to
as a (m, 0)-double regime structural nested mean model). It allows for the estimation of the nuisance
functions with arbitrary machine learning algorithms, subject to a relatively slow mean-squared-error
condition and reduces estimation to simple regression and classification oracles in the first stage, with
only a simple linear system of equations in the second phase, which can also be solved in linear time
in a recursive manner.

For completeness, we present the generalization of Algorithm [I]to SNMMs in Algorithm 2]and we
re-state the main Theorems in this broader context.

Algorithm 2 Dynamic DML for Structural Nested Mean Models (SNMMs)

Input: A data set consisting of n samples of m-length paths: {(Xi,T7,..., X}, T¢,Y") }?:1
Input: A target dynamic policy d
Input: r-dimensional feature vector maps {¢; }7* , which parameterize the blip functions
Randomly split the n samples in S, S’
foreacht € {1,...,m} do

Regress Y on Xy, T;_; using S to learn estimate ¢; of model

@t (T4, 7—1) = EY | Xy = 24, Ty—1 = Tt—1]

Calculate residuals for each sample i € S": Y} := Y — §,(X}, T} ;)
Vice versa use S’ to learn model §; and calculate residuals on S.
foreachj e {t,...,m}do o
Let Q; == ¢;(X;, 1) — ¢5( Xy, (Lj—1,d(X;, Tj—1)) 1{j > t}
Regress Q; on X, T;_; using S to learn estimate p; ; of model

pit (@, Tm1) =E[Q; | Xy = Ty, Thm1 = To1]

Calculate residuals for each sample i € S": T!, := Q% — p; (X}, T}_,)

gt
Vice versa use S’ to learn model 5, ; and calculate residuals on .S.
end for
end for

Using all the data S U S’
fort =mdowntoldo ~
Regress Y; — Z;”:t 41 1#}Tj,t on T}, with oridinary least squares:

1 n ~ m ~ ~ 2
g =argmin = (V- Y 0T, — T},
ve€¥e D j=t+1
end for . . .
Return: Structural parameter estimate ) = (11, ..., ¥n) of ¥* = (YF,...,¢})

We present here the generalized version of the asymptotic normality theorem for SNMMs and we
defer the finite sample guarantee to the next section where we will analyze a more general setting of
heterogeneous dynamic effects and present a finite sample bound. The proof is identical to that of
Theorem [ and so we omit it.

Theorem 8 (Asymptotic Normality). Consider a Structural Nested Mean Model and a target dynamic
policy d, such that Assumptions[Ijand Assumption[2)are satisfied, for a constant feature map dimension
r. Suppose that the nuisance models {qy;, Pr x } r.r Satisfy that:

Vi<t <j<m:|g - aillo [ = pjellz < 0p(n™'/*)
Moreover, suppose that all random variables are bounded and that
E[Cov(Qy, Q¢ | X¢, Ty—1)] = 2T (average positivity)
for X\ > 0. Then the estimate 1/3 produced by Algorithm@satisﬁes wp. 1 —26:
Vil —¢7) = N(0,V)
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where V.= M~'S(M 1) and M is a m x m block upper triangular matrix, consisting of blocks of
size v X r, whose block entries are of the form:

VE<j:M;=Cov(Qj, Q| Xt,Ti—1)

and X is a m x m block diagonal matrix, consisting of blocks of size r x r, whose diagonal block

entries take the form: o
Yy = E[ﬁf COU(QmQt | Xtathl)]~

where ¢, =Y —E[Y | X, T,—1] — Y7, (v1) (Q; — EIQ; | Xo. To—1)).

A.1 Heterogeneous Dynamic Effects

We note that our moment condition that identifies each parameter 1, is the derivative of a
square loss and can be written as the solution to the following square loss minimization problem:

- - . \2
miny, E {(Yt — E;”:Hl 1/);-T',t — wéTm) } , fixing the solution 1); for any j > ¢, from previous
iterations.

This allows us to generalize the Dynamic DML to the case where we allow non-parametric hetero-
geneity in the parameters 1, with respect to an exogenous fixed covariate vector of each sample,
denoted as Xy, i.e. v4(Z¢, Tt) = ¥i(x0) d(Ty, Tt ), for a known feature map ¢ and unknown heteroge-
neous parameters 1. Thus we can essentially generalize the g-estimation approach to SNMMs to
allow for infinite or high dimensional parameters of the blip functions, as long as the input to these
infinite dimensional parameters is fixed and not changing endogenously by the treatments (e.g. fixed
characteristics of a unit). This can be achieved by simply minimizing recursively the square loss:

2

@Et =argminLp (1/),5;%“1, h) =K YQ — Z &j(XO)/Tj,t - th(XO)/Tt,t
%(-)E‘I’t j:t+1

over arbitrary function spaces ¥, or by using any other machine learning techniques that achieve
small excess risk with respect to the latter square loss problem (e.g. regularized least squares, early
stopping, etc). In the latter, we denoted with h an estimate of the vector of all nuisance functions
(e.g. estimated in the first stage of the Dynamic DML Algorithm) and @ 1 = (1/;,54_1, ey z/;m) the
estimates of the target structural parameters constructed in previous iterations of the recursion.

Algorithm 3 Dynamic RLearner for Structural Nested Mean Models (SNMMs)

Input: A data set of n samples of m-length paths: { (X§, X{,7¢,..., X\, Ti V) }
Input: A target dynamic policy d
Input: r-dimensional feature vector maps {¢; }7,, which parameterize the blip functions
Input: Function spaces for the heterogeneous structural parameters { W, }7™*
Execute first stage identically to Algorithm 2]
Using all the data S U S’
for t = m down to 1 do R
Estimate heterogeneous structural function i, by minimizing the following square loss:

n
=1

2
n

. 1 > N AU
Py = argmlnfz Y — Z %(Xo)/Tj:t_wt(XO)/Tt,t

n
Vi€ 1 j=t+1

end for
Return: Heterogeneous structural function estimates 1 = (¢1, ..., ¥n,) of ¥* = (¥5,...,¢F)

Using techniques from the recently introduced orthogonal statistical learning framework [12} 9], we
show in the appendix that this estimation method provides mean-squared-error guarantees on the
recovered heterogeneous parameters 1@, that are robust to errors in the nuisance functions. This
heterogeneous extension can also be viewed as an analogue of the RLearner meta-learner algorithm
[24]], generalized to the dynamic treatment regime setting.
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To state our main results we will introduce some norm notation. For any vector valued function 1,
taking as input a random variable X and having output in R", we will denote with:

w/v 1/v

1]

wo =BT =E | | D ()"
j=1

for any u,v > 1. If ¢ is a parameter vector, then we will overload notation and let ||¢}|

uw = [[Yllu =
T 1/u . .
(ijl 1/);‘) . If w or v equals oo, then this would designate the sup norm, e.g. ||¢)|co,v :=

E[max;c, 1, (X)"]"? and [|¢]|u.0o = sup,ex [¥(2)[l4. For any u,v, we will denote with @, v
the parameters that correspond to the dual norm, i.e. 1/u + 1/4 = 1 and similarly for ¥. For
any two functions f, g, taking as input random variables X, Y we will use the shorthand notation:
£ 0 glluw =EIFCONZ - lg(Y)||2]*/?. For an n x m matrix A, we will denote with:

" 1/u " m uy\ 1/u
A0 := (Z ||A-,j|3f> = (D[ Dol
i=1

i=1 \j=1

Lemma 9 (Algorithm-agnostic analysis). Consider any estimation algorithm that produces a vector
of estimates ¥ = (Y1, . .., ¥ with small plug-in excess risks, i.e.,

Lo, h) = Lo 0, h) < e, h).
Let Cy j := Cov(Q, Q; | X, Ty—1) and suppose that for all t € [m) and for all x¢ € Xy:
E[Cy: | Xo = zo] = A (positivity)
and, either for all t € [m), U, is a convex set or for all t € [m]: ¢} € Uy, then
e — 130 = GIe — w512, < e(@,, h) + 30y Sty — ¢F112 5

+ 2L et = pes) © (Bie — )12

+ %H(ﬁt,t —pei)o (G — Qt)”%,,@
with ¢ 5 := SUP gz e, E[”Othgﬁ | Xo = IO]Q/E and M := MaX¢e[m] €Wy ||1/1t||u,oo~

Note that for the case when u, v = 2 and setting 0 = )\, then we get the following recursive bound
on the MSE of the heterogeneous structural parameters:

3le = 7132 < e, h) + 3Ty FE by — v3113.
+ 4TM Z;‘n:t |(De,e — pe,e) © (Dt —Pj,t)||%,2 + %H(lﬁt,t —pet)o (G — Qt)||§,2

where ¢;,j 1= sup,, cx, E[[|Ce ;1% | Xo = 2o and M := Supiefn) voe xo i ew, [11e(0)|2-

In the next theorem, we apply this conclusion to the case when the estimate 7,/3 is produced via running
empirical risk minimization in the second stage of the Heterogeneous Dynamic DML algorithm, as
described in Algorithm@ To state the theorem we will use the notion of the critical radius, which is
a measure of statistical complexity of a function space. For any function space JF, with functions
having range in [—1, 1], we consider the localized Rademacher complexity as:

n

1
Rn(f§ 6) =Ee., X1 sup - ezf(Xz)
TR peF fla<s T ;

We denote as the critical radius d,, > 0 of F, any solution to the inequality:

R, (F;6) < 6°
For each function space ¥, we denote with ¥, ; the marginal function space corresponding to the ¢-th
coordinate output of the functions in ¥;. Moreover, we denote with ¥y ; — 1y ; = {ri — ¥ii i €
U, ;}. Finally, we define the star hull of a function space as: star(F) := {7f : f € F,7 € [0,1]}.
The critical radius is a well-established concept in modern statistical learning theory and has been

characterized for many function spaces. Moreover, for many function spaces it yields minimax
optimal statistical learning rates. See [41] for an overview.
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Theorem 10 (MSE Rate for Dynamic RLearner). Suppose that all random variables and functions are
bounded and let 6,, be an upper bound on the critical radius of the star hull of all the function spaces

{9ii — ¥ i Yiepm) ielr) and that 6, = %‘)g(") . Suppose that the quantities m, A, ¢y j, M

(as defined in Lemmal9| for uw = v = 2) are constants independent of n and that:

ax Epipi et = D) © (Bje = pit)ll3.2] = O(2 6% )5)
2ax By oa. [1(Bee = pee) o (@ — ar)ll32] = OG2 7 3)

Then the output of Algorithm 3] satisfies:
max E[[[g; — ¢73,] = O (* 37)

Analogous results hold with high probability and exponential tail, if we make such exponential
tail assumptions also on the guarantees provided by the nuisance functions. We omit them for
succinctness.

Note that most conditions on the nuisance functions have a doubly robust flavor, i.e. we need the
product of two different nuisance function errors to be small. Thus we need that either one or the
other is modeled and estimated accurately. The only exception is the functions p; ;, which also need
to satisfy that: |[p;; — pe¢||3 = 0p(0,,/2). Thus one step ahead treatment propensities, need to be
more accurately estimated than the remainder of the nuisance functions.

A.2 High Dimensional Sparse Linear Blip Functions

The results we have discussed so far assume that the linear feature map that parameterizes the blip
functions is low dimensional, i.e. 7 < n. Observe for instance that Theorem[10]is vacuous when
r = (n). In this section we examine the case where r >> n and provide guarantees under sparsity
conditions on the true structural parameters. For simplicity, we will not consider non-parametric
heterogeneity of the sparse coefficients with respect to some initial state X, i.e. we consider blip
functions of the form: ~;(Xy, Ty; 1) = ¥,0( Xy, Ty), with ¢, € R” and r >> n. However, we note
that here the high-dimensionality of the feature map already offers a lot of modelling flexibility and
one could encode heterogeneity of the blip effect through the feature map.

Apart from the explicit dependence on 7, when the feature map is high dimensional then the /3 » norm
of the errors of the nuisance functions in Theorem [10l can accumulate across their r-dimensional
components. Instead, we would ideally only require a bound on the maximum error across the r
dimensions of each nuisance function. Then an exponential tail bound on the MSE of each coordinate
would imply a bound on the maximum that scales only logarithmically with r. To achieve this we
can invoke Lemma[9 with u = 1, v = co. Then we get the following recursive bound on the MSE of
the heterogeneous structural parameters:

Slbe — 7113 — lloe — 07117 < e(y, h) + D000, 4 Sty — 113
+ LS e = pes) © (Bie — i) 12
+ 2| (Pet — pe) © (G — q0)l1%

where ¢;; = E[||Cy ;lloc] and M := sup,c(n) y,ew, |¥tll1. However, we see that we incur a

dependency on the ¢; norm of the error ¢y — ;. Thus we need to be able to relate the ¢; with the /5
norm of the error of our estimate. This is a restricted cone property on our estimate. We will thus
invoke sparsity assumptions on the true parameter ¢; and augment the empirical risk minimization
step with an ¢; penalty on v;. This enforces the estimate to be primarily supported on the s relevant
dimensions. Within such a restricted cone the ¢; and the /5 norm are equivalent with a constant that
depends only on the sparsity level and not the ambient dimension.

Furthermore, the explicit dependence in Theorem [I0] also stems from the fact that we invoked a
multi-dimensional contraction inequality, across the r output dimensions of ;. However, observe
that the loss function depends on each 1, only through single indices of the form ;T ;. Thus we
could instead control the critical radius of these m index spaces at each iteration of the recursion,
which would avoid the explicit dependence on 7. Together these insights yield the following theorem.
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Algorithm 4 Sparse Linear Dynamic DML for Structural Nested Mean Models (SNMMs)

Input: A data set of n samples of m-length paths: { (X, X{,T7,..., X}, Th YY) }?:1
Input: A target dynamic policy d
Input: r-dimensional feature vector maps { ¢ }}~,, which parameterize the blip functions
Execute first stage identically to Algorithm 2]
Using all the data S U S’
for t = m down to 1 do R

Estimate heterogeneous structural function ¢, by minimizing the ¢ -penalized square loss:

2
n

. ) 1 - LR o
Gro= argmin =Y | Vo= > T =T |+ kel

P €RT: |9y |1 <M T i=1 j=t+1

end for . . .
Return: Structural function estimates ¢ = (1, ..., ¢m) of ¥* = (Y7, ..., ¢¥%)

Theorem 11 (¢5-Error Rate for Sparse Linear Dynamic DML). Suppose that 1} have only s non-zero
coefficients and that:

E[Cov(Q¢, Qs | X, Ty—1)] = M (average positivity)
Let ¢y, c1, c3, cq be sufficiently large universal constants. Then there exists a sequence of regular-

ization levels (see proof for construction) K1, . . ., ky, such that for n > co M the estimate
output by Algorithmd satisfies wp. 1 — com (:

. . m—t+1 __
v € fm < = w7 ll2 < b = 1 < 2 (j ( Relmr/e) +en> 611>

n Cp —

Mm||pei — peill2 1Pj.e.00 — pjsirll2}

€n 1= max  max {||pr; — prill2 |Gt — qrir
m>j>t>1,4,4' €[r]

Cn = C4 v A tea;z( Z <|E COU Qt7QJ |Xt’Tt 1>]H°° WZT/O)

=t+1

A.3 Proof of Lemmal6l

Proof. First we note that by invoking the sequential conditional exogeneity condition, for any
dynamic policy d and for any treatment sequence 7,,,, we have:

Ely Tmtd) -y im0 | X = 25, Tj g = 7520, Ty = d(X, Tj-1)]
= B[y 1) -y (rms0did) | X, = 3, Ty g =75, T = 7
_ E[Y(%jfhd,) y (Fi-1,0,d; ) |X —a:],T =7
Using the latter fact and invoking the definition of p;(Z;, 7;), we can write:
pi(5:75) = (&5, (Tjm1, d(Z5, Tj-1))) = (5, 75)
=E [Y(ﬂ*hdﬂ — Yy (Ti-1.0d50) (Y(*j’dwl) - Y(ﬂ'*l’o’dj“)) | X; =2;,T; = _j}

(@5, (Tj—1,d(Z5,7Tj-1)))

Second, note that by the definition of the observed Y, we have that:
Yy =y (T

and that for any treatment sequence 7,,, via a telescoping sum argument, we can write:

m
v _yFe-ndy) — Zy(ﬂ'del) _ y(Ti-1.d;)
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Thus, applying linearity of expectation, the tower law of expectations and Equation (3), we have:

E|Y -yt | X, T, = ft] =E [Y(T) —yTd) | X, T, = %t]

= E Zy(fjvéy‘ﬂ) —YyTnd) | X, T, = 7,
j=t
m

= ZE |:Y(TJ’71+1) Y(TJ 1,d;) ‘ XtaTt — ft:I

=t
m — — —_ — — —_
_ ZE [IE [Y(Tj7dj+1) _y(Ti-1.d;) | Xj,jy:| | X, T, = 7*-4

Jj=t

= Z -E [P(XjaTj) | X, T} = 7}]

j=t
= —E ZP |Xt7Tt—Tt

By re-arranging we conclude the desired property. O

A.4 Proof of Lemmal7|

Proof. For simplicity of notation, for any f € F, let:
F(Xe, Ty) = f(Xe, Th) = E[f (X4, T}) | Xi, Ty1]
and observe that by the definition of f, we crucially have that for any f € F:
E[f(X:,Ty) | X¢, Ti—1] = 0.

By Lemmal6] we have that at the true 1*:
E I:Ht(w*) f(Xt’Tt)] = E [E [ (w*) | XtaTt:I fT(Xt, Tt)} (tOWer laW)

[ [Y(Tt—l"it) | Xt,Tt} f(Xt,Tt)} (Equation (2))
[ [Y(T“*’Jt) | )_(hTt,l} f()_(t,Tt)} (sequential exogeneity)
|

y (Te—1.de) |Xt7Tt_1} E[f(X:, T)) | Xt,ﬂ-l” (tower law)

I
© #H &

O

A.5 Proof of Lemmal[9]

Lemma 12. For any random vectors I, X,Y and any two vector-valued functions f, g, we have that:

E[(X = f(D) (Y = g(I))" [ 1] = Cov(X,Y | I) + E[(E[X | 1] = f(I)) (E[Y | 1] = g(1))" | 1]

Proof. Let:
A(f,9) == E[(X = f(I)) (Y — g(I))']
B(f.g):= E[E[X | 1] - f(I)) (E[Y | 1] - g(]))]

By simple numeric manipulations we have:

A(f,9) = BI(X —E[X [ 1)) (Y —g(I))" | 1] + E[(B[X | 1] = f(1)) (Y = g(I))" | 1]
= E[(X —E[X | 1)) (Y —g(I))" [ 1] + E[(E[X | ] - f(I)) (Y —E[Y [ 1]) | I| + B(f, 9)
= E[(X —E[X | 1)) (Y —g(I))" | 1] + B(f. 9)
= E[(X —E[X | 1) (Y —E[Y [ 1)) [ 1]+ E[(X - E[X | 1)) (EY [ 1] - g(I))" | I| + B(f, 9)
= E[(X —E[X [ 1) (Y —E[Y | 1)) [ 1]+ B(f,9)

= Cov(X,Y | I)+ B(f,9)
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Proof of Lemmal9} First we define for any functional L( f) the Frechet derivative as:

0
DfL(f)[V] = aL(f +ty) |t:0
Similarly, we can define higher order derivatives, denoted as Dy sL(f,g)[u,v] and
Dy rL(f,9,h)[k, p, V).

For simplicity, in the remainder of the proof we will use the short-hand notation Lp ; = Lp, since
the time ¢ will be evident by the inputs to the loss. Moreover, we’ll use the shorthand notation
I; = (Xt, T;—1). Moreover, we will be using the shorthand notation T; = T}, and p,+ = p,
Dtt = Dt

First, we argue that the plug-in loss function is functionally A-strongly convex. Note that for any
Py € Wy

Dy,, wtCD(i/Jt,%H, )b — 7 by — ¥}]
[ (0%0) = 05 0X0)) Ty (42) — 7 ()|
[(w( )

E
= B | (5X0) ~ 07 (X)) Cont@u @1 | 1) (3(Xo) — 7 (X))

+E

((@(Xo) (%)) (oe(E) - m(@))ﬂ

Y

B | (41060) — 0 (X)) E[Co0l@0 @1 | 1) ] Xl (10(X0) — 07 (X0))]
> N~ 1.

where in the second identity we invoked Lemma[I2]and in the last inequality we used our positivity
assumption. By the A-strong convexity of £p, we have that

. A -
Lo@idy,, h) 2 L5, h) + Do Lo (Wi b, Wb — 671+ Sl — 7 I3

Furthermore, our excess risk assumption and the optimality of f; give us

A
5”% wt||22< ‘CD(wh'l/)t_i_la ) ‘CD(I)Z)tadjf_,'_lah) D¢f£D(¢t’wf+17 )W 1/%}

excess risk of f

(@) . .
< 6(%t7h)_Dwt‘CD(wt’wt+1ﬂ )W wt]

>0 by optimality of v}
+D¢t(£D(w:;£:+1’ ) L:D(wtth“» ))WJ wt]
=:A
+Dwt(ﬁD(¢t7¢t+1> ) £D(wt7wt+1’ ))[’(/} wt]

=:B

Note that:

Dy, Lo (10, W) — ;] = E (W(Xo) - @t(Xo))/Tt Yi— > (X0) Ty — vi(Xo)'Th

j=t+1
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Then by repeated applying Holder’s inequality for the dual norms associated with u, « and v, v, we
have:

Bl= Y
j=t+1

- >

j=t+1

B[ (4 (X0) = 9rX0)) G0 = p00) (3a(E) = mya () (45060) = 60%0)) ||

E [(zp (Xo) — %(Xo))/ 175, (5 (X0) - Q&f(XO))} ’

E [(w:(xo) (X)) Con@u,@; | 1) (3(X0) - %(Xo))] ‘

m 5 1/v
< 3 - il [nct,j 2 Nt (X0) = x0) }
j=t+1 v
+2M |9 — Vi lwoll(Be — 1) © Bje — Pji)llas
< 3" supE[Cujlla | Xo = 20]" 16 — & luvol$s — ¥ lluo

j=t4+1 O
+ 2 M ||ty = Y] luwwll (Be — pe) © (Bje — Pit) o

= > Vel — 65 luwlldy = ¥ lus +2 M [ — ¥}

j=t+1

(Pt — i) © (Dt — pjt)llas

Finally, we analyze the quantity A. First it is straightforward to verify that the loss satisfies the
Neyman orthogonality property, i.e. for any h:

Dy, LD (V73,1 ho))[h — ho, Wb — 1] =0
By a second order Taylor’s theorem with integral remainder,
1
A= = [ DunoLolwis e, bl = hosh—ho.d — b7 dr
0

G(hr ki)

where h, = hg + T(fz — hg). Moreover:

Gllrshoi) = B | (47(X0) = $060)) (1) = 1) @) — (1)
| (45 060) = 9eX0)) () = (1) () = 310 05 (X0)

R /
=28 | (45 (X0) = X)) (00 = ) a1 = peal20) 07 (X0
Thus by repeatedly applying Holder’s inequality, we have that:

AL < [l = ¥ ol (e = pe) © (@ = @) s + 3M 10 — ¥ luw D 1Br = pi) © By = pso)llas
=t
By an AM-GM inequality, for all a,b > 0 and o > 0: a- b < 1(2a® + $b*). Combining all the

above inequalities and applying the AM-GM inequality for each term that contains \Wt = Y luw
and re-arranging, yields that:

m

A s " o Ctj s N
Sl = w1132 — e =il < €@ i)+ D0 =29 — ¥l
j=t+1
4M - L. .
3 S @B —pe) o (e —pio)llas + /\||(pt—pt)°(Qt—Qt)||%,a

j=t

O
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A.6  Proof of Theorem

First we prove a preliminary auxiliary lemma.

Lemma 13. Consider any sequence of non-negative numbers a1, . . . , G, satisfying the inequality:
Qg < ot + Z Rja;
j=t+1
with pg, ky > 0. Let ¢ := maXie Z;":H_l Kt and {1 := maXie(m] - Then it must also hold that:

m7t+171
c—1

c
ay < p

Proof. By the assumed inequality we have that:
m
ar < maxa K < cmax a;
tMt'f'tht;rlJ B+ naxa;
J

We prove by induction that a; < p ZT;Ot c”. By the above inequality, the property holds for t = m
Assuming it holds for j > t, we have that:

m—t—1 m—t—1 m—t

a < ptep Y, F=ptp Y, TH=pd
=0 7=0 7=0

m—t em—t+l_q O

which completes the inductive proof. Finally, observe that ) " ' ¢” = “——

Proof of Theorem[I0] Let Ls;, Ls ¢ denote the empirical loss over the samples in set S and S’
correspondingly and let hg, hgs the nuisance functions trained on sample S and S’ correspondingly.

Denote the random variable Z = {X¢, X1,T1, ..., X, Tm, Y} and consider the loss function:

M

w(Z,,(Xo)ih) = | Y = d(L) = > 5(X0) (Qj = hye(11) = $u(X0) (6(Xe, Ty) = ra(Lr))

J=t

and the centered loss function:
UZ, 3, (Xo); h) = w(Z,0,(Xo); h) = u(Z, 47, ¥, (Xo); )

When all random variables are bounded, then ¢ is L-Lipschitz, for some constant L, with respect to

¥, (Xo).ie
|6(Z; 9, (Xo); h) — €(Z; 9, (Xo); h)| < L|¢,(Xo) — &, (Xo)|2

Moreover, note that:

Lsi(r;d, h) = Lsa(V5: Yol |S|Z£ (71,4, (X3); )

€S

and that £(Z, ¥ (Xo); h) = 0. For succinctness, for any given h, let:

500, h) = Lsa(i,,  h) = Lsa(730,,,, b |5|Z£ (20,4, (XQ): )

€S

Loal, ) = Lop(it,,  h) = Loa(Wii,, . h) = E [0Z;1,(X0); B)]
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Suppose that d,, upper bounds the critical radius of the function classes {Wy ; }¢c{m],ic[r] and 6,, =

Q (M) and let 6, ¢ = ¢/ M, for some appropriately defined universal constants
¢p, c1. Then by Lemma 11 of [12], w.p. 1 — ¢, for all ¢ € [m)]:

L5, hsr) = £ o, )| < O (rmnyoclliy, = ¥llaz +rméd s )

Analogously we can exchange the roles of S and S” and define corresponding losses and properties.

Moreover, we have that by the definition of the final stage of Dynamic DML:

1 * 7 * 7
5 (£5:(0,he) + L5 (0, hs)) <0
Thus we have thatwp 1—-2¢:
5 2 Lhald) SO (rmouncld, = ¥ lez +rmods ) (4)
OG{SS’

Moreover, note that instantiating Lemma|§| with nuisance functions hg and hg/ correspondingly, we
have that in the notation of that lemma:

‘C*D,t(@tv }ALS) = E(ﬁta iLS)
Applying Theorem|§| for each hg, hgs and averaging the final inequality we get:

Ao 1 - C S g
LR I3 < 3 S e ho) + piho) + )\] 1 — 51132
0e{S,5"} j=t+1
where:
- 1 . R
pe(h) == <Dt —pee) 0 (G — @) 132 + Z [(Br,e = pre) © (st — Pi)ll5.2

A

Plugging in the bound from Equation (@), we have that for some universal constant cg:

As * 5 * - Ctgo * 1 7

LI =015 < cormnaclld, =¥l +eormdZpc+ > S~ v+ 5 Y pilho).
j=t+1 0€{5,5'}

By an AM-GM inequality, for all a,b > 0: a- b < 1(2a® + $b?). Thus for any € > 0, we can

achieve:

Ctj €\~ " 1 -
Uil 0 T+ S (S Y- et s Y ailho)

=t 0€{s,5'}

Invoking Lemma|[T3] we thus get that:
Cm—t-‘,-l -1

e — Y550 < pe———— 1

€

where:
o s 3 (F49)
fhe = )\4i0€1-€|-6 2571/24 /\ietrg[;%o %:S/}pt(ﬁo).
Let ¢ := max;em] 5 Zj —t41 )\ -, Choosing € < C/\ and € < 57, we have:
S S 2 %mmé%c

j=t+1

8¢y 2m? m 9.9 8 R

< — ——1m — — m

He= "X (1 T ax{ c ’2}> o2 T3 1etm) pelho)
0€e{8,5'}
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Moreover:

m

em < LEVM™ o
(1—1/2m)m

Thus we have that:

~ 8 2ec™ m m )2
[ — i ll5. < )\7260 (1 + 5 max {;72}> 82 s+ mex re(ho)
0€e{8,8"}

Taking expectation of this inequality and integrating the tail bound, we have that:

A 8 2ec™ — 1 m m “
E; [Wt bill32| < S X9 1 (1 X max{?,Z}) 2050 +2m roax Ej,, [re(ho)]
0e{S,5"}
If m, ¢t 5, A, M are constants and
13?2}2 Eﬁt,tyﬁj,t [H(ﬁt,t _pt,t) © (ﬁj,t _pj7t)||%72i| = O( 671/2)
max Eg, , g, [H(ptt — pet) o (G —(Jt)Hg,z] = 0(7" 5n/2)

1<t<m

then we have that:

trgax]E [H% ¥r 3 2} < O(T 571/2)

A.7 Proof of Theorem [I1]

Lemma 14 (Restricted Cone Property). Assume that all random variables and functions are bounded.
Suppose we set k; such that it satisfies:

m

K
S 20t D (et o il +en
Jj=t+1
where:
1
oo o[BI/
n

€n =L oMmax  max Upe,i — proill2 1Geir — qrirll2s AM m|[pei — peoill2 [1Dj,e,i0 — i ll2}

where ¢y, ¢, are universal constants and ¢; ; = |[E[Cov(Qt, Q; | X, Tio1)]|loo- Let ve := thy — 7,

let T' be the support of 1} and T its complement. Let I/t(T) denote the sub-vector support on T and
C(T;3) == {v e R™ ¢ [ < 3| |1 ). Thenwp. 1= C: vy € C(T;3).

iL) denote the un-penalized empirical loss using the es-

Proof of Lemma(I4) Let L, ¢ (¢ Yyir

timated first stage nuisance functions, where by h = (ﬁs, ﬁsx) we denote the union of both
nuisance functions estimated on each side of the split. Moreover, let L D,t(f/ft;ﬁ 1 h) =

% Y oe (5,5} Lp(Ys; 9 1 ﬁo). By optimality of 7[% for the penalized empirical square loss:

Laa(B05 Do) = Laa W3y B) < s (165 = bl
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Let v, = th — 1f and T denote the support of 1)} (i.e. the set of non-zero coordinates). Denote with

v(T) the sub-vector on the set T and T the complement of 7'. By additivity of the #; norm and the
triangle inequality:

~ * T T° * T T°
el = Ir + w0+ el = ol = Il 1+

. T e
e e A N D P Sl
Moreover, by convexity of the empirical square loss, we have:

Loy, 0 h) = L300, h) = Dy L7390, b))

Dy (LnaWii b,y h) = LoaWisby, b)) ]
+ Dy, L0, (W50, W]

Dy (LnaWis b,y h) = Loa(isb,, 1) ]

'
+ Dy, (L0073, B) = Loa (0307, ko)) ]

G
where in the last step we used the optimality of 1) for the oracle population loss. Observe that the
second quantity G is equal to the terms A + B from the proof of Lemmal[9] Thus from very similar
arguments with those in that proof (with v = 1 and v = 00), albeit with slight modifications that take
advantage of the fact that v = ooE| we have that:

Y

m m
GI< el | D ceglivill + G = pe) (@ = @) Il lloo +4M D 11Be = pe) (Bt = pit) 1]l
j=t+1 j=t
m
< el | D ensllvilh+  max {[lpe; — it — Gt ll2, AM ml[pri — peill2 1Bj.0,00 — pjeirll2}
i J2t,4,i €[r]
€n,t
where ¢; j := ||E[Cy j]||co and M := maxc(m),yp,cw, |[¥¢|l1. Moreover, note that we can write:

(FI < 1Dy, (La 5307, B) = £pois 07, B) ) ]

1D, (L0550, B) = Lad W5 07, 1) = (Lpa (05300 0) = L5 07, 1) ) ]
190, (Lasis 0, h) = Epu(is 7,y 1) Dol

UV (L W53y ) = Lad W5 67, 1) = (Lo a5, h) = L0507, 1)) lellvill

The first term can be written as the maximum among 2 r centered empirical processes of n bounded
i.i.d. random variables. Thus we have that for some universal constants cg, c1, w.p. 1 — (:

IN

log(c17/()
1V00 (Laa @i, 0) = Lpa (57, 1)) oo < coy/ 222
For the second term note that for each half-split, we have that:
V Pt ( nt(¢t7¢t+1, ) - nt(wtth_i_lv )) = Z En |:Tt»t Tj{,t:| Vj
j*t+1
(»CDt(wt7ql)f+1v ) 'CDt(wta i1’ ) Z E[Ttt ]t:|
j=t+1

*In particular, for any v, v; and random variables X,Y, instead of applying Holder’s inequality as:
Er, X Y'v]| < E[l|ve]|1]| X |||V || o]|¥]]1], which would have yielded a dependence on || X o Y||co,1,
we apply: |E[vi X Y'v;]| = [IME[XY|v;| < |lve|l1 JE[XY]||oo||v]|1, which instead yields a dependence on
XY 1o

29



Thus we can upper bound that term by:

> |

j=t+1

E, |:T'L,t T]{,t:| —E {Tz’,t jy7t:| H Hyj Hl

Thus we need to control the maximum of 2 m r? centered empirical processes. Hence, we have that

this term is upper bounded by ¢34/ M, for some universal constants ¢z, c3. Thus for some
universal constants ¢, c1, we have that, w.p. 1 — (:

log(cymr/C) i
1B < vl o/ ————" | 1+ > vl
Jj=t+1

On,¢

Thus we have that:

F+G2 vl [ dnc+ Y (g +0nc)llvslh + eng
j=t+1

Assuming that 5 > 6, + 3770, 1 (e, + 0n,c)[[7j]l1 + €4, We thus have that:
s (WA = ™) 2 F 6 2 =Gl = 4™ < 310
Hence v; € C(T; 3). O
Proof of Theorem[[1] First note that for any 1 , and for any v;:
ViV Lot (V39,5 hyve = viEn [Ty T} Jve
VE[T ) v + v (E[Tt,t Tiy) = EnlTis Tt/,t]) Vi

Y]

VE[Co(Qs, Q1 | Ko Tion)lve — [ElTia T ) — Balfre 77| lell
(by Lemma([I2)

v

Nvelly = ||BFe 77,) = Enlfen Tl el
With probability 1 — (, for all ¢, the latter is at least:

Mwall3 = dn.cllvell¥
Since & is chosen such that v, € C(T'; 3), we have that:

T T

Iwilly < 4l < 4v/5lv e < 45l

Thus we can lower bound the latter by:
(A = 1650,,¢) [[2]l3
————

>\TI,

Thus the loss function £,, ¢(1¢; ¥ fz) is A, -strongly convex. Combining with the optimality of 1&1&

Zt+1?
and the lower bound on ~;, we have:

T Tc
f (01 = W) 2 Laa(s o) = Laa Wi, )
*. 7 1 *. 7
Z Dwtﬁnﬂf (wt ;gt_;'_l? h) [Vt] + §Dwt7'¢'t£n7t (wt ;gt_;'_l? h) [Vt’ Vt]

Kt A
> - 5”’/”1 + 7n||l/t||§

Re-arranging yields:

)\ 3Ht
S lls < 7” P < f\fIIthlz
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Thus we conclude that w.p. 1 — C: |||z < k¢ 3/\‘/§ and ||y < ko2
We also note that we need to chose ~; such that:
m
K 2 200+ ena) + D 2(ce; + 0n.)llvill
j=t+1

If we let f1, = maX;c[m) 2(0n,c + €n,e) and ¢, = Maxcpy) Z;.n:tﬂ 2(¢t,j + On,¢), then it suffices
to choose:

Kt > fin + Cn Djﬁlgfllwlll

Finally, let 3,, = 1)\2 £ Then under the above condition we have that ||v4]|1 < By, k¢

We will show that for some sequence of k1, . .., &, we have: [[vjll1 < Bupin D25, BRI ep .
This holds for j = m if we choose k, := p,,. If we assume this property holds for any j > ¢, then
we have that for time ¢, if we choose:

o iom—i it m—itl L
Kt i = Up + Cnﬂn,ufn E ﬂ:;n ]C;n I = P+ fin § ﬂzn J C:Ln J = Un E ;? jCZZ J
j>t+1 J>t+1 >t

then it satisfies the desired property that x; > i, + ¢, max;>; ||v;|/1 and therefore also:
[vill1 < Brpn Z 5:{17]‘6217]‘
J>t
completing the inductive step. Thus we conclude that for all ¢ € [m]:

(ﬁncn)m—t+1 -1
Bren —1

[vellz < vl < Bapn Y B ep ™ = Bopin
>t

B Proofs of Results in Main Text

B.1 Proof of Lemmall]

Proof. Observe that by repeatedly expanding the state space in terms of the previous state and action
pairs we can write that under any non-state dependent sequence of interventions 7y, . .., 7, the

counterfactual value of the state at time m, X 7({ ) can be written as:
m—1

X7(’;r) = Z B"A. Tm—r + Om

k=1

where d; is a linear function of the mean-zero exogenous random shocks at all periods. Thus under
intervention 7, the final outcome is distributed according to the random variable:

m—1
Y’rng) = 967—771 + Z M/BnilA “Tm—r T /f"ldm + €
k=1
m—1
= w;nT’m + Z w;n—ﬁTnl—R + /J'/dm + €t
k=1

Since V() is the expected difference of this counterfactual final outcome and the counterfactual
final outcome when 7 = 0, and since d; is mean-zero conditional on any exogenous sequence of
interventions that do not depend on the state or prior actions, we get the desired result. O
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B.2 Proof of Theorem2]

Proof. Forany q € {0,...,m — 1}, by repeatedly unrolling the state X,,,, ¢ — 1 times we have that:

q q—1
Yo = 00T + Y/ B* AT+ (/B X g+ Y /B i + €m
k=0 k=0
q q
= Qﬁ;nTm + Z "/Jjnfme—ﬁ + M/Bqu—q + Z M'B“_lnm—n + €m
k=0 k=0
m q
= 1’[};”—qu_’1 + Z ¢;TJ + /,L/Bqu_q + Z M/anlﬁm—n +€m
j=m—q+1 k=0

Thus by re-arranging the equation, we have:

q
Y m—q= Mn—qu—q + W B X g + Z B s+ €m

k=0

Since for all t > m — g, 4, €; are subsequent random shocks to the variables T}, 4, X, 4, we have
that they are mean-zero conditional on 7T}, g4, X, 4. Thus:

E[Yrnm—g — ¢;n—qu—q — B! Xm—g | Tyn—qy Xm—g] =0
Thus we have concluded that for any ¢t € {1,...,m}:
E[Y: — 1T, — W' B™ 1 X, | Ty, X4] = 0
which concludes the proof of the first part of the theorem.

For the second part, consider any ¢ and let ¢ = m — q. Note that by taking an expectation of the
above condition for with respect to 73 conditional on X, we get that it implies

IE:Dfm,m—tz | Xm—q] = 1/);,1_qu—¢1 - ,LL/Bq Xm—q ‘ Tm—anm—q]

B.3 Proof of Theorem[3

Proof. Let Z denote the random variables associated with a single sample series. Observe that if we
let:

_ . .. 2
0(Z30,0,0) = (Vi = 0T )

Then we have that: Vo, ¢ (Z;0,p,q) = 1.(Z;0,p,q) (Where 1), m are as defined in the proof of
Theorem ).

Moreover, observe that by consistency of the nuisance functions we have that for any v = 6,, — 6.
V'Vo,0,E[le(2:0,0,9)lv  v'Vo,0,Ele(Z:0,0",q")v <6 5 V|%>
V13 v vl

2
VE[Cm—nClh v v||?
vo (ol

v w3

) > 2\ — O(mden’(;)

where the first inequality follows from smoothness of the second derivatives of ¢,; with respect to
the nuisances and the mean-squared-error consistency of the nuisance functions. Thus for some
An > A—0(mde,,5), the function E[¢,,(Z; 6, , §)] is \,,-strongly convex in 6,;. By strong convexity
we have:

E[EK(Z7 07137 é) - EN(Z7 0—k7 elt;aﬁa Cj)} 2 mn(e—fﬁv 9:7p7 Q)/(em - 0:) + AnHGH - 6:”3
Moreover, by convexity we have:

E[l(Z;6-1, 05, p,9) — £(Z;0,p,q9)] > m.(0;p,q) (0 — 6,)
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Combining the two yields:
Aallbs = 05115 < (m(050,0) + M (0—s, 055 0,)) (0 — 0,5)

< [Imw(0;p, @) + mu(0—r, 0550, @205 — Ol

Thus we have:

* 1 *
HGK - 0/@” < r”mn(aapa q) + mﬂ(e—ﬁaan;pa Q)H

Observe that by the definition of our estimate é, we have that:

En[vs(Z:6,p,4)] = 0
Moreover, on each side of the fold we have that for a fixed 6:
E[¢x(Z;0,p,q)] = m(0;p, )

Thus by the lipschitzness of the moment ) with respect to 6 and standard empirical process theory,
wp. 1 —6:

sup  ||En[¥x(Z;0,0,4)] — mw(0;0,9)|]2 < O (Hd -

0e[—H,H]?

1og<d/5>>

Thus we have that w.p. 1 — §:

[m (055, 9)ll2 < O <d bg(j””)

Moreover, by the identifying equation assumption we also have that:

my(00;p",q") =0
Thus it suffices to understand the deviation of m,,(6_,, 6;p, G) from the above. For this we will
perform a second order Taylor expansion around all arguments, 8, p,q. We observe that m, is
independent of 6; for ¢ > « and also by Neyman orthogonality, the first order term with respect to the
nuisance models will be zero. Thus we have:

M (01, 053D, @) — M (0050, 0%) < Vo, mu(00;p",q%) (O<i — 0%,.) + O (|6 —p*II3 + 14 — ¢7[|3)

< cmsup [0, — 07 ||2 + € 5
t<w

where we used the fact that:
Vo (000", 0") = E [T o]

and by our assumption HZZ;O [E [T;;_T,m_ﬁgg} | H < ¢, and subsequently we applied an £1 —/{,
o0

Cauchy-Schwarz inequality coordinate-wise for each coordinate of the treatment. Thus overall we
have, for some absolute constant C':

1 log(d/3
10— 0312 < 5 (0 (Hd 2(d/0) —I—ei,5> +cmsupet—9;||2>
n n t<w

Let fiy,5 = % <H dy/ bg(y@ + 6727”5>. Then observe that:
[0k = Oxll2 < ttns + (em/An) sup 160 — 0f |2
<K

Then we have that: ||6p — 65]l2 < pn,s and by induction, if we assume that ||, — 6f| <

tn,s E::o(cm//\n)T for all t < k, then:

k—1 K
||6K - 0:“ S Hn,s + (C'm/)\n) Hn,s Z(CM/AH)T = Un,s Z(Cm/An)T
=0 t=0
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Thus overall we have:

(Cm/An)™ L —1
Cm/An —1

O (,umg max{1, (Cm//\n)m+1})

m—+1
Cm
O (/Ln,é max {1’ <2>\—O(7nd€m5)> })

Which concludes the proof of the theorem. O

A

Vk € {0, s am} : ||9r€ - 9:”2 S Hng Z(C'm//\n)T < Hn,s
t=0

B.4 Proof of Theorem[d

Proof. Observe that our estimator can be equivalently viewed as the solution to an empirical version
of the following vector of moment conditions:

where Z is a random vector denoting the variables of a single sample series and:
K
wn(Zy Hap*v q*) = <er,n - Z 97T7jz—r,m—n> T’:;l—ﬂ,m—ﬁ
=0

and

f/:z,/{ = Ym — ¢ (Xm—x) Ton—rim—r = Tm—r — 7 o (Xim—)

If we denote with p and ¢ the estimates of the nuisance models, then our estimate 6 is equivalent to
the solution of the system of equations:

E, [¢(2:0.5.9)| = — szb(zi;e,ﬁ, a) =0

We now show that the moment vector 1) satisfies the property of Neyman orthogonality with respect
to all the nuisance models p, ¢. For this it suffices to show that for all x € {0, ..., m}:

]E[Vﬂ'-,—,m’}’nwﬁ(z; 90710*7 q*) | X’m*fﬂ] =0

where V. is the derivative of ) with respect to the output of the nuisance models p; .., q;;
evaluated at X,,,_ ..

For any «, the derivative with respect to 7, ,, for 7 < & is equal to:

E[T Xpm_x] =0

m—Kk,m—kK |

while the derivative with respect to ,,  is:
_]E[}_/r;kz,f{ - Z GTTrthT,mfm | men] + E[T;Lfn,mfn | meﬁ] =0
7=0

Similarly, the derivative with respect to -y, is:

7]E[T;1—n,m—n | meﬁ} =0
Moreover, the Jacobian M of the moment vector m at the true values 6y, p*, ¢* is a block lower
triangular matrix whose block values are of the form:

YO<T<Kk<m:M,,=E[T" ¢ ]

m—T,M—K>XM—K

Thus its diagonal block values take the form M, ., = E[¢,,—x(),_,.] = AI. Hence, the minimum
eigenvalue of M is at least \.

Thus our setting and our estimator falls exactly into the framework of orthogonal moment esti-
mation of [6] and we can directly apply Theorem 3.1 of [6] to get the result (the exact form of
the matrix 3 follows from the observation that ¥, (Z; 0o, p*, ¢*) = €m—r Gm—s« and the fact that

X =E[(Z;00,p%,¢") ¥(Z;60,0", q%)]). O
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B.5 Proof of Theorem 3

Consider blocks of size m and let Z; denote the set of all random variables in block b, starting from
the first state X3 o of that block and ending in the final outcome Y3 ,,,. Moreover, let 3, denote the
filtration before each block b (i.e. all past variables before b) and let:

M, (050, q) = E[Y(Zs;0,p,q) | F)

Let

1
me(0;p,9) = 5 > e (05, q)
b

1
\I/B,n(g;pa q) = E Zwﬁ(zb; 97]93 q)
b

By a second order Taylor expansion of m(6;p, q) around 6y, pg, qo, and due to orthogonality of
the moment with respect to p, ¢, the linearity of the moment with respect to 6, and the fact that
m(8o; po, go) = 0 we have:

m(6;p, q) = Vom(0o; po, qo) (0 — bo) + &

where &, satisfies that:

[€]] = mdO (||P - p0||c2>o7 lg — q0||c2>o)

If we let: M = Vgm(6o; po, qo), we have that:
M (6 —6o) = m(6;p,q) + p
where p also satisfies:
lpll =mdO (llp = poli%, llg = qol%)
Moreover, observe that by the definition of our estimator, we have:
Up(0:p,4) =0
Thus we conclude that:

M0 — ;) = (m(é;ﬁ, q) — Ui(6;p, ‘?>) 4

Moreover, observe that m(6y; p*, ¢*) = 0. Thus we can further expand the right hand side as:

m(0;p,4) — Up(0;p,4) = — Up(0o;p",¢") + m(0;p,9) — ¥ (6;p,4) — (m(Bo; p*, ¢") — Vp(6o;p", "))
= —Ugp(0o;p",q") +m(0;p,q) — m(0o;p*,q¢") — (¥5(0;9,4) — Vi (0o; ", q"))
Asymptotic normal term A=Stochastic equicontinuous term

First we note that the term A decays to zero faster than a root-B rate. By a martingale Bernstein
inequality (see e.g. [13] or [25]]), we have that for any 6:

[A]|oe <

0] sup
k€{0,...,m—1},5e{1,..

Moreover, by the Lipschitzness of 1, we have that:

\/Supb E[(Vn,i(Zb; 0,9, Q) — Vr,i(Zy: 00,D,4))? | Fb] log(md/d) + log(md/é)
.d} B B

VEL(Wn i(Z0:6.5.0) — 0n(Z:00.5.9))? | Fy] <

ma0 (\/E10—aolz /Bl la— )
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By our estimation rate theorem for 6 and our assumption on the estimation rate of p and ¢ we have
that:

Ve e {0,...,m—1}: E[|é—90|go]go<dom< bg(gB)+623>>

and \/]E[Hﬁ — p*[I7 0] \/E[H(j —¢*|3.] < e = o(B'/*). Since by assumption m C,, =
o(v/B), we have:

VBmdo (el - ol /Bl — 1 li— 0. ) = o)

VB Al = 0p(1)

Thus:

Moreover, for the exact same reason:

VBlpll = 0,(1)

Thus it suffices to show that:
—VBUg(0o;p*, q") =4 N(0,3)

Observe that under the true values of 6y, p*, ¢*, the moment v, ,.(Zy; 6o, p*, ¢*) = €p (b, is only a
function of the residual random noises, (p x, €p,. Since these variables are independent and identically

distributed across all blocksﬂ we can conclude that the conditional variance:
Var( (Zp; 00, 0%, 4%) | Fo) = Eleg . GonCh | Fol = B = 207N

where o2 is the variance of the shocks €y and 2 X is the minimum eigenvalue of the co-variance of
Cp,- Thus X is a positive definite symmetric matrix with minimum eigenvalue independent of m.
Thus Var(¢ (Zs; 60, p*, ¢*) | Fp) is a constant positive definite matrix, independent of b and F,. We
can thus apply a Martingale Central Limit Theorem (see e.g. [15]) to get the desired statement:

VBETYV2M(0 - 6y) —q N(0,1)

C Omitted Content from Section 3

Concrete Rates for Lasso Nuisance Estimates. Suppose that the observational policy p is also
linear, i.e. p(X) = AX. Then all the models ¢, and p, ,, are high-dimensional linear functions of
their input arguments, i.e. ¢, () = ¢'z and p; ; ;(¥) = 7 . ;z. If these linear functions satisfy a
sparsity constraint then under standard regularity assumptions we can guarantee if we use the Lasso

regression to estimate each of these functions that w.p. 1 — §, the estimation error of all nuisance
models is O | s4/ bg(fy‘”) , where s is an upper bound on the number of non-zero coefficients. One

sufficient regularity condition is that the expected co-variance matrix of every period’s state has full
rank, i.e. E[X,X]] = AI. Thus the requirements of the our main theorems of this section would be
satisfied as long as the sparsity grows as s = o(n'/*). These sparsity conditions are for instance
satisfied if for instance, only s coordinates of the high-dimensional state have any effect on the final
outcome (i.e. are outcome-relevant) and if only s coordinates of the high-dimensional state enter the
observational policy.

D Omitted Content from Section

We present here a more formal description of the block dynamic DML algorithm and also provide a
finite sample mean squared error theorem that complements our asymptotic normality result from the
main part of the paper.

>Our theorem would easily extend if these variables form a martingale with a non-zero variance at each step
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Algorithm 5 Block Dynamic DML with Progressive Nuisance Estimation

Partition the data into B = n/m blocks of m periods
Denote with X?, T}, Y} the state, action, outcome pairs in the ¢-th period of block b.
for each block b € {B/2,...,B} do

for each x € {0,...,m} do
Regress Y on X% using all blocks b’ < b to learn model g, (z) = E[Y;, | Xpn_r = 7]

and and calculate the residual an“n_n =Y>? —q.(X2_,).
foreach 7 € {0,...,x} do

Regress each Tf;{_ on X using blocks ¥’ < b to learn model p. . and calculate

T m—kKk

residual 72, ., =T . — prx(XL _,) on the other half, and vice versa.
end for ’
end for
end for

Using all the blocks b € {B/2,..., B}

fork =0tomdo _ o _ .
Regress Yy w = Yinm—rx — D rer - Tm—r.m—r 0N Tpy_r m—x, i.. find a solution 6. to the
estimating equation:

B/2

o) Z <Yr?7,,n - gﬁfrl;—n,m—n) Tgm—n,m—/{ =0
b=1

3| ro

end for

Theorem 15. Let F;, denote the filtration up until block b. Suppose that B[(:(] | Fp] = 2AI and that
each coordinate h of each nuisance model {q,;, pr . }r.r satisfy that w.p. 1 — §,Yb > B/2:

1= B 1> = \/Ex[h(Xs) — A(X,)? | Fo] < s

where expectation is with respect to the corresponding input of each model from block b. Moreover,
> E [T;_ﬂm_ﬁg | fb] |HOo < ¢pm. Then wp. 1 — 26:

j log(dm B/é
|9—9o|oo§0<dcm ( Og(g‘/)ﬂz&g))

m—+1 N
where C}, := max {1, (W) } m. If each coordinate h of each nuisance model

suppose that: ‘

satisfies:
Vb > B/2 :E;[||h— 1 [i 5] VY < ep
Then:

wti- i <o (ac, (251 4 ).

Proof. Consider blocks of size m and let Z;, denote the set of all random variables in block b, starting
from the first state X o of that block and ending in the final outcome Y}, ,,,. Moreover, let F;, denote
the filtration before each block b (i.e. all past variables before b) and let:

M (050, 9) = E[Y(Zb;0,p,9) | Fi]
Since by assumption E[(; ¢; | F3] = 2AI. Then:

E[EK(Zlneapaq) - gﬁ(Zb;e—k?ael’;)]% Q) | ]:b] Z mb,m(e—mﬁ:;l% q)/(eﬁ - e:) + AHHN - QZHQ

E[l(Z;0_k,0%.0,q) — £e(Z;0,p,q) | Fo] = me . (0;0,9) (0) — 0,)
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Combining the two yields:
M = 051> < (m,1(0; 9, 9) + M1 (0—r, 032, 9)) (6 — 0sc)

Averaging the latter inequality over the B blocks, applying Cauchy-Swartz inequality and dividing
over by [|0,, — 0%

1

1
16 = 0511 < 5 || 55 D (70002, 0) + 10,5 (0, 075, 0))

b

Observe that by the definition of our estimate é, we have that:
1 Ao s
5 2 Un(Z0,5,0) =0
b
Moreover, conditioning on the first fold, we have that for any fixed 6:

E[wﬁ(zbv 97]33 (?) | ]:b] = mbyfi(o;ﬁa (j)

Thus by the lipschitzness of the moment ¢ with respect to § and martingale Azuma inequality and

standard covering arguments, we have:
dlog(dB/é
- - O( g(/))

96[_H7H]d

% > (200, 5,)] — M, (0:, )

b

B

Thus we have that w.p. 1 — §:

M. (8:5,)]| < O ( dbg(dB/f”)

B
Moreover, by the identifying equation assumption we also have that:
Vb 2 mu k(003 p", %) =0

Thus it suffices to understand the deviation of m(0_, 0%;p, §) from the above. For this we will
perform a second order Taylor expansion around all arguments, 6, p,q. We observe that m, is
independent of 6, for ¢ > « and also by Neyman orthogonality, the first order term with respect to the
nuisance models will be zero. The remainder of the proof is identical to the final inductive part of the
proof of Theorem 3] O

38



E Further Experimental Results

E.1 Constant Treatment Effects

o ¢ dyn-dml
1.50 no-ctrls
*  true
© init-ctrls
1.25 * init-ctrls-dml
© fin-ctrls
1.00 ) fin-ctris-dml
dyn-direct
*
0.75 +
*
0.50
o
0.25
0.00 ° ® o
6o 61 6,

Figure 3: Comparison of DynamicDML (with confidence intervals) with benchmarks on a single
instance. n = 400, n; = 2, n, = 100, s = 10, o(&;) = .5, 0(¢:) = .5, 0(n) = .5, C =0

094 ¢ . ¢
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(b) Point estimates

Figure 4: n = 500, n; = 2, n, =450, s =2,0(e;) = 1,0(¢) = .5, 0(mp) =1
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(a) Coverage
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(b) Point estimates

Figure 5: n = 2000, ny = 2, n, =450, s =2,0(e;) = 1,0({) = .5, 0(np) =1

E.2 Heterogeneous Treatment Effects

1 1 i 1 1 i

8 6 6

(b) Point estimates

Figure 6: Heterogeneous effects: n = 500, ny = 2, n, = 450, s = 2, o(e;) = 1, (&) = .5,
o(m) =1
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(b) Point estimates

Figure 7: Heterogeneous effects: n = 2000, n; = 2, n, = 450, s = 2, o(e;) = 1, () = .5,
o(m) =1
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E.3 Counterfactual Policy Values

(a) Coverage
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(b) Point estimates

Figure 8: Counterfactual Policy Values for 10 randomly chosen binary policies based on exogenous
features: n = 500, n; = 2, n, =450, s =2,0(e;) = 1,0(¢) = .5, 0(n) =1
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(b) Point estimates

Figure 9: Counterfactual Policy Values for 10 randomly chosen binary policies based on exogenous
features: n = 2000, ny = 2, n, = 450,s =2,0(e;) =1,0(¢) = 5, 0(n) =1
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